[PDF]    https://doi.org/10.3952/physics.v62i2.4742

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 93–100 (2022)

INFLUENCE OF AN ULTRA-THIN BUFFER LAYER ON THE GROWTH AND PROPERTIES OF PSEUDOMORPHIC GaAsBi LAYERS
Simona Pūkienėa, Algirdas Jasinskasa, Andrea Zeliolia, Sandra Stanionytėa,b, Virginijus Bukauskasc, Bronislovas Čechavičiusa, Evelina Dudutienėa, and Renata Butkutėa,d
a Department of Optoelectronics, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
b Department of Characterisation of Materials Structure, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
c Department of Physical Technologies, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
d Photonics and Nanotechnology Institute, Faculty of Physics, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: renata.butkute@ftmc.lt

Received 23 June 2022; revised 1 July; accepted 1 July 2022

A series of 100 nm-thick pseudomorphic GaAsBi layers with the Bi content varying from 0.97 to 11.2% have been grown by molecular beam epitaxy (MBE) on the semi-insulating GaAs(100) substrates buffered with an ultra-thin up to 20 nm thick GaAs layer. The main attention in this work was focused on the investigation of relaxation in the Bi induced compressively-strained GaAsBi layers containing a various content of Bi. The lattice parameters of GaAsBi compound and the Bi concentration have been evaluated from high resolution X-ray diffraction measurements. The relaxation values of GaAsBi layers ranging from 0.4 to 3.5% were obtained analyzing the symmetric and asymmetric reciprocal space maps of (004) and (115) planes, respectively. Also, the complex study was performed to clarify the relaxation effect on structural, morphological and optical properties of bismide layers. Optical measurements revealed a significant reduction of the energy band gap from 1.34 to 0.92 eV for the layers containing 0.97–8.6% of Bi in the GaAs lattice.
Keywords: GaAsBi, molecular beam epitaxy, X-ray diffraction, photoluminescence, atomic force microscopy


PLONOJO BUFERINIO SLUOKSNIO ĮTAKA PSEUDOMORFINIŲ GaAsBi SLUOKSNIŲ AUGINIMUI IR SAVYBĖMS
Simona Pūkienėa, Algirdas Jasinskasa, Andrea Zeliolia, Sandra Stanionytėa,b, Virginijus Bukauskasc, Bronislovas Čechavičiusa, Evelina Dudutienėa, Renata Butkutėa,d

a Fizinių ir technologijos mokslų centro Optoelektronikos skyrius, Vilnius, Lietuva
b Fizinių ir technologijos mokslų centro Medžiagų struktūrinės analizės skyrius, Vilnius, Lietuva
c Fizinių ir technologijos mokslų centro Fizikinių technologijų skyrius, Vilnius, Lietuva
d Vilniaus universiteto Fizikos fakulteto Fotonikos ir nanotechnologijų institutas, Vilnius, Lietuva

Darbe buvo tiriama 100 nm storio pseudomorfinių GaAsBi sluoksnių, kuriuose Bi kiekis kito nuo 0,97 iki 11,2 %, serija. Sluoksniai buvo užauginti molekulinių pluoštelių epitaksijos metodu ant pusiau izoliuojančių GaAs (100) padėklų, padengiant juos itin plonu iki 20 nm buferiniu GaAs sluoksniu. Pagrindinis šio darbo tikslas buvo įvertinti buferinio GaAs sluoksnio poveikį skirtingą Bi kiekį talpinančio GaAsBi sluoksnio kristalinei sandarai, relaksacijai bei paviršiaus morfologijai ir optinėms savybėms. GaAsBi junginio kristalinės gardelės parametrai ir Bi koncentracija buvo įvertinti naudojant didelės skiriamosios gebos rentgeno spindulių difrakcijos matavimus. Relaksacijos vertės, gautos analizuojant simetrinius ir asimetrinius atvirkštinės gardelės žemėlapius, pamatuotus nuo (004) ir (115) plokštumų, atitinkamai kito nuo 0,4 iki 3,5 %. Optiniai matavimai atskleidė ženklų GaAsBi junginio draustinio energijos tarpo sumažėjimą nuo 1,34 iki 0,9 eV sluoksniams, bismuto kiekiui gardelėje didėjant nuo 0,97 iki 8,6 %.


