[PDF]    https://doi.org/10.3952/physics.v62i2.4744

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 114–125 (2022)
 

17O NMR AND DFT STUDY OF HYDROGEN BONDING: PROTON SHARING AND INCIPIENT TRANSFER
Vytautas Balevičiusa, Kęstutis Aidasa, Arūnas Maršalkaa, Feliksas Kuliešiusa, Virginija Jakubkienėb, and Sigitas Tumkevičiusb
  a Institute of Chemical Physics, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
b Department of Organic Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
Email: vytautas.balevicius@ff.vu.lt

Received 16 June 2022; accepted 30 June 2022

17O NMR spectra of pyridine N-oxide (PyO) complexes with the acids – acetic (AA), cyanoacetic (CyA), propiolic (PA), trichloroacetic (TCA), trifluoroacetic (TFA), hydrochloric (HCl) and methanesulfonic (MSA) – as well as some related molecules with intramolecular H-bonds (4-substituted picolinic acid N-oxides) were studied in an acetonitrile (ACN) solution. In order to evaluate the effect of proton positioning along the O–H…O bond on the measured chemical shifts the full geometry optimization was carried out, and 17O magnetic shielding tensors were calculated using density functional theory (DFT). The modified hybrid functional PBE1PBE with the 6-311++G** basis set and the gauge-including atomic orbital (GIAO) approach were applied. The solvent effect was taken into account by a polarized continuum model using the integral equation formalism (IEFPCM). Two stable structures were deduced for the PyO complexes with TCA and TFA that correspond to the H-bonds with and without proton transfer (PT). Two minima on the potential surface were separated by ca 0.2 Å. The experimental 17O NMR spectra have shown that the PyO-TCA complex in ACN can be considered as H-bonding with incipient PT, whereas it is known from neutron diffraction that in its crystalline state PT occurs. The proton location in PyO-TFA due to the thermally induced proton sharing was found at the middle point. The 17O NMR data for the acids with an intramolecular H-bond (nitroPANO, PANO and methoxyPANO) deviate from the general trend. The factors that can cause it, such as the substitution effect, persistence of nano-crystallites in a solution due to a low solubility, etc., have been discussed.
Keywords: NMR spectra, hydrogen bond, proton transfer, pyridine N-oxide


VANDENILINIO RYŠIO TYRIMAS TAIKANT 17O BMR IR TANKIO FUNKCIONALO TEORIJĄ: PROTONO DALYBOS IR PRADINĖ PERNAŠA
Vytautas Balevičiusa, Kęstutis Aidasa, Arūnas Maršalkaa, Feliksas Kuliešiusa, Virginija Jakubkienėb, Sigitas Tumkevičiusb

a Vilniaus universiteto Cheminės fizikos institutas, Vilnius, Lietuva
b Vilniaus universiteto Organinės chemijos katedra, Vilnius, Lietuva

