[1] J. Stare, A. Gradišek, and J. Seliger, Nuclear quadrupole
resonance supported by periodic quantum calculations: a
sensitive tool for precise structural characterization of short
hydrogen bonds, Phys. Chem. Chem. Phys.
22, 27681–27689
(2020),
https://doi.org/10.1039/D0CP04710D
[2] J. Stare, M. Hartl, L. Daemen, and J. Eckert, The very short
hydrogen bond in the pyridine
N-oxide – trichloroacetic
acid complex: An inelastic neutron scattering and computational
study, Acta Chim. Slov.
58(3), 521–527 (2011),
[PDF]
[3] J. Lu, I. Hung, A. Brinkmann, Z. Gan, X. Kong, and G. Wu,
Solid-state
17O NMR reveals hydrogen-bonding
energetics: Not all low-barrier hydrogen bonds are strong,
Angew. Chem. Int. Ed.
56, 6166–6170 (2017),
https://doi.org/10.1002/anie.201700488
[4] I.J.F. Poplet and J.A.S. Smith,
17O and
2H
quadrupole double resonance in some carboxylic acid dimers, J.
Chem. Soc. Faraday Trans.
2, 77, 1473–1485 (1981),
https://doi.org/10.1039/f29817701473
[5] I.J.F. Poplet, M. Sabir, and J.A.S. Smith,
17O
and
2H quadrupole double resonance in some acid
carboxylates, J. Chem. Soc. Faraday Trans.
2, 77,
1651–1668 (1981),
https://doi.org/10.1039/f29817701651
[6] T.E.St. Amour, M.I. Burgar, B. Valentine, and D. Fiat,
17O
NMR studies of substituent and hydrogen-bonding effects in
substituted acetophenones and benzaldehydes, J. Am. Chem. Soc.
103,
1128–1136 (1981),
https://doi.org/10.1021/ja00395a023
[7] L.G. Butler and T.L. Brown, Nuclear quadrupole coupling
constants and hydrogen bonding. Molecular orbital study of
oxygen-17 and deuterium field gradients in formaldehyde–water
hydrogen bonding, J. Am. Chem. Soc.
103, 6541–6549
(1981),
https://doi.org/10.1021/ja00412a001
[8] L.G. Butler, C.P. Cheng, and T.L. Brown, Oxygen-17 nuclear
quadrupole double resonance. 6. Effects of hydrogen bonding, J.
Phys. Chem.
85, 2738–2740 (1981),
https://doi.org/10.1021/j150619a010
[9] A.P. Howes, R. Jenkins, M.E. Smith, D.H.G. Crout, and R.
Dupree, Influence of low-barrier hydrogen bonds on solid state
17O
NMR spectra of labelled phthalate species, Chem. Commun.
16,
1448–1449 (2001),
https://doi.org/10.1039/b104308k
[10] A. Wong, K.J. Pike, R. Jenkins, G.J. Clarkson, T. Anupold,
A.P. Howes, D.H.G. Crout, A. Samoson, R. Dupree, and M.E. Smith,
Experimental and theoretical
17O NMR study of the
hydrogen-bonding on C=O and O–H oxygens in carboxylic solids, J.
Phys. Chem. A
110, 1824–1835 (2006),
https://doi.org/10.1021/jp055807y
[11] K.J. Pike, V. Lemaȋtre, A. Kukol, T. Anupold, A. Samoson,
A.P. Howes, A. Watts, M.E. Smith, and R. Dupree, Solid-state
17O
NMR of amino acids, J. Phys. Chem. B
108, 9256–9263
(2004),
https://doi.org/10.1021/jp049958x
[12] V. Lemaȋtre, M.E. Smith, and A. Watts, A review of
oxygen-17 solid-state NMR of organic materials – towards
biological applications, Solid State Nucl. Magn. Reson.
26,
215–235 (2004),
https://doi.org/10.1016/j.ssnmr.2004.04.004
[13] J.D. Bazak, A.R. Wong, K. Duanmu, K.S. Han, D. Reed, and V.
Murugesan, Concentration-dependent solvation structure and
dynamics of aqueous sulfuric acid using multinuclear NMR and
DFT, J. Phys. Chem. B
125, 5089–5099 (2021),
https://doi.org/10.1021/acs.jpcb.1c01177
[14] P. Rubini, D. Champmartin, and X. Assfeld, Determination of
the
17O quadrupolar coupling constant and the
13C
shielding tensor anisotropy in solution for molecules containing
a COOH group. NMR relaxation study and theoretical calculations,
J. Chim. Phys.
95, 366–376 (1998),
https://doi.org/10.1051/jcp:1998146
[15] J.E. Gready, G.B. Bacskay, and N.S. Hush, Comparison of the
effects of symmetric versus asymmetric H-bonding on
2H
and
17O nuclear quadrupole coupling constants:
Application to formic acid and the hydrogen diformate anion,
Chem. Phys.
