,
Dmytro B. But
References /
Nuorodos
[1] R. Han, Z. Hu, C. Wang, J. Holloway, X. Yi, M. Kim, and J.
Mawdsley, Filling the gap: Silicon terahertz integrated circuits
offer our best bet, IEEE Microw. Mag.
20(4), 80–93
(2019),
https://doi.org/10.1109/MMM.2019.2891379
[2] T. Nagatsuma, Terahertz technologies: present and future,
IEICE Electron. Expr.
8(14), 1127–1142 (2011),
https://doi.org/10.1587/elex.8.1127
[3] T. Nagatsuma, G. Ducournau, and C.C. Renaud, Advances in
terahertz communications accelerated by photonics, Nat.
Photonics
10(6), 371–379 (2016),
https://doi.org/10.1038/nphoton.2016.65
[4] K.K. Tokgoz, S. Maki, J. Pang, N. Nagashima, I. Abdo, S.
Kawai, T. Fujimura, Y. Kawano, T. Suzuki, T. Iwai, K. Okada, and
A. Matsuzawa, in:
Proceedings of 2018 IEEE International
Solid-State Circuits Conference (ISSCC) (2018) pp.
168–170,
https://doi.org/10.1109/ISSCC.2018.8310237
[5] NTT Docomo,
White Paper: 5G Evolution and 6G (2021),
[PDF]
[6] C. Yi, D. Kim, S. Solanki, J.H. Kwon, M. Kim, S. Jeon, Y.C.
Ko, and I. Lee, in:
Proceedings of 2020 International
Conference on Information and Communication Technology
Convergence (ICTC) (2020) pp. 529–531,
https://doi.org/10.1109/ICTC49870.2020.9289216
[7] L. Moeller, J. Federici, and K. Su, in:
Proceedings of
2011 XXXth URSI General Assembly and Scientific Symposium
(2011) pp. 1–4,
https://doi.org/10.1109/URSIGASS.2011.6050620
[8] K.B. Cooper, J.F. Trabert, and R.J. Dengler, in:
2012
IEEE/MTT-S International Microwave Symposium Digest (2012)
pp. 1–3,
https://doi.org/10.1109/MWSYM.2012.6258431
[9] V. Petrov, T. Kurner, and I. Hosako, IEEE 802.15.3d: First
standardization efforts for sub-terahertz band communications
toward 6g, IEEE Commun. Mag.
58(11), 28–33 (2020),
https://doi.org/10.1109/MCOM.001.2000273
[10] The International Telecommunication Union (ITU),
Sharing
and Compatibility Studies Between Land-mobile, Fixed and
Passive Services in the Frequency Range 275-450 GHz
(2019),
https://www.itu.int/pub/R-REP-SM.2450-2019
[11]
FCC Online Table of Frequency Allocations (May
2019),
[PDF]
[12] R. Han and E. Afshari, A CMOS high-power broadband 260-GHz
radiator array for spectroscopy, IEEE J. Solid-State Circuits
48(12),
3090–3104 (2013),
https://doi.org/10.1109/JSSC.2013.2272864
[13] J. Zdanevičius, K. Ikamas, J. Matukas, A. Lisauskas, H.
Richter, H.-W. Hubers, M. Bauer, and H.G. Roskos, in:
Proceedings
of 42nd International Conference on Noise and Fluctuations
(ICNF) (IEEE, 2017) pp. 1–4,
https://doi.org/10.1109/ICNF.2017.7985960
[14] D.B. But, E. Javadi, W. Knap, K. Ikamas, and A. Lisauskas,
in:
Proceedings of 2020 23rd International Microwave and
Radar Conference (MIKON) (IEEE, 2020) pp. 305–308,
https://doi.org/10.23919/MIKON48703.2020.9253787
[15] E. Javadi, D.B. But, K. Ikamas, J. Zdanevičius, W. Knap,
and A. Lisauskas, Sensitivity of field-effect transistor-based
terahertz detectors, Sensors
21(9), 2909 (2021),
https://doi.org/10.3390/s21092909
[16] B. Khamaisi and E. Socher, A 209–233 GHz frequency source
in 90 nm CMOS technology, IEEE Microw. Wirel. Compon. Lett.
22(5),
260–262 (2012),
https://doi.org/10.1109/LMWC.2012.2190272
[17] H. Jalili and O. Momeni, A 0.46-THz 25-element scalable and
wideband radiator array with optimized lens integration in 65-nm
CMOS, IEEE J. Solid-State Circuits
55(9), 2387–2400
(2020),
https://doi.org/10.1109/JSSC.2020.2989897
[18] K. Ikamas, D.B. But, A. Cesiul, C. Kołaciński, T.
Lisauskas, W. Knap, and A. Lisauskas, All-electronic emitter
detector pairs for 250 GHz in silicon, Sensors
21(17),
5795 (2021),
https://doi.org/10.3390/s21175795
[19] J. Zdanevičius, D. Čibiraitė, K. Ikamas, M. Bauer, J.
Matukas, A. Lisauskas, H. Richter, T. Hagelschuer, V. Krozer,
H.-W. Hubers, and H.G. Roskos, Field-effect transistor based
detectors for power monitoring of THz quantum cascade lasers,
IEEE Trans. Terahertz Sci. Technol.
