References
/ Nuorodos
[1] S. Sachdev and Jinwu Ye, Gapless spin-fluid ground state
in a random quantum Heisenberg magnet, Phys. Rev. Lett.
70,
3339 (1993), arXiv:cond-mat/9212030,
https://doi.org/10.1103/PhysRevLett.70.3339
[2] S. Sachdev, Holographic metals and the fractionalized
Fermi liquid, Phys. Rev. Lett.
105, 151602 (2010),
https://doi.org/10.1103/PhysRevLett.105.151602
[3] S. Sachdev, Bekenstein-Hawking entropy and strange metals,
Phys. Rev. X
5, 041025 (2015),
https://doi.org/10.1103/PhysRevX.5.041025
[4] A. Kitaev,
KITP Seminars, 2015,
http://online.kitp.ucsb.edu/
[5] A. Kitaev, Notes on $\widetilde{\mathrm{SL}}(2,ℝ)$
representations, arXiv:1711.08169,
https://doi.org/10.48550/arXiv.1711.08169
[6] A. Kitaev and S.J. Suh, The soft mode in the
Sachdev-Ye-Kitaev model and its gravity dual, JHEP
2018,
183 (2018), arXiv:1711.08467,
https://doi.org/10.1007/JHEP05(2018)183
[7] A. Kitaev and S.J. Suh, Statistical mechanics of a
two-dimensional black hole, JHEP
2019, 198 (2019),
arXiv:1808.07032,
https://doi.org/10.1007/JHEP05(2019)198
[8] S. Sachdev, Statistical mechanics of strange metals and
black holes, arXiv:2205.02285,
https://doi.org/10.48550/arXiv.2205.02285
[9] G. Penington, Entanglement wedge reconstruction and the
information paradox, arXiv:1905.08255,
https://doi.org/10.48550/arXiv.1905.08255
[10] A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield,
The entropy of bulk quantum fields and the entanglement wedge
of an evaporating black hole. JHEP
2019, 63 (2019),
arXiv:1905.08762,
https://doi.org/10.1007/JHEP12(2019)063
[11] S. Banerjee and E. Altman, Solvable model for a dynamical
quantum phase transition from fast to slow scrambling, Phys.
Rev. B
95, 134302 (2017),
https://doi.org/10.1103/PhysRevB.95.134302
[12] Zhen Bi, Chao-Ming Jian, Yi-Zhuang You, K.A. Pawlak, and
Cenke Xu, Instability of the non-Fermi-liquid state of the
Sachdev-Ye-Kitaev model, Phys. Rev. B
95, 205105 ,
(2017),
https://doi.org/10.1103/PhysRevB.95.205105
[13] Shao-Kai Jian and Hong Yao, Solvable Sachdev-Ye-Kitaev
models in higher dimensions: From diffusion to many-body
localization, Phys. Rev. Lett.
119, 206602 (2017),
https://doi.org/10.1103/PhysRevLett.119.206602
[14] A. Haldar, S. Banerjee, and V.B. Shenoy,
Higher-dimensional Sachdev-Ye-Kitaev non-Fermi liquids at
Lifshitz transitions, Phys. Rev. B
97, 241106 (2018),
https://doi.org/10.1103/PhysRevB.97.241106
[15] Chao-Ming Jian, Zhen Bi, and Cenke Xu, Model for
continuous thermal metal to insulator transition, Phys. Rev. B
96, 115122 (2017),
https://doi.org/10.1103/PhysRevB.96.115122
[16] Xue-Yang Song, Chao-Ming Jian, and L. Balents, Strongly
correlated metal built from Sachdev-Ye-Kitaev models, Phys.
Rev. Lett.
119, 216601 (2017),
https://doi.org/10.1103/PhysRevLett.119.216601
[17] Xin Chen, Ruihua Fan, Yiming Chen, Hui Zhai, and Pengfei
Zhang, Competition between chaotic and nonchaotic phases in a
quadratically coupled Sachdev-Ye-Kitaev model, Phys. Rev.
Lett.