Šiame darbe buvo eksperimentiškai ištirti piridino N-oksido vandenilinio ryšio (H-ryšio) kompleksų su rūgštimis (acto (AA), cianacto (CyA), propiolo (PA), vandenilio chloridu (HCl), metansulfonrūgštimi (MSA)) bei kai kurių panašių molekulių su vidiniais H-ryšiais (4-pakeisti pikolino rūgšties N-oksidai) 17O BMR spektrai acetonitrilo (ACN) tirpaluose. Siekiant nustatyti protono lokalizaciją ir H-ryšių geometriją bei terpės reakcijos lauko įtaką išmatuotiesiems 17O cheminiams poslinkiams, pasitelkus kvantinės mechanikos tankio funkcionalo teoriją (DFT), buvo visiškai optimizuota H-ryšio kompleksų geometrija ir apskaičiuoti deguonies magnetinio ekranavimo tenzoriai. Skaičiavimai atlikti taikant modifikuotąjį hibridinį Perdew, Burke ir Ernzerhof funkcionalą (PBE1PBE) kartu su 6-311++G** bazinių funkcijų rinkiniu bei GIAO atominių orbitalių artinį. Dielektrinės terpės (ACN) reakcijos laukas buvo įskaitytas pritaikant poliarizuojamojo kontinuumo modelį ir naudojant integralinių lygčių formalizmą (IEFPCM). PyO kompleksams su TCA ir TFA buvo nustatyta po dvi energetiškai stabilias struktūras, kurios priklauso H-ryšiams su protono pernaša (PP) ir be jos. Atstumas, skiriantis šių struktūrų potencinės energijos duobes, yra apie 0,2 Å. Eksperimentiškai išmatuoti 17O BMR spektrai leidžia teigti, kad ACN tirpale PyO-TCA kompleksas gali būti apibūdintas kaip H-ryšys su pradine PP. Tai esmingai skiriasi nuo jų H-ryšio kristale, kur iš neutronų difrakcijos duomenų galima matyti, kad PP vyksta. PyO-TFA komplekse dėl termiškai sukeltų protono dalybų protonas yra lokalizuotas ties H-ryšio centru (O...H...O). 17O BMR duomenys, gautieji molekulėms su vidiniais H-ryšiais (4-pakeisti pikolino rūgšties N-oksidai), skiriasi nuo bendrosios schemos, nustatytos PyO-rūgšties kompleksams. Darbe aptartos galimos to priežastys, tarp kurių – cheminių pakaitų ir H-ryšio efektų persiklojimas, tirpinamųjų medžiagų nanokristalitai, kurie išlieka tirpale dėl blogo tirpumo ir kt.


