[PDF]    https://doi.org/10.3952/physics.v62i3.4796

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 127–137 (2022)

TOWARDS WIRELESS DATA TRANSMISSION WITH COMPACTALL-ELECTRONIC THz SOURCE AND DETECTOR SYSTEM
Albert Cesiula, Kęstutis Ikamasa,c, Dmytro B. Butb, Ieva Morkūnaitėa, Tautvydas Lisauskasd, and Alvydas Lisauskasa,b
a Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
b CENTERA Laboratories, Institute of High-Pressure Physics PAS, Sokołowska 29, 01-142 Warsaw, Poland
c Research Group on Logistics and Defense Technology Management, General Jonas Žemaitis Military Academy of Lithuania, Šilo 5A, 10322 Vilnius, Lithuania
d SE ‘Terahertz Technologies’, Pamėnkalnio 5-4, 01116 Vilnius, Lithuania
Email: alvydas.lisauskas@ff.vu.lt

Received 17 September 2022; accepted 20 September 2022

This paper presents a fully-electronic wireless link operating at the 250 GHz frequency. The key elements of the developed system are the voltage-controlled harmonic oscillator implemented in 65 nm complementary metal-oxide-semiconductor technology (CMOS) and a quasi-optical detector with a resonant-antenna-coupled field-effect transistor completed in 90 nm CMOS. The source is optimized for the third harmonic emission at 252 GHz with radiated power reaching up to –11 dBm (decibels with reference to one milliwatt) level. The detector has a resonance maximum of 254 GHz with a bandwidth of 25% and a minimal optical noise equivalent power of 22 pW/Hz\sqrt{\mathrm{Hz}}. We employ an on-off keying technique for data coding and demonstrate digital signal transmission from 0.4 to 18 m distances. At 0.4 m distance and modulation frequency of 32 MHz, we achieve a 15.9 dB signal-to-noise ratio. The channel capacity of assembled communication link reaches 266 Mbit/s. However, it is limited by external electronic components – the amplifier and the modulator bandwidths. Implementing state-of-the-art high-frequency circuits should allow directly scaling the throughput to 10 Gbit/s.
Keywords: power generation, wireless communication, THz detection, RF chipset, Si CMOS


KOMPAKTIŠKOS BELAIDĖS DUOMENŲ PERDAVIMO SISTEMOS SU ELEKTRONINIU THz ŠALTINIU IR DETEKTORIUMI KŪRIMAS
Albert Cesiula, Kęstutis Ikamasa,c, Dmytro B. Butb, Ieva Morkūnaitėa, Tautvydas Lisauskasd, Alvydas Lisauskasa,b

a Vilniaus universiteto Taikomosios elektrodinamikos ir telekomunikacijų institutas, Vilnius, Lietuva
b Lenkijos mokslų akademijos Aukšto slėgio fizikos instituto CENTERA laboratorijos, Varšuva, Lenkija
c Generolo Jono Žemaičio Lietuvos karo akademijos Logistikos ir gynybos technologijų vadybos mokslo grupė, Vilnius, Lietuva
d MB „Terahercų Technologijos“, Vilnius, Lietuva

Šiame straipsnyje pristatoma visiškai elektroninė belaidžio ryšio linija, veikianti 250 GHz dažniu. Pagrindiniai sukurtos sistemos elementai yra įtampa valdomas harmoninis osciliatorius, pagamintas naudojant 65 nm jungtinę metalo oksido puslaidininkio technologiją (JMOP), ir kvazioptinis detektorius su atrankiąja antena ir lauko tranzistoriumi, pagamintas naudojant 90 nm JMOP. Šaltinis atitaikytas trečiosios harmonikos spinduliuotės emisijai 252 GHz dažniu, jo spinduliuojama galia siekia –11 dBm lygį. Detektoriaus jautrio maksimumas yra 254 GHz, dažnių juostos plotis – 25 %, o minimali optinė efektinė triukšmo galia siekia 22 pW/Hz\sqrt{\mathrm{Hz}}. Duomenims koduoti naudojame moduliavimą įjungimo-išjungimo raktu ir demonstruojame skaitmeninio signalo perdavimą nuo 0,4 iki 18 m atstumu. Esant 0,4 m atstumui ir 32 MHz moduliacijos dažniui, pasiekiamas 15,9 dB signalo ir triukšmo santykis. Surinktos ryšio sistemos kanalo laidumas siekia 266 Mbit/s, tačiau jį riboja tik išoriniai elektroniniai komponentai – stiprintuvo ir moduliatoriaus dažnių juostos plotis. Įdiegus šiuolaikines aukšto dažnio grandines, laidumą būtų galima tiesiogiai padidinti iki 10 Gbit/s.