64, 1–17 (1982),
https://doi.org/10.1016/0301-0104(82)85001-5
[16] G. Wu, Solid-state
17O NMR studies of organic
and biological molecules: Recent advances and future directions,
Solid State Nucl. Magn. Reson.
73, 1–14 (2016),
https://doi.org/10.1016/j.ssnmr.2015.11.001
[17] A.W. Tang, X. Kong, V. Terskikh, and G. Wu, Solid-state
17O
NMR of unstable acyl-enzyme intermediates: A direct probe of
hydrogen bonding interactions in the oxyanion hole of serine
proteases, J. Phys. Chem. B
120, 11142–11150 (2016),
https://doi.org/10.1021/acs.jpcb.6b08798
[18] Z. Dega-Szafran, M. Grunwald-Wyspianska, and M. Szafran,
Evidence for a single minimum potential for hydrogen bonds of
pyridine
N-oxide complexes with dichloroacetic acid in
dichloromethane, Spectrochim. Acta A
47, 125–131 (1991),
https://doi.org/10.1016/0584-8539(91)80184-K
[19] M. Szafran, B. Brycki, Z. Dega-Szafran, and B. Nowak-Wydra,
Differentiation of substituent effects from hydrogen bonding and
protonation effects in carbon-13 NMR spectra of pyridine
N-oxides,
J. Chem. Soc. Perkin Trans.
2, 1161–1166 (1991),
https://doi.org/10.1039/p29910001161
[20] M. Szafran, Recent aspects of the proton transfer reaction
in H-bonded complexes, J. Mol. Struct.
381, 39–64
(1996),
https://doi.org/10.1016/0022-2860(96)09230-7
[21] Κ.D. Eichhorn, Neutron structure analysis of 1-hydroxy
pyridinium trichloroacetate, C
7H
6Cl
3NO
3,
at 120 K, Z. Kristallographie
195, 205–220 (1991),
https://doi.org/10.1524/zkri.1991.195.3-4.205
[22] J. Panek, J. Stare, and D. Hadži, From the isolated
molecule to oligomers and the crystal: A static density
functional theory and Car–Parrinello molecular dynamics study of
geometry and potential function modifications of the short
intramolecular hydrogen bond in picolinic acid
N-oxide,
J. Phys. Chem. A
108, 7417–7423 (2004),
https://doi.org/10.1021/jp0495794
[23] T. Steiner, A.M.M. Schreurs, M. Lutz, and J. Kroon, Strong
intramolecular O–H···O hydrogen bonds in quinaldic acid
N-oxide
and picolinic acid
N-oxide, Acta Crystallogr. Sect. C
56,
577–579 (2000),
https://doi.org/10.1107/S0108768100001476
[24] V. Balevicius, A. Maršalka, V. Klimavičius, L. Dagys, M.
Gdaniec, I. Svoboda, and H. Fuess, NMR and XRD study of hydrogen
bonding in picolinic acid
N-oxide in crystalline state
and solutions: Media and temperature effects on potential energy
surface, J. Phys. Chem. A
122, 6894–6902 (2018),
https://doi.org/10.1021/acs.jpca.8b05421
[25] V. Balevicius, K. Aidas, I. Svoboda, and H. Fuess, Hydrogen
bonding in pyridine
N-oxide/acid systems: Proton
transfer and fine details revealed by FTIR, NMR, and Xray
diffraction, J. Phys. Chem. A
116, 8753−8761 (2012),
https://doi.org/10.1021/jp305446n
[26] V. Balevicius, Z. Gdaniec, and K. Aidas, NMR and DFT study
on media effects on proton transfer in hydrogen bonding: concept
of molecular probe with an application to ionic and super-polar
liquids, Phys. Chem. Chem. Phys.
11, 8592–8600 (2009),
https://doi.org/10.1039/b819666d
[27] E. von Profft and W. Steinke,
N-Oxyde
substituierter Picolinsäuren, J. Prakt. Chem.
13, 58–75
(1961),
https://doi.org/10.1002/prac.19610130107
[28] C. Adamo and V. Barone, Toward reliable density functional
methods without adjustable parameters: The PBE0 model, J. Chem.
Phys.
110, 6158–6169 (1999),
https://doi.org/10.1063/1.478522
[29] R. Krishnan, J.S. Binkley, R. Seeger, and J.A. Pople,
Self‐consistent molecular orbital methods. XX. A basis set for
correlated wave functions, J. Chem. Phys.
72, 650–654
(1980),
https://doi.org/10.1063/1.438955
[30] K. Wolinski, J.F. Hilton, and P. Pulay, Efficient
implementation of the gauge-independent atomic orbital method
for NMR chemical shift calculations, J. Am. Chem. Soc.
112,
8251–8260 (1990),
https://doi.org/10.1021/ja00179a005
[31] J. Tomasi, B. Mennucci, and R. Cammi, Quantum mechanical
continuum solvation models, Chem. Rev.
105, 2999–3094
(2005),
https://doi.org/10.1021/cr9904009
[32] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,
M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N.