References / Nuorodos

[1] J. Stare, A. Gradišek, and J. Seliger, Nuclear quadrupole resonance supported by periodic quantum calculations: a sensitive tool for precise structural characterization of short hydrogen bonds, Phys. Chem. Chem. Phys. 22, 27681–27689 (2020),
https://doi.org/10.1039/D0CP04710D
[2] J. Stare, M. Hartl, L. Daemen, and J. Eckert, The very short hydrogen bond in the pyridine N-oxide – trichloroacetic acid complex: An inelastic neutron scattering and computational study, Acta Chim. Slov. 58(3), 521–527 (2011),
[PDF]
[3] J. Lu, I. Hung, A. Brinkmann, Z. Gan, X. Kong, and G. Wu, Solid-state 17O NMR reveals hydrogen-bonding energetics: Not all low-barrier hydrogen bonds are strong, Angew. Chem. Int. Ed. 56, 6166–6170 (2017),
https://doi.org/10.1002/anie.201700488
[4] I.J.F. Poplet and J.A.S. Smith, 17O and 2H quadrupole double resonance in some carboxylic acid dimers, J. Chem. Soc. Faraday Trans. 2, 77, 1473–1485 (1981),
https://doi.org/10.1039/f29817701473
[5] I.J.F. Poplet, M. Sabir, and J.A.S. Smith, 17O and 2H quadrupole double resonance in some acid carboxylates, J. Chem. Soc. Faraday Trans. 2, 77, 1651–1668 (1981),
https://doi.org/10.1039/f29817701651
[6] T.E.St. Amour, M.I. Burgar, B. Valentine, and D. Fiat, 17O NMR studies of substituent and hydrogen-bonding effects in substituted acetophenones and benzaldehydes, J. Am. Chem. Soc. 103, 1128–1136 (1981),
https://doi.org/10.1021/ja00395a023
[7] L.G. Butler and T.L. Brown, Nuclear quadrupole coupling constants and hydrogen bonding. Molecular orbital study of oxygen-17 and deuterium field gradients in formaldehyde–water hydrogen bonding, J. Am. Chem. Soc. 103, 6541–6549 (1981),
https://doi.org/10.1021/ja00412a001
[8] L.G. Butler, C.P. Cheng, and T.L. Brown, Oxygen-17 nuclear quadrupole double resonance. 6. Effects of hydrogen bonding, J. Phys. Chem. 85, 2738–2740 (1981),
https://doi.org/10.1021/j150619a010
[9] A.P. Howes, R. Jenkins, M.E. Smith, D.H.G. Crout, and R. Dupree, Influence of low-barrier hydrogen bonds on solid state 17O NMR spectra of labelled phthalate species, Chem. Commun. 16, 1448–1449 (2001),
https://doi.org/10.1039/b104308k
[10] A. Wong, K.J. Pike, R. Jenkins, G.J. Clarkson, T. Anupold, A.P. Howes, D.H.G. Crout, A. Samoson, R. Dupree, and M.E. Smith, Experimental and theoretical 17O NMR study of the hydrogen-bonding on C=O and O–H oxygens in carboxylic solids, J. Phys. Chem. A 110, 1824–1835 (2006),
https://doi.org/10.1021/jp055807y
[11] K.J. Pike, V. Lemaȋtre, A. Kukol, T. Anupold, A. Samoson, A.P. Howes, A. Watts, M.E. Smith, and R. Dupree, Solid-state 17O NMR of amino acids, J. Phys. Chem. B 108, 9256–9263 (2004),
https://doi.org/10.1021/jp049958x
[12] V. Lemaȋtre, M.E. Smith, and A. Watts, A review of oxygen-17 solid-state NMR of organic materials – towards biological applications, Solid State Nucl. Magn. Reson. 26, 215–235 (2004),
https://doi.org/10.1016/j.ssnmr.2004.04.004
[13] J.D. Bazak, A.R. Wong, K. Duanmu, K.S. Han, D. Reed, and V. Murugesan, Concentration-dependent solvation structure and dynamics of aqueous sulfuric acid using multinuclear NMR and DFT, J. Phys. Chem. B 125, 5089–5099 (2021),
https://doi.org/10.1021/acs.jpcb.1c01177
[14] P. Rubini, D. Champmartin, and X. Assfeld, Determination of the 17O quadrupolar coupling constant and the 13C shielding tensor anisotropy in solution for molecules containing a COOH group. NMR relaxation study and theoretical calculations, J. Chim. Phys. 95, 366–376 (1998),
https://doi.org/10.1051/jcp:1998146
[15] J.E. Gready, G.B. Bacskay, and N.S. Hush, Comparison of the effects of symmetric versus asymmetric H-bonding on 2H and 17O nuclear quadrupole coupling constants: Application to formic acid and the hydrogen diformate anion, Chem. Phys. 64, 1–17 (1982),
https://doi.org/10.1016/0301-0104(82)85001-5
