[PDF]    https://doi.org/10.3952/physics.v62i2.4743

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 101–113 (2022)
 

STUDY OF THE AEROSOL PARTICLE FILTRATION EFFICIENCY OF FABRICS USED TO MANUFACTURE NON-MEDICAL FACE MASKS IN LITHUANIA
Kamilė Kandrotaitėa,b, Vadimas Dudoitisb, Ieva Uogintėb, Peter Strizakc, Francis Poped, Kristina Plauškaitėb, and Steigvilė Byčenkienėb
  a Faculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
b Department of Environmental Research, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
c L.V. Pisarzhevskii Institute of Physical Chemistry of NAS of Ukraine, 31 Nauky Ave., 03028 Kyiv, Ukraine
d The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
Email: kamile.kandrotaite@ff.stud.vu.lt

Received 21 April 2022; revised 20 June 2022; accepted 20 June 2022

The global spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) proved to be a challenge for public health. The high demand of medical masks worldwide during the pandemic has led to a critical situation for decision-makers regarding high-quality mask supply. For this period, the World Health Organization has suggested the use of non-medical face masks (also known as ‘community’ masks) in public places to reduce the airborne spread of SARS-CoV-2. In this study, the filtration efficiency of various fabrics widely used in community masks was determined based on two main mask filtering properties: filtration efficiency (FE) and pressure drop (ΔP) according to the recommendations of the CEN Workshop Agreement (CWA) 17553:2020. The combination of FE and ΔP parameters must be considered in order to select suitable materials for public masks. The filtration efficiencies for various fabrics ranged from 6 to 100%. It was found that the composite materials have the highest FE equivalent to the requirements of a medical mask (FE > 95%), that is confirmed by high-quality parameters 16–30 kPa–1. The study found that fabrics of natural fibres (100% cotton) have a higher FE with Ag coating (18–40% before and 29–40% after coating) in the 0.54–1.50 μm particle size range.
Keywords: COVID-19, safety, cloth masks, aerosol particles


LIETUVOJE PRIEINAMŲ AUDINIŲ, TINKAMŲ NEMEDICININIŲ VEIDO KAUKIŲ GAMYBAI, AEROZOLIO DALELIŲ FILTRAVIMO EFEKTYVUMO TYRIMAS
Kamilė Kandrotaitėa,b, Vadimas Dudoitisb, Ieva Uogintėb, Peter Strizakc, Francis Poped, Kristina Plauškaitėb, Steigvilė Byčenkienėb

a Vilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
b Fizinių ir technologijos mokslų centro Aplinkotyros skyrius, Vilnius, Lietuva
c Ukrainos nacionalinės mokslų akademijos L.V. Pisarževskio fizikinės chemijos institutas, Kyjivas, Ukraina
d Birmingamo universitetas, Birmingamas, Jungtinė Karalystė

Spartus sunkaus ūminio kvėpavimo takų sindromo koronaviruso (angl. SARS-CoV-2), paprastai žinomo kaip COVID-19, plitimas – iššūkis visuomenės sveikatai nuo pat pirmojo protrūkio 2019 m. gruodžio gale. Staiga išaugęs medicininių kaukių poreikis lėmė neeilinius sprendimus kokybiškoms kaukėms tiekti. Dėl šios priežasties Pasaulio sveikatos organizacija pasiūlė viešosiose vietose naudoti nemedicinines iš įvairaus audinio pagamintas veido kaukes (kitaip žinomas kaip medžiagines ar visuomenines kaukes), siekiant sumažinti SARS-CoV-2 perdavimą oro lašeliniu būdu. Šiame tyrime buvo remtasi CWA 17553:2020 standartu (angl. CEN Workshop Agreement), pagal kurį išskirti du pagrindiniai filtravimo parametrai: filtravimo efektyvumas (FE) ir slėgio kritimas (ΔP) visame medžiagos plote. Norint parinkti tinkamas medžiagas visuomeninėms kaukėms, reikia atsižvelgti į FE ir ΔP parametrų derinį. Nustatyta, kad aerozolio dalelių filtravimo efektyvumas kinta nuo 6 iki 100 % skirtingame aerozolio dalelių dydžio intervale. Didžiausiu filtravimo efektyvumu, prilygstančiu medicininei kaukei (FE > 95 %) keliamiems reikalavimams, pasižymi kompozitinės medžiagos. Tai patvirtina aukšti kokybės parametrai: 16–30 kPa–1. Tyrimai parodė, kad medžiagos, kurių sudėtyje vyrauja natūralus pluoštas (80, 100 % medvilnė) po padengimo Ag nanodalelėmis buvo aukštesnio FE (18–40 % prieš ir 29–40 % po padengimo) 0,54–1,50 μm dalelių dydžio intervale.