References / Nuorodos

[1] R. Han, Z. Hu, C. Wang, J. Holloway, X. Yi, M. Kim, and J. Mawdsley, Filling the gap: Silicon terahertz integrated circuits offer our best bet, IEEE Microw. Mag. 20(4), 80–93 (2019),
https://doi.org/10.1109/MMM.2019.2891379
[2] T. Nagatsuma, Terahertz technologies: present and future, IEICE Electron. Expr. 8(14), 1127–1142 (2011),
https://doi.org/10.1587/elex.8.1127
[3] T. Nagatsuma, G. Ducournau, and C.C. Renaud, Advances in terahertz communications accelerated by photonics, Nat. Photonics 10(6), 371–379 (2016),
https://doi.org/10.1038/nphoton.2016.65
[4] K.K. Tokgoz, S. Maki, J. Pang, N. Nagashima, I. Abdo, S. Kawai, T. Fujimura, Y. Kawano, T. Suzuki, T. Iwai, K. Okada, and A. Matsuzawa, in: Proceedings of 2018 IEEE International Solid-State Circuits Conference (ISSCC) (2018) pp. 168–170,
https://doi.org/10.1109/ISSCC.2018.8310237
[5] NTT Docomo, White Paper: 5G Evolution and 6G (2021),
[PDF]
[6] C. Yi, D. Kim, S. Solanki, J.H. Kwon, M. Kim, S. Jeon, Y.C. Ko, and I. Lee, in: Proceedings of 2020 International Conference on Information and Communication Technology Convergence (ICTC) (2020) pp. 529–531,
https://doi.org/10.1109/ICTC49870.2020.9289216
[7] L. Moeller, J. Federici, and K. Su, in: Proceedings of 2011 XXXth URSI General Assembly and Scientific Symposium (2011) pp. 1–4,
https://doi.org/10.1109/URSIGASS.2011.6050620
[8] K.B. Cooper, J.F. Trabert, and R.J. Dengler, in: 2012 IEEE/MTT-S International Microwave Symposium Digest (2012) pp. 1–3,
https://doi.org/10.1109/MWSYM.2012.6258431
[9] V. Petrov, T. Kurner, and I. Hosako, IEEE 802.15.3d: First standardization efforts for sub-terahertz band communications toward 6g, IEEE Commun. Mag. 58(11), 28–33 (2020),
https://doi.org/10.1109/MCOM.001.2000273
[10] The International Telecommunication Union (ITU), Sharing and Compatibility Studies Between Land-mobile, Fixed and Passive Services in the Frequency Range 275-450 GHz (2019),
https://www.itu.int/pub/R-REP-SM.2450-2019
[11] FCC Online Table of Frequency Allocations (May 2019),
[PDF]
[12] R. Han and E. Afshari, A CMOS high-power broadband 260-GHz radiator array for spectroscopy, IEEE J. Solid-State Circuits 48(12), 3090–3104 (2013),
https://doi.org/10.1109/JSSC.2013.2272864
[13] J. Zdanevičius, K. Ikamas, J. Matukas, A. Lisauskas, H. Richter, H.-W. Hubers, M. Bauer, and H.G. Roskos, in: Proceedings of 42nd International Conference on Noise and Fluctuations (ICNF) (IEEE, 2017) pp. 1–4,
https://doi.org/10.1109/ICNF.2017.7985960
[14] D.B. But, E. Javadi, W. Knap, K. Ikamas, and A. Lisauskas, in: Proceedings of 2020 23rd International Microwave and Radar Conference (MIKON) (IEEE, 2020) pp. 305–308,
https://doi.org/10.23919/MIKON48703.2020.9253787
[15] E. Javadi, D.B. But, K. Ikamas, J. Zdanevičius, W. Knap, and A. Lisauskas, Sensitivity of field-effect transistor-based terahertz detectors, Sensors 21(9), 2909 (2021),
https://doi.org/10.3390/s21092909
[16] B. Khamaisi and E. Socher, A 209–233 GHz frequency source in 90 nm CMOS technology, IEEE Microw. Wirel. Compon. Lett. 22(5), 260–262 (2012),
https://doi.org/10.1109/LMWC.2012.2190272
[17] H. Jalili and O. Momeni, A 0.46-THz 25-element scalable and wideband radiator array with optimized lens integration in 65-nm CMOS, IEEE J. Solid-State Circuits 55(9), 2387–2400 (2020),
https://doi.org/10.1109/JSSC.2020.2989897
[18] K. Ikamas, D.B. But, A. Cesiul, C. Kołaciński, T. Lisauskas, W. Knap, and A. Lisauskas, All-electronic emitter detector pairs for 250 GHz in silicon, Sensors 21(17), 5795 (2021),
https://doi.org/10.3390/s21175795
[19] J. Zdanevičius, D. Čibiraitė, K. Ikamas, M. Bauer, J. Matukas, A. Lisauskas, H. Richter, T. Hagelschuer, V. Krozer, H.-W. Hubers, and H.G. Roskos, Field-effect transistor based detectors for power monitoring of THz quantum cascade lasers, IEEE Trans. Terahertz Sci. Technol. 8(6), 613–621 (2018),
https://doi.org/10.1109/TTHZ.2018.2871360
[20] N. Buadana, S. Jameson, and E. Socher, in: Proceedings of 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (2018) pp. 248–251,
https://doi.org/10.1109/RFIC.2018.8428967
[21] J. Pang, S. Maki, S. Kawai, N. Nagashima, Y. Seo, M. Dome, H. Kato, M. Katsuragi, K. Kimura, S. Kondo, et al., in: Proceedings of 2017 IEEE International Solid-State Circuits Conference (ISSCC) (2017) pp. 424–425,
https://doi.org/10.1109/ISSCC.2017.7870442
[22] K. Okada, R. Minami, Y. Tsukui, S. Kawai, Y. Seo, S. Sato, S. Kondo, T. Ueno, Y. Takeuchi, T. Yamaguchi, A. Musa, R. Wu, M