119, 207603 (2017),
https://doi.org/10.1103/PhysRevLett.119.207603
[18] Pengfei Zhang, Dispersive Sachdev-Ye-Kitaev model: Band
structure and quantum chaos, Phys. Rev. B
96, 205138
(2017),
https://doi.org/10.1103/PhysRevB.96.205138
[19] Wenhe Cai, Xian-Hui Ge, and Guo-Hong Yang, Diffusion in
higher dimensional SYK model with complex fermions, JHEP
2018(01),
76 (2018),
https://doi.org/10.1007/JHEP01(2018)076
[20] Zhong Yin, Periodic Anderson model meets
Sachdev-Ye-Kitaev interaction: a solvable playground for heavy
fermion physics, J. Phys. Commun.
2, 095014 (2018),
https://doi.org/10.1088/2399-6528/aae06b
[21] Xin Dai, Shao-Kai Jian, Hong Yao, Global phase diagram of
the one-dimensional Sachdev-Ye-Kitaev model at finite
N,
Phys. Rev. B
100, 235144 (2019), arXiv:1802.10029,
https://doi.org/10.1103/PhysRevB.100.235144
[22] Pengfei Zhang and Hui Zhai, Topological Sachdev-Ye-Kitaev
model, Phys. Rev. B
97, 201112(R) (2018),
https://doi.org/10.1103/PhysRevB.97.201112
[23] Xiaochuan Wu, Xiao Chen, Chao-Ming Jian, Yi-Zhuang You,
and Cenke Xu, Candidate theory for the strange metal phase at
a finite-energy window, Phys. Rev. B
98, 165117
(2018),
https://doi.org/10.1103/PhysRevB.98.165117
[24] D. Ben-Zion and J. McGreevy, Strange metal from local
quantum chaos, Phys. Rev. B
97, 155117 (2018),
https://doi.org/10.1103/PhysRevB.97.155117
[25] A.A. Patel, J. McGreevy, D.P. Arovas, and S. Sachdev,
Magnetotransport in a model of a disordered strange metal,
Phys. Rev. X
8, 021049 (2018),
https://doi.org/10.1103/PhysRevX.8.021049
[26] D. Chowdhury, Y. Werman, E. Berg, and T. Senthil,
Translationally invariant non-Fermi-liquid metals with
critical Fermi surfaces: Solvable models, Phys. Rev. X
8,
031024 (2018),
https://doi.org/10.1103/PhysRevX.8.031024
[27] A.A. Patel and S. Sachdev, Theory of a Planckian metal,
Phys. Rev. Lett.
123, 066601 (2019),
https://doi.org/10.1103/PhysRevLett.123.066601
[28] A.A. Patel and S. Sachdev, Critical strange metal from
fluctuating gauge fields in a solvable random model, Phys.
Rev. B
98, 125134 (2018),
https://doi.org/10.1103/PhysRevB.98.125134
[29] D. Miserev, J. Klinovaja, and D. Loss, Fermi surface
resonance and quantum criticality in strongly interacting
Fermi gases, Phys. Rev. B
103, 075104 (2021),
https://doi.org/10.1103/PhysRevB.103.075104
[30] D. Chowdhury, A. Georges, O. Parcollet, and S. Sachdev,
Sachdev-Ye-Kitaev models and beyond: A window into non-Fermi
liquids, arXiv:2109.05037,
https://doi.org/10.48550/arXiv.2109.05037
[31] I. Esterlis, Haoyu Guo, A.A. Patel, and S. Sachdev,
Large-
N theory of critical Fermi surfaces, Phys. Rev. B
103, 235129 (2021),
https://doi.org/10.1103/PhysRevB.103.235129
[32] D. Chowdhury and E. Berg, Intrinsic superconducting
instabilities of a solvable model for an incoherent metal,
Phys. Rev. Research
2, 013301 (2020),
https://doi.org/10.1103/PhysRevResearch.2.013301
[33] P. Cha, A.A. Patel, E. Gull, and Eun-Ah Kim, Slope
invariant
T-linear resistivity from local self-energy,
Phys. Rev. Research
2, 033434 (2020),
https://doi.org/10.1103/PhysRevResearch.2.033434
[34] Haoyu Guo, Yingfei Gu, and S. Sachdev, Transport and
chaos in lattice Sachdev-Ye-Kitaev models, Phys. Rev. B
100,
045140 (2019),
https://doi.org/10.1103/PhysRevB.100.045140
[35] I. Esterlis and J. Schmalian, Cooper pairing of
incoherent electrons: An electron-phonon version of the
Sachdev-Ye-Kitaev model, Phys. Rev. B
100, 115132
(2019),
https://doi.org/10.1103/PhysRevB.100.115132
[36] Yuxuan Wang and A. V. Chubukov, Quantum phase transition
in the Yukawa-SYK model, Phys. Rev. Research
2, 033084
(2020),
https://doi.org/10.1103/PhysRevResearch.2.033084
[37] B. Douçot, A. Mukhopadhyay, G. Policastro, and S.
