[PDF]    https://doi.org/10.3952/physics.v62i2.4740

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 73–80 (2022)
 
 

LIOUVILLE’S THEOREM AND THE FOUNDATION OF CLASSICAL MECHANICS
 
Andreas Henriksson
 Stavanger Katedralskole, Haakon VII’s gate 4, 4005 Stavanger, Norway
 
Email: andreas.henriksson@skole.rogfk.no

Received 20 January 2022; revised 20 March 2022; accepted 1 April 2022

In this article, it is suggested that a pedagogical point of departure in the teaching of classical mechanics is the Liouville’s theorem. The theorem is interpreted to define the condition that describes the conservation of information in classical mechanics. The Hamilton’s equations and the Hamilton’s principle of the least action are derived from the Liouville’s theorem.
Keywords: information, determinism, Liouville’s theorem, Hamilton’s equations, Hamilton’s principle
 

LIUVILIO TEOREMA IR KLASIKINĖS MECHANIKOS PAGRINDAS
 
Andreas Henriksson

Stavangerio katedros mokykla, Stavangeris, Norvegija
 


References / Nuorodos

[1] F. Bloch, Fundamentals of Statistical Mechanics, Manuscript and Notes of Felix Bloch, prepared by John Dirk Walecka, 3rd ed. (Imperial College Press and World Scientific Publishing, London, 2000)
[2] J.W. Gibbs, Elementary Principles in Statistical Mechanics (Charles Scribner’s Sons, New York, 1902)
[3] J. Liouville, Note sur la Theorié de la Variation des constantes arbitraires, J. Math. Pures Appl. 3(1), 342–349 (1838)
[4] J. Liouville, Note sur l’intégration des équations différentielles de la Dynamique, J. Math. Pures Appl. 20(1), 137–138 (1855)
[5] V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed. (Springer-Verlag, New York, 1989),
https://doi.org/10.1007/978-1-4757-2063-1
[6] H. Jeffreys and B.S. Jeffreys, Methods of Mathematical Physics, 3rd ed. (Cambridge University Press, 1956)