[16] G. Wu, Solid-state 17O NMR studies of organic and biological molecules: Recent advances and future directions, Solid State Nucl. Magn. Reson. 73, 1–14 (2016),
https://doi.org/10.1016/j.ssnmr.2015.11.001
[17] A.W. Tang, X. Kong, V. Terskikh, and G. Wu, Solid-state 17O NMR of unstable acyl-enzyme intermediates: A direct probe of hydrogen bonding interactions in the oxyanion hole of serine proteases, J. Phys. Chem. B 120, 11142–11150 (2016),
https://doi.org/10.1021/acs.jpcb.6b08798
[18] Z. Dega-Szafran, M. Grunwald-Wyspianska, and M. Szafran, Evidence for a single minimum potential for hydrogen bonds of pyridine N-oxide complexes with dichloroacetic acid in dichloromethane, Spectrochim. Acta A 47, 125–131 (1991),
https://doi.org/10.1016/0584-8539(91)80184-K
[19] M. Szafran, B. Brycki, Z. Dega-Szafran, and B. Nowak-Wydra, Differentiation of substituent effects from hydrogen bonding and protonation effects in carbon-13 NMR spectra of pyridine N-oxides, J. Chem. Soc. Perkin Trans. 2, 1161–1166 (1991),
https://doi.org/10.1039/p29910001161
[20] M. Szafran, Recent aspects of the proton transfer reaction in H-bonded complexes, J. Mol. Struct. 381, 39–64 (1996),
https://doi.org/10.1016/0022-2860(96)09230-7
[21] Κ.D. Eichhorn, Neutron structure analysis of 1-hydroxy pyridinium trichloroacetate, C7H6Cl3NO3, at 120 K, Z. Kristallographie 195, 205–220 (1991),
https://doi.org/10.1524/zkri.1991.195.3-4.205
[22] J. Panek, J. Stare, and D. Hadži, From the isolated molecule to oligomers and the crystal: A static density functional theory and Car–Parrinello molecular dynamics study of geometry and potential function modifications of the short intramolecular hydrogen bond in picolinic acid N-oxide, J. Phys. Chem. A 108, 7417–7423 (2004),
https://doi.org/10.1021/jp0495794
[23] T. Steiner, A.M.M. Schreurs, M. Lutz, and J. Kroon, Strong intramolecular O–H···O hydrogen bonds in quinaldic acid N-oxide and picolinic acid N-oxide, Acta Crystallogr. Sect. C 56, 577–579 (2000),
https://doi.org/10.1107/S0108768100001476
[24] V. Balevicius, A. Maršalka, V. Klimavičius, L. Dagys, M. Gdaniec, I. Svoboda, and H. Fuess, NMR and XRD study of hydrogen bonding in picolinic acid N-oxide in crystalline state and solutions: Media and temperature effects on potential energy surface, J. Phys. Chem. A 122, 6894–6902 (2018),
https://doi.org/10.1021/acs.jpca.8b05421
[25] V. Balevicius, K. Aidas, I. Svoboda, and H. Fuess, Hydrogen bonding in pyridine N-oxide/acid systems: Proton transfer and fine details revealed by FTIR, NMR, and Xray diffraction, J. Phys. Chem. A 116, 8753−8761 (2012),
https://doi.org/10.1021/jp305446n
[26] V. Balevicius, Z. Gdaniec, and K. Aidas, NMR and DFT study on media effects on proton transfer in hydrogen bonding: concept of molecular probe with an application to ionic and super-polar liquids, Phys. Chem. Chem. Phys. 11, 8592–8600 (2009),
https://doi.org/10.1039/b819666d
[27] E. von Profft and W. Steinke, N-Oxyde substituierter Picolinsäuren, J. Prakt. Chem. 13, 58–75 (1961),
https://doi.org/10.1002/prac.19610130107
[28] C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys. 110, 6158–6169 (1999),
https://doi.org/10.1063/1.478522
[29] R. Krishnan, J.S. Binkley, R. Seeger, and J.A. Pople, Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys. 72, 650–654 (1980),
https://doi.org/10.1063/1.438955
[30] K. Wolinski, J.F. Hilton, and P. Pulay, Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations, J. Am. Chem. Soc. 112, 8251–8260 (1990),
https://doi.org/10.1021/ja00179a005
[31] J. Tomasi, B. Mennucci, and R. Cammi, Quantum mechanical continuum solvation models, Chem. Rev. 105, 2999–3094 (2005),
https://doi.org/10.1021/cr9904009
[32] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, et al., Gaussian 03, Revision B.01 (Gaussian, Inc., Pittsburgh PA, 2003),