Samanta, Linear-in-
T resistivity from semiholographic
non-Fermi liquid models, Phys. Rev. D
104, L081901
(2021),
https://doi.org/10.1103/PhysRevD.104.L081901
[38] L. Classen and A. Chubukov, Superconductivity of
incoherent electrons in the Yukawa Sachdev-Ye-Kitaev model,
Phys. Rev. B
104, 125120 (2021),
https://doi.org/10.1103/PhysRevB.104.125120
[39] Peter Cha, A.A. Patel, and Eun-Ah Kim, Strange metals
from melting correlated insulators in twisted bilayer
graphene, Phys. Rev. Lett.
127, 266601 (2021),
https://doi.org/10.1103/PhysRevLett.127.266601
[40] F. Salvati and A. Tagliacozzo, Superconducting critical
temperature in the extended diffusive Sachdev-Ye-Kitaev model,
Phys. Rev. Research
3, 033117 (2021),
https://doi.org/10.1103/PhysRevResearch.3.033117
[41] Gaopei Pan, Wei Wang, A. Davis, Yuxuan Wang, and Zi Yang
Meng, Yukawa-SYK model and self-tuned quantum criticality,
Phys. Rev. Research
3, 013250 (2021),
https://doi.org/10.1103/PhysRevResearch.3.013250
[42] G. Jose, Kangjun Seo, and B. Uchoa, Non-Fermi liquid
behavior in the Sachdev-Ye-Kitaev model for a one-dimensional
incoherent semimetal, Phys. Rev. Research
4, 013145
(2022),
https://doi.org/10.1103/PhysRevResearch.4.013145
[43] A.A. Patel, Haoyu Guo, I. Esterlis, and S. Sachdev,
Universal, low temperature,
T-linear resistivity in
two-dimensional quantum-critical metals from spatially random
interactions, arXiv:2203.04990,
https://doi.org/10.48550/arXiv.2203.04990
[44] S.A. Hartnoll, Lectures on holographic methods for
condensed matter physics, Class. Quant. Grav.
26,
224002 (2009),
https://doi.org/10.1088/0264-9381/26/22/224002
[45] C.P. Herzog, Lectures on holographic superfluidity and
superconductivity, J. Phys. A
42, 343001 (2009),
https://doi.org/10.1088/1751-8113/42/34/343001
[46] J. McGreevy, Holographic duality with a view toward
many-body physics, Adv. High Energy Phys.
2010, 723105
(2010),
https://doi.org/10.1155/2010/723105
[47] S. Sachdev, What can gauge-gravity duality teach us about
condensed matter physics?, Annu. Rev. Cond. Matt. Phys.
3,
9 (2012),
https://doi.org/10.1146/annurev-conmatphys-020911-125141
[48] J. Zaanen, Y. Liu, Y.-W. Sun, and K. Schalm,
Holographic
Duality in Condensed Matter Physics (Cambridge
University Press, 2015),
https://doi.org/10.1017/CBO9781139942492
[49] M. Ammon and J. Erdmenger,
Gauge/Gravity Duality
(Cambridge University Press, 2015),
https://doi.org/10.1017/CBO9780511846373
[50] S.A. Hartnoll, A. Lucas, and S. Sachdev,
Holographic
Quantum Matter (MIT Press, 2018),
https://mitpress.mit.edu/books/holographic-quantum-matter
[51] D.V. Khveshchenko, Phase space holography with no strings
attached, Lith. J. Phys.