8(6), 613–621
(2018),
https://doi.org/10.1109/TTHZ.2018.2871360
[20] N. Buadana, S. Jameson, and E. Socher, in:
Proceedings
of 2018 IEEE Radio Frequency Integrated Circuits Symposium
(RFIC) (2018) pp. 248–251,
https://doi.org/10.1109/RFIC.2018.8428967
[21] J. Pang, S. Maki, S. Kawai, N. Nagashima, Y. Seo, M. Dome,
H. Kato, M. Katsuragi, K. Kimura, S. Kondo, et al., in:
Proceedings
of 2017 IEEE International Solid-State Circuits Conference
(ISSCC) (2017) pp. 424–425,
https://doi.org/10.1109/ISSCC.2017.7870442
[22] K. Okada, R. Minami, Y. Tsukui, S. Kawai, Y. Seo, S. Sato,
S. Kondo, T. Ueno, Y. Takeuchi, T. Yamaguchi, A. Musa, R. Wu, M.
Miyahara, and A. Matsuzawa, in:
2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers
(ISSCC) (2014) pp. 346–347,
https://doi.org/10.1109/ISSCC.2014.6757463
[23] S. Kawai, R. Minami, Y. Tsukui, Y. Takeuchi, H. Asada, A.
Musa, R. Murakami, T. Sato, Q. Bu, N. Li, M. Miyahara, K. Okada,
and A. Matsuzawa, in:
Proceedings of 2013 IEEE Radio
Frequency Integrated Circuits Symposium (RFIC) (2013) pp.
137–140,
https://doi.org/10.1109/RFIC.2013.6569543
[24] P.-J. Peng, J.-F. Li, L.-Y. Chen, and J. Lee, in:
Proceedings
of 2017 IEEE International Solid-State Circuits Conference
(ISSCC) (2017) pp. 110–111,
https://doi.org/10.1109/ISSCC.2017.7870285
[25] S. Lee, R. Dong, T. Yoshida, S. Amakawa, S. Hara, A.
Kasamatsu, J. Sato, and M. Fujishima, in:
Proceedings of
2019 IEEE International Solid-State Circuits Conference
(ISSCC) (2019) pp. 170–172,
https://doi.org/10.1109/ISSCC.2019.8662314
[26] K. Takano, S. Amakawa, K. Katayama, S. Hara, R. Dong, A.
Kasamatsu, I. Hosako, K. Mizuno, K. Takahashi, T. Yoshida, and
M. Fujishima, in:
Proceedings of 2017 IEEE International
Solid-State Circuits Conference (ISSCC) (2017) pp.
308–309,
https://doi.org/10.1109/ISSCC.2017.7870384
[27] Z. Wang, P.-Y. Chiang, P. Nazari, C.-C. Wang, Z. Chen, and
P. Heydari, A CMOS 210-GHz fundamental transceiver with OOK
modulation, IEEE J. Solid-State Circuits
49(3), 564–580
(2014),
https://doi.org/10.1109/JSSC.2013.2297415
[28] Y. Yang, S. Zihir, H. Lin, O. Inac, W. Shin, and G.M.
Rebeiz, in:
Proceedings of 2014 IEEE Radio Frequency
Integrated Circuits Symposium (2014) pp. 365–368,
https://doi.org/10.1109/RFIC.2014.6851743
[29] S.V. Thyagarajan, S. Kang, and A.M. Niknejad, A 240 GHz
fully integrated wideband QPSK receiver in 65 nm CMOS, IEEE J.
Solid-State Circuits
50(10), 2268–2280 (2015),
https://doi.org/10.1109/JSSC.2015.2467216
[30] K.K. Tokgoz, S. Maki, S. Kawai, N. Nagashima, J. Emmei, M.
Dome, H. Kato, J. Pang, Y. Kawano, T. Suzuki, et al., in:
Proceedings
of 2016 IEEE International Solid-State Circuits Conference
(ISSCC) (2016) pp. 242–243,
https://doi.org/10.1109/ISSCC.2016.7417997
[31] I. Abdo, T. Fujimura, T. Miura, K.K. Tokgoz, H. Hamada, H.
Nosaka, A. Shirane, and K. Okada, in:
Proceedings of 2020
IEEE/MTT-S International Microwave Symposium (IMS) (2020)
pp. 623–626,
https://doi.org/10.1109/IMS30576.2020.9224033
[32] M.M. Wiecha, R. Kapoor, A.V. Chernyadiev, K. Ikamas, A.
Lisauskas, and H. G. Roskos, Antenna-coupled field-effect
transistors as detectors for terahertz near-field microscopy,
Nanoscale Adv.
3, 1717–1724 (2021),
https://doi.org/10.1039/D0NA00928H
[33] D. Čibiraitė-Lukenskienė, K. Ikamas, T. Lisauskas, V.
Krozer, H.G. Roskos, and A. Lisauskas, Passive detection and
imaging of human body radiation using an uncooled field-effect
transistor-based THz detector, Sensors
20(15), 4087
(2020),
https://doi.org/10.3390/s20154087
[34] O. Momeni and E. Afshari, High power terahertz and
millimeter-wave oscillator design: A systematic approach, IEEE
J. Solid-State Circuits
46(3), 583–597 (2011),
https://doi.org/10.1109/JSSC.2011.2104553
[35] J. Grzyb, Y. Zhao, and U.R. Pfeiffer, A 288-GHz
lens-integrated balanced triple-push source in a 65-nm CMOS
technology, IEEE J. Solid-State Circuits
48(7),
1751–1761 (2013),
https://doi.org/10.1109/JSSC.2013.2253403
[36] J.V. Rudd and D.M. Mittleman, Influence of substrate-lens
design in terahertz time-domain spectroscopy, J. Opt. Soc. Am. B
19(2), 319–329 (2002),
https://doi.org/10.1364/JOSAB.19.000319
[37] J.G. Proakis,
Digital Communications, 4th ed.
(McGraw-Hill Education, Boston, 2000)