https://gaussian.com/
[33] G. Scalmani and M.J. Frisch, Continuous surface charge polarizable continuum models of solvation. I. General formalism, J. Chem. Phys. 132, 114110 (2010),
https://doi.org/10.1063/1.3359469
[34] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, et al., Gaussian 16, Revision A.03 (Gaussian, Inc., Wallingford CT, 2016),
https://gaussian.com/
[35] R.E. Wasylishen, S. Mooibroek, and B. Macdonald, A more reliable oxygen‐17 absolute chemical shielding scale, J. Chem. Phys. 81, 1057 (1984),
https://doi.org/10.1063/1.447799
[36] K. Aidas, A. Maršalka, Z. Gdaniec, and V. Balevičius, A 13C NMR and density functional theory study of critical behaviour of binary water/2,6-lutidine solution, Lith. J. Phys. 47, 443–449 (2007),
https://doi.org/10.3952/lithjphys.47421
[37] K. Aidas and V. Balevicius, Proton transfer in H-bond: Possibility of short-range order solvent effect, J. Mol. Liquids 127, 134–138 (2006),
https://doi.org/10.1016/j.molliq.2006.03.036
[38] J. Stare, F. Merzel, and D. Hadži, in: New Methods in Molecular Spectroscopy (Wroclaw University, 2002) p. 28
[39] M.H. Abraham, P.P. Duce, P.L. Grellier, D.V. Prior, J.J. Morris, and P.J. Taylor, Hydrogen-bonding. Part 5. A thermodynamically-based scale of solute hydrogen-bond acidity, Tetrahedron Lett. 29, 1578–1590 (1988),
https://doi.org/10.1016/S0040-4039(00)80360-3
[40] D. Monti, F. Orsini, and G.S. Ricca, Oxygen-17 NMR spectroscopy: effects of substituents on chemical shifts for o- m- p- substituted benzoic acids, phenylacetic and methyl benzoates, Spectrosc. Lett. 19, 91–99 (1986),
https://doi.org/10.1080/00387018608069223
[41] S. Kuroki, S. Ando, and I. Ando, An MO study of nuclear quadrupolar coupling constant and nuclear shielding of the carbonyl oxygen in solid peptides with hydrogen bonds, Chem. Phys. 195, 107–116 (1995),
https://doi.org/10.1016/0301-0104(95)00030-R
[42] S. Dong, K. Yamada, and G. Wu, Oxygen-17 nuclear magnetic resonance of organic solids, Z. Naturforsch. A 55, 21–28 (2000),
https://doi.org/10.1515/zna-2000-1-205
[43] D.W. Boykin, A.L. Baumstark, and P. Balakrishnan, 17O NMR spectroscopy of 4-substituted pyridine N-oxides: Substituent and solvent effects, Magn. Reson. Chem. 23, 276–279 (1985),
https://doi.org/10.1002/mrc.1260230414
[44] D.W. Boykin, P. Balakrishnan, and A.L. Baumstark, Natural abundance 17O NMR spectroscopy of heterocyclic N-oxides and Di N-oxides. Structural effects, J. Heterocycl. Chem. 22, 981–984 (1985),
https://doi.org/10.1002/jhet.5570220410
[45] P.M. Woyciesjes, N. Janes, S. Ganapathy, Y. Hiyama, T.L. Brown, and E. Oldfield, Nitrogen and oxygen nuclear quadrupole and nuclear magnetic resonance spectroscopic study of N–O bonding in pyridine 1-oxides, Magn. Reson. Chem. 23, 315–321 (1985),
https://doi.org/10.1002/mrc.1260230508
[46] A. Maršalka, L. Dagys, V. Jakubkienė, S. Tumkevičius, and V. Balevicius, 1H and 17O NMR study of H-bond dynamics in picolinic acid N-oxide solutions in acetonitrile-h3 and acetonitrile-d3: Novel aspects of old casus, Chem. Phys. 513, 17–22 (2018),
https://doi.org/10.1016/j.chemphys.2018.06.020
[47] M. Ichikawa, Hydrogen-bond geometry and its isotope effect in crystals with OHO bonds – revisited, J. Mol. Struct. 552, 63–70 (2000),
https://doi.org/10.1016/S0022-2860(00)00465-8
[48] R.J. Nelmes, Structural studies of KDP and the KDP-type transition by neutron and x-ray diffraction: 1970–1985, Ferroelectrics 71, 87–123 (1987),
https://doi.org/10.1080/00150198708224832
[49] T. Steiner, I. Majerz, and C.C. Wilson, First O–H–N hydrogen bond with a centered proton obtained by thermally induced proton migration, Angew. Chem. Int. Ed. 40, 2651–2654 (2001),
https://doi.org/10.1002/1521-3773(20010716)40:14<2651::AID-ANIE2651>3.0.CO;2-2