Kudin, J.C. Burant, et al.,
Gaussian 03, Revision B.01
(Gaussian, Inc., Pittsburgh PA, 2003),
https://gaussian.com/
[33] G. Scalmani and M.J. Frisch, Continuous surface charge
polarizable continuum models of solvation. I. General formalism,
J. Chem. Phys.
132, 114110 (2010),
https://doi.org/10.1063/1.3359469
[34] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,
M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A.
Petersson, H. Nakatsuji, et al., Gaussian 16, Revision A.03
(Gaussian, Inc., Wallingford CT, 2016),
https://gaussian.com/
[35] R.E. Wasylishen, S. Mooibroek, and B. Macdonald, A more
reliable oxygen‐17 absolute chemical shielding scale, J. Chem.
Phys.
81, 1057 (1984),
https://doi.org/10.1063/1.447799
[36] K. Aidas, A. Maršalka, Z. Gdaniec, and V. Balevičius, A
13C
NMR and density functional theory study of critical behaviour of
binary water/2,6-lutidine solution, Lith. J. Phys.
47,
443–449 (2007),
https://doi.org/10.3952/lithjphys.47421
[37] K. Aidas and V. Balevicius, Proton transfer in H-bond:
Possibility of short-range order solvent effect, J. Mol. Liquids
127, 134–138 (2006),
https://doi.org/10.1016/j.molliq.2006.03.036
[38] J. Stare, F. Merzel, and D. Hadži, in:
New Methods in
Molecular Spectroscopy (Wroclaw University, 2002) p. 28
[39] M.H. Abraham, P.P. Duce, P.L. Grellier, D.V. Prior, J.J.
Morris, and P.J. Taylor, Hydrogen-bonding. Part 5. A
thermodynamically-based scale of solute hydrogen-bond acidity,
Tetrahedron Lett.
29, 1578–1590 (1988),
https://doi.org/10.1016/S0040-4039(00)80360-3
[40] D. Monti, F. Orsini, and G.S. Ricca, Oxygen-17 NMR
spectroscopy: effects of substituents on chemical shifts for o-
m- p- substituted benzoic acids, phenylacetic and methyl
benzoates, Spectrosc. Lett.
19, 91–99 (1986),
https://doi.org/10.1080/00387018608069223
[41] S. Kuroki, S. Ando, and I. Ando, An MO study of nuclear
quadrupolar coupling constant and nuclear shielding of the
carbonyl oxygen in solid peptides with hydrogen bonds, Chem.
Phys.
195, 107–116 (1995),
https://doi.org/10.1016/0301-0104(95)00030-R
[42] S. Dong, K. Yamada, and G. Wu, Oxygen-17 nuclear magnetic
resonance of organic solids, Z. Naturforsch. A
55, 21–28
(2000),
https://doi.org/10.1515/zna-2000-1-205
[43] D.W. Boykin, A.L. Baumstark, and P. Balakrishnan,
17O
NMR spectroscopy of 4-substituted pyridine
N-oxides:
Substituent and solvent effects, Magn. Reson. Chem.
23,
276–279 (1985),
https://doi.org/10.1002/mrc.1260230414
[44] D.W. Boykin, P. Balakrishnan, and A.L. Baumstark, Natural
abundance
17O NMR spectroscopy of heterocyclic
N-oxides
and Di
N-oxides. Structural effects, J. Heterocycl.
Chem.
22, 981–984 (1985),
https://doi.org/10.1002/jhet.5570220410
[45] P.M. Woyciesjes, N. Janes, S. Ganapathy, Y. Hiyama, T.L.
Brown, and E. Oldfield, Nitrogen and oxygen nuclear quadrupole
and nuclear magnetic resonance spectroscopic study of N–O
bonding in pyridine 1-oxides, Magn. Reson. Chem.
23,
315–321 (1985),
https://doi.org/10.1002/mrc.1260230508
[46] A. Maršalka, L. Dagys, V. Jakubkienė, S. Tumkevičius, and
V. Balevicius,
1H and
17O NMR study of
H-bond dynamics in picolinic acid N-oxide solutions in
acetonitrile-
h3 and acetonitrile-
d3:
Novel aspects of old casus, Chem. Phys.
513, 17–22
(2018),
https://doi.org/10.1016/j.chemphys.2018.06.020
[47] M. Ichikawa, Hydrogen-bond geometry and its isotope effect
in crystals with OHO bonds – revisited, J. Mol. Struct.
552,
63–70 (2000),
https://doi.org/10.1016/S0022-2860(00)00465-8
[48] R.J. Nelmes, Structural studies of KDP and the KDP-type
transition by neutron and x-ray diffraction: 1970–1985,
Ferroelectrics
71, 87–123 (1987),
https://doi.org/10.1080/00150198708224832
[49] T. Steiner, I. Majerz, and C.C. Wilson, First O–H–N
hydrogen bond with a centered proton obtained by thermally
induced proton migration, Angew. Chem. Int. Ed.
40,
2651–2654 (2001),
https://doi.org/10.1002/1521-3773(20010716)40:14<2651::AID-ANIE2651>3.0.CO;2-2