61, 233 (2021),
arXiv:2102.01617,
https://doi.org/10.3952/physics.v61i4.4642
[52] Chao-Ming Jian, Zhen Bi, and Cenke Xu, Model for
continuous thermal metal to insulator transition, Phys. Rev. B
96, 115122 (2017), arXiv:1703.07793,
https://doi.org/10.1103/PhysRevB.96.115122
[53] D. Anninos and D.A. Galante, Constructing AdS
2
flow geometries, JHEP
2021, 45 (2021),
arXiv:2011.01944,
https://doi.org/10.1007/JHEP02(2021)045
[54] Jiaqi Jiang and Zhenbin Yang, Thermodynamics and many
body chaos for generalized large
q SYK models, JHEP
2019 19 (2019), arXiv:1905.00811,
https://doi.org/10.1007/JHEP08(2019)019
[55] A.V. Lunkin, K.S. Tikhonov, and M.V. Feigel'man,
Sachdev-Ye-Kitaev model with quadratic perturbations: The
route to a non-Fermi liquid, Phys. Rev. Lett.
121,
236601 (2018), arXiv:1806.11211,
https://doi.org/10.1103/PhysRevLett.121.236601
[56] D.V. Khveshchenko, Thickening and sickening the SYK
model, SciPost Phys.
5, 012 (2018), arXiv:1705.03956,
https://doi.org/10.21468/SciPostPhys.5.1.012
[57] D.V. Khveshchenko, Seeking to develop global SYK-ness,
Condens. Matter
2018, 3(4), 40 (2018),
arXiv:1805.00870,
https://doi.org/10.3390/condmat3040040
[58] J. Maldacena, S.H. Shenker, and D. Stanford, A bound on
chaos, JHEP
2016(08), 106 (2016), arXiv:1503.01409,
https://doi.org/10.1007/JHEP08(2016)106
[59] J. Maldacena and D. Stanford, Remarks on the
Sachdev-Ye-Kitaev model, Phys. Rev. D
94, 106002
(2016), arXiv:1604.07818,
https://doi.org/10.1103/PhysRevD.94.106002
[60] J. Maldacena, D. Stanford, and Zhebin Yang, Conformal
symmetry and its breaking in two dimensional nearly
Anti-de-Sitter space, PTEP
2016(12), 12C104 (2016),
arXiv:1606.01857,
https://doi.org/10.1093/ptep/ptw124
[61] D. Stanford and E. Witten, Fermionic localization of the
schwarzian theory, JHEP
2017(10), 8 (2017),
arXiv:1703.04612,
https://doi.org/10.1007/JHEP10(2017)008
[62] J. Polchinski and V. Rosenhaus, The spectrum in the
Sachdev-Ye-Kitaev model, JHEP
2016(04), 1 (2016),
arXiv:1601.06768,
https://doi.org/10.1007/JHEP04(2016)001
[63] D.J. Gross and V. Rosenhaus, The bulk dual of SYK: cubic
couplings, JHEP
2017(05), 92 (2017), arXiv:1702.08016,
https://doi.org/10.1007/JHEP05(2017)092
[64] D.J. Gross and V. Rosenhaus, All point correlation
functions in SYK, JHEP
2017(12), 148 (2017),
arXiv:1710.08113,
https://doi.org/10.1007/JHEP12(2017)148
[65] G. Sárosi, AdS
2 holography and the SYK model,
in:
XIII Modave Summer School in Mathematical Physics
(Modave2017), Proc. Sci. vol. 323, arXiv:1711.08482,
https://doi.org/10.22323/1.323.0001
[66] Henry W. Lin, J. Maldacena, and Ying Zhao, Symmetries
near the horizon, JHEP
2019, 49 (2019),
arXiv:1904.12820,
https://doi.org/10.1007/JHEP08(2019)049
[67] E. Witten, An SYK-Like model without disorder,
arXiv:1610.09758,
https://doi.org/10.48550/arXiv.1610.09758
[68] R. Gurau, The complete 1/
N expansion of a SYK-like
tensor model, Nucl. Phys. B
916, 386--401 (2017),
arXiv:1611.04032,
https://doi.org/10.1016/j.nuclphysb.2017.01.015
[69] R. Gurau, The
ıε prescription in the SYK model,
arXiv:1705.08581,
https://doi.org/10.48550/arXiv.1705.08581
[70] I.R. Klebanov and G. Tarnopolsky, Uncolored random
tensors, melon diagrams, and the Sachdev-Ye-Kitaev models,
Phys. Rev. D
95, 046004 (2017),
https://doi.org/10.1103/PhysRevD.95.046004
[71] S. Giombi, I.R. Klebanov, and G. Tarnopolsky, Bosonic
tensor models at large
N and small
ε, Phys.
Rev. D
96, 106014 (2017),
https://doi.org/10.1103/PhysRevD.96.106014
[72] Yingfei Gu, Xiao-Liang Qi, and D. Stanford, Local
criticality, diffusion and chaos in generalized
Sachdev-Ye-Kitaev models, JHEP
2017, 125 (2017),
https://doi.org/10.1007/JHEP05(2017)125
[73] Yingfei Gu, A. Lucas, and Xiao-Liang Qi, Energy diffusion
and the butterfly effect in inhomogeneous Sachdev-Ye-Kitaev
chains, SciPost Phys.
2, 018 (2017),
https://doi.org/10.21468/SciPostPhys.2.3.018
[74] Yingfei Gu, A. Lucas, and Xiao-Liang Qi, Spread of
entanglement in a Sachdev-Ye-Kitaev chain, JHEP
2017,
120 (2017),
https://doi.org/10.1007/JHEP09(2017)120
[75] Yingfei Gu and A. Kitaev, On the relation between the
magnitude and exponent of OTOCs, JHEP
2019(02), 75
(2019),
https://doi.org/10.1007/JHEP02(2019)075
[76] Zhenbin Yang, The quantum gravity dynamics of near
extremal black holes, JHEP
2019(05), 205 (2019),
arXiv:1809.08647,
https://doi.org/10.1007/JHEP05(2019)205
[77] A. Blommaert, T.G. Mertens, and H. Verschelde, The
Schwarzian theory — a Wilson line perspective, JHEP
2018(12),
22 (2018), arXiv:1806.07765,
https://doi.org/10.1007/JHEP12(2018)022
[78] A. Blommaert, T.G. Mertens, and H. Verschelde, Fine
structure of Jackiw-Teitelboim quantum gravity, JHEP
2019(9),
66 (2019), arXiv:1812.00918,
https://doi.org/10.1007/JHEP09(2019)066
[79] G. Tarnopolsky, Large
q expansion in the
Sachdev-Ye-Kitaev model, Phys. Rev. D
99, 026010
(2019), arXiv:1801.06871,
https://doi.org/10.1103/PhysRevD.99.026010
[80] A. Milekhin, Coupled Sachdev-Ye-Kitaev models without
Schwartzian dominance, arXiv:2102.06651,
https://doi.org/10.48550/arXiv.2102.06651
[81] D. Bagrets, A. Altland, and A. Kamenev, Sachdev–Ye–Kitaev
model as Liouville quantum mechanics, Nucl. Phys. B
911,
191--205 (2016),
https://doi.org/10.1016/j.nuclphysb.2016.08.002
[82] D. Bagrets, A. Altland, and A. Kamenev, Power-law out of
time order correlation functions in the SYK model, Nucl. Phys.
B
921, 727 (2017), arXiv:1702.08902,
https://doi.org/10.1016/j.nuclphysb.2017.06.012
[83] N.V. Gnezdilov, J.A. Hutasoit, and C.W.J. Beenakker,
Low-high voltage duality in tunneling spectroscopy of the
Sachdev-Ye-Kitaev model, Phys. Rev. B
98, 081413,
https://doi.org/10.1103/PhysRevB.98.081413
[84] O. Can, E.M. Nica, and M. Franz, Charge transport in
graphene-based mesoscopic realizations of Sachdev-Ye-Kitaev
models, Phys. Rev. B
99, 045419 (2019),
https://doi.org/10.1103/PhysRevB.99.045419
[85] A. Altland, D. Bagrets, and A. Kamenev, Sachdev-Ye-Kitaev
non-Fermi-liquid correlations in nanoscopic quantum transport,
Phys. Rev. Lett.
123, 226801 (2019),
https://doi.org/10.1103/PhysRevLett.123.226801
[86] A. Kruchkov, A.A. Patel, P. Kim, and S. Sachdev,
Thermoelectric power of Sachdev-Ye-Kitaev islands: Probing
Bekenstein-Hawking entropy in quantum matter experiments,
Phys. Rev. B
101, 205148 (2020), arXiv:1912.02835,
https://doi.org/10.1103/PhysRevB.101.205148
[87] D.I. Pikulin and M. Franz, Black hole on a chip: Proposal
for a physical realization of the Sachdev-Ye-Kitaev model in a
solid-state system, Phys. Rev. X
7, 031006 (2017),
https://doi.org/10.1103/PhysRevX.7.031006
[88] A. Chew, A. Essin, and J. Alicea, Approximating the
Sachdev-Ye-Kitaev model with Majorana wires, Phys. Rev. B
96, 121119 (2017),
https://doi.org/10.1103/PhysRevB.96.121119
[89] Anffany Chen, R. Ilan, F. de Juan, D. I. Pikulin, and M.
Franz, Quantum holography in a graphene flake with an
irregular boundary, Phys. Rev. Lett.
121, 036403
(2018),
https://doi.org/10.1103/PhysRevLett.121.036403
[90] E. Lantagne-Hurtubise, Chengshu Li, and M. Franz, Family
of Sachdev-Ye-Kitaev models motivated by experimental
considerations, Phys. Rev. B
97, 235124 (2018),
https://doi.org/10.1103/PhysRevB.97.235124
[91] M. Franz and M. Rozali, Mimicking black hole event
horizons in atomic and solid-state systems, arXiv:1808.00541,
https://doi.org/10.48550/arXiv.1808.00541
[92] D.V. Khveshchenko, Connecting the SYK dots, Condens.
Matter
5(2), 37 (2020), arXiv:2004.06646,
https://doi.org/10.3390/condmat5020037
[93] D.V. Khveshchenko, One SYK single electron transistor,
Lith. J. Phys.
60, 185 (2020), arXiv:1912.05691,
https://doi.org/10.3952/physics.v60i3.4305
[94] J. Maldacena and Xiao-Liang Qi, Eternal traversable
wormhole, arXiv:1804.00491,
https://doi.org/10.48550/arXiv.1804.00491
[95] T.G. Mertens, G.J. Turiaci, and H.L. Verlinde, Solving
the Schwarzian via the conformal bootstrap, JHEP
08,
136 (2017), arXiv:1705.08408,
https://doi.org/10.1007/JHEP08(2017)136
[96] T.G. Mertens, The Schwarzian theory — origins, JHEP
2018(05),
36 (2018), arXiv:1801.09605,
https://doi.org/10.1007/JHEP05(2018)036
[97] D.V. Khveshchenko, On a (pseudo)holographic nature of the
SYK-like models, Lith. J. Phys.
59, 104 (2019),
arXiv:1905.04381,
https://doi.org/10.3952/physics.v59i2.4013
[98] A.V. Lunkin, A.Yu. Kitaev, and M.V. Feigel'man, Perturbed
Sachdev-Ye-Kitaev model: A polaron in the hyperbolic plane,
Phys. Rev. Lett.
125, 196602 (2020), arXiv:2006.14535,
https://doi.org/10.1103/PhysRevLett.125.196602
[99] A.M. García-García, B. Loureiro, A. Romero-Bermúdez, and
M. Tezuka, Chaotic-integrable transition in the
Sachdev-Ye-Kitaev model, Phys. Rev. Lett.
120 241603,
(2018), arXiv:1707.02197,
https://doi.org/10.1103/PhysRevLett.120.241603
[100] A.M. García-García, B. Loureiro, A. Romero-Bermúdez, and
M. Tezuka,
García-García et al. Reply:, Phys. Rev.
Lett.
126, 109102 (2021),
https://doi.org/10.1103/PhysRevLett.126.109102
[101] Jaewon Kim and Xiangyu Cao, Comment on
“Chaotic-integrable transition in the Sachdev-Ye-Kitaev
model”, Phys. Rev. Lett.
126, 109101 (2021),
arXiv:2004.05313,
https://doi.org/10.1103/PhysRevLett.126.109101