References / Nuorodos

[1] K. Oe and H. Okamoto, New semiconductor alloy GaAs1-xBix grown by metal organic vapor phase epitaxy, Jpn. J. Appl. Phys. 37, L1283 (1998),
https://doi.org/10.1143/JJAP.37.L1283
[2] S. Tixier, M. Adamcyk, and T. Tiedje, Molecular beam epitaxy growth of GaAs1–xBix, Appl. Phys. Lett. 82, 2245 (2003),
https://doi.org/10.1063/1.1565499
[3] T. Fuyuki, R. Yoshioka, K. Yoshida, and M. Yoshimoto, Temperature dependence of lasing wavelength, in: Proceedings of CLEO 2014, JTu4A.122 (OSA, Washington, D.C., 2014),
https://doi.org/10.1364/CLEO_AT.2014.JTu4A.122
[4] R. Butkutė, A. Geižutis, V. Pačebutas, B. Čechavičius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth, Electron. Lett. 50(16), 1155–1157 (2014),
https://doi.org/10.1049/el.2014.1741
[5] I.P. Marko, S.R. Jin, K. Hild, Z. Batool, Z.L. Bushell, P. Ludewig, W. Stolz, K. Volz, R. Butkutė, V. Pačebutas, A. Geizutis, A. Krotkus, and S.J. Sweeney, Properties of hybrid MOVPE/MBE grown GaAsBi/GaAs based near-infrared emitting quantum well lasers, Semicond. Sci. Technol. 30, 1–10  (2015), 
https://doi.org/10.1088/0268-1242/30/9/094008
[6] P.K. Patil, E. Luna, T. Matsuda, K. Yamada, K. Kamiya, F. Ishikawa, and S. Shimomura, GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique, Nanotechnology 28, 105702 (2017),
https://doi.org/10.1088/1361-6528/aa596c
[7] I.P. Marko and S.J. Sweeney, Progress toward III–V bismide alloys for near- and midinfrared laser diodes, IEEE J. Sel. Top. Quantum Electron. 23(6), 1501512 (2017),
https://doi.org/10.1109/JSTQE.2017.2719403
[8] C.A. Broderick, S. Jin, I.P. Marko, K. Hild, P. Ludewig, Z.L. Bushell, W. Stolz, J.M. Rorison, E.P. O’Reilly, K. Volz, and S.J. Sweeney, GaAs1–xBix/GaNyAs1–y type-II quantum wells: novel strain-balanced heterostructures for GaAs-based near- and mid-infrared photonics, Sci. Rep. 7, 46371 (2017),
https://doi.org/10.1038/srep46371
[9] A. Zayan, M. Stevens, and T.E. Vandervelde, GaAsBi alloys for photovoltaic and thermophotovoltaic applications, in: Proceedings of 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) (Portland,  OR, 2016) pp. 2839–2843,
https://doi.org/10.1109/PVSC.2016.7750172
[10] T. Tomas, A. Mellor, N.P. Hylton, M. Führer, D. Alonso-Álvarez, A. Braun, N.J. Ekins-Daukes, J.P.R. David, and S.J. Sweeney, Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell, Semicond. Sci. Technol. 30, 1–6  (2015), 
https://doi.org/10.1088/0268-1242/30/9/094010
[11] R.D. Richards, A. Mellor, F. Haruna, J.S. Cheonga, N.P. Hylton, T. Wilson, T. Thomas, J.S. Roberts, N.J. Ekins-Daukes, and J.P.R. David, Photovoltaic characterisation of GaAsBi/GaAs multiple quantum well devices, Sol. Energy Mater. Sol. Cells 172, 238–243 (2017),
https://doi.org/10.1016/j.solmat.2017.07.029
[12] V. Pačebutas, A. Bičiūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, Terahertz  time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components, Appl. Phys. Lett. 97, 031111 (2010),
https://doi.org/10.1063/1.4942819
[13] K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pačebutas, R. Adomavičius, G. Molis, and S. Marcinkevičius, GaBiAs: a material for optoelectronic terahertz devices, Appl. Phys. Lett. 88, 201112 (2006),
https://doi.org/10.1063/1.2205180
[14] K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S.P. Watkins, C.X. Wang, X. Liu, Y.-J. Cho, and J. Furdyna, Valence-band anticrossing in mismatched III–V semiconductor alloys, Phys. Rev. B 75, 045203 (2007),
https://doi.org/10.1103/PhysRevB.75.045203
[15] B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E.C. Young, and T. Tiedje, Giant spin-orbit bowing in GaAs1–xBix, Phys. Rev. Lett. 97, 067205 (2006),
https://doi.org/10.1103/PhysRevLett.97.067205
[16] M.P. Polak, P. Scharoch, and R. Kudrawiec, First-principles calculations of bismuth induced changes in the band structure of dilute Ga-V-Bi and In-V-Bi alloys: chemical trends versus experimental data, Semicond. Sci. Technol. 30, 1–10 (2015),
https://doi.org/10.1088/0268-1242/30/9/094001
[17] J.W. Matthews and A.E. Blakeslee, Defects in epitaxial multilayers: I. Misfit dislocations, J. Cryst. Growth 27, 118–125 (1974),
https://doi.org/10.1016/0022-0248(74)90424-2
[18] A.V. Drigo, A. Aydinli, A. Carnera, F. Genova, C. Rigo, C. Ferrari, P. Franzosi, and G. Salviati, On the mechanisms of strain release in molecular-beam-epitaxy-grown InxGa1–xAs/GaAs single heterostructures, J. Appl. Phys. 66(5), 1975–1983 (1989),
https://doi.org/10.1063/1.344335
[19] I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys. 89(11), 5815–5875 (2001),
https://doi.org/10.1063/1.1368156