References / Nuorodos

[1] World Health Organization, Covid-19 Weekly Epidemiological Update, Edition 87 (2022),
https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---12-april-2022
[2] Y. Bu, R. Ooka, H. Kikumoto, and W. Oh, Recent research on expiratory particles in respiratory viral infection and control strategies: A review, Sustain. Cities Soc. 73, 103106 (2021),
https://doi.org/10.1016/j.scs.2021.103106
[3] N. Leung, D. Chu, E. Shiu, K.-H. Chan, J. Mcdevitt, B. Hau, H.-L. Yen, Y. Li, D. Ip, J.S. Peiris, et al.,Respiratory virus shedding in exhaled breath and efficacy of face masks, Nat. Med. 26(5), 676–680 (2020),
https://doi.org/10.1038/s41591-020-0843-2
[4] K.A. Prather, C.C. Wang, and R.T. Schooley,Reducing transmission of SARS-CoV-2, Science 368, 1422–1424 (2020),
https://doi.org/10.1126/science.abc6197
[5] R. Dhand and J. Li, Coughs and sneezes: Their role in transmission of respiratory viral infections,including SARS-CoV-2, Am. J. Respir. Crit. Care Med. 202, 651–659 (2020),
https://doi.org/10.1164/rccm.202004-1263PP
[6] L. Morawska, Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air 16, 335–347 (2006),
https://doi.org/10.1111/j.1600-0668.2006.00432.x
[7] L. Bourouiba, Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19, JAMA 323, 1837–1838 (2020),
https://doi.org/10.1001/jama.2020.4756
[8] C. Matuschek, F. Moll, H. Fangerau, J. Fischer, K. Zänker, M. van Griensven, M. Schneider, D. Kindgen-Milles, W. Knoefel, A. Lichtenberg, et al., The history and value of face masks, Eur. J. Med. Res. 25, 23 (2020),
https://doi.org/10.1186/s40001-020-00423-4
[9] S.-K. Chen, D. Vesley, L. Brosseau, and J. Vincent, Evaluation of single-use masks and respirators for protection of health care workers against mycobacterial aerosols, Am. J. Infect. Control 22, 65–74 (1994),
https://doi.org/10.1016/0196-6553(94)90116-3
[10] Y. Long, T. Hu, L. Liu, R. Chen, Q. Guo, L. Yang, Y. Cheng, J. Huang, and L. Du, Effectiveness of N95 respirators versus surgical masks against influenza: A systematic review and meta‐analysis, J. Evid. Based Med. 13, 93–101 (2020),
https://doi.org/10.1111/jebm.12381
[11] K. Shakya, A. Noyes, R. Kallin, and R. Peltier, Evaluating the efficacy of cloth facemasks in reducing particulate matter exposure, J. Expo. Sci. Environ. Epidem. 27, 352–357 (2016),
https://doi.org/10.1038/jes.2016.42
[12] S. Rengasamy and B. Eimer, Total inward leakage of nanoparticles through filtering facepiece respirators, Ann. Occup. Hyg. 55(3), 253–263 (2011),
https://doi.org/10.1093/annhyg/meq096
[13] A. Konda, A. Prakash, G. Moss, M. Schmoldt, G. Grant, and S. Guha, Aerosol filtration efficiency of common fabrics used in respiratory cloth masks, ACS Nano 14, 6339–6347 (2020),
https://doi.org/10.1021/acsnano.0c03252
[14] C.D. Zangmeister, J.G. Radney, E.P. Vicenzi, and J.L. Weaver, Filtration efficiencies of nanoscale aerosol by cloth mask materials used to slow the spread of SARS-CoV-2, ACS Nano 14(7), 9188–9200 (2020),
https://doi.org/10.1021/acsnano.0c05025
[15] O. Aydin, B. Emon, S. Cheng, L. Hong, L.P. Chamorro, and M.T.A. Saif, Performance of fabrics for home-made masks against the spreadof COVID-19 through droplets: A quantitative mechanistic study, Extreme Mech. Lett. 40, 100924 (2020),
https://doi.org/10.1016/j.eml.2020.100924
[16] X. Li, P. Ding, F. Deng, Y. Mao, L. Zhou, C. Ding, Y. Wang, L. Yueyun, Y. Zhou, C. Macintyre, et al., Wearing time and respiratory volume affect the filtration efficiency of masks against aerosols at different sizes, Environ. Technol. Innov. 25, 102165 (2021),
https://doi.org/10.1016/j.eti.2021.102165
[17] H. Whiley, T. Keerthirathne, M.A. Nisar, M. White, and K. Ross, Viral filtration efficiency of fabric masks compared with surgical and N95 masks, Pathogens 9, 762 (2020),
https://doi.org/10.3390/pathogens9090762
[18] G. Teesing, B. van Straten, P. Man, and T. Horeman, Is there an adequate alternative to commercially manufactured face masks? A comparison of various materials and forms, J. Hosp. Infect. 106, 246–253 (2020),
https://doi.org/10.1016/j.jhin.2020.07.024
[19] J. Pan, C. Harb, W. Leng, and L. Marr, Inward and outward effectiveness of cloth masks, a surgical mask, and a face shield, Aerosol Sci. Technol. 55, 1–17 (2021),
https://doi.org/10.1080/02786826.2021.1890687
[20] Q.-X. Ma, H. Shan, H.-L. Zhang, G.-M. Li, R.-M. Yang, and J.-M. Chen, Potential utilities of mask-wearing and instant hand hygiene for fighting SARS-CoV-2, J. Med. Virol. 92, 1567–1571 (2020),
https://doi.org/10.1002/jmv.25805
[21] A. Catching, S. Capponi, M. Yeh, S. Bianco, and R. Andino, Examining the interplay between face mask usage, asymptomatic transmission, and social distancing on the spread of COVID-19, Sci. Rep. 11, 15598 (2021),
https://doi.org/10.1038/s41598-021-94960-5
[22] H. Gong and B. Ozgen, Fabric structures: Woven, knitted, or nonwoven, in: Engineering of High-Performance Textile, The Textile Institute Book Series (2018), Ch. 5, pp. 107–131,
https://doi.org/10.1016/B978-0-08-101273-4.00007-X
[23] A. Podgórski, A. Bałazy, and L. Gradoń, Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters, Chem. Eng. Sci. 61, 6804–6815 (2006),
https://doi.org/10.1016/j.ces.2006.07.022
[24] W.C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed. (John Wiley & Sons, Inc., 1999),
https://www.wiley.com/
[25] S. Sankhyan, K. Heinselman, P. Ciesielski, T. Barnes, M. Himmel, H. Teed, S. Patel, and M. Vance, Filtration performance of layering masks and face coverings and the reusability of cotton masks after repeated washing and drying, Aerosol Air Qual. Res. 21, 210117 (2021),
https://doi.org/10.4209/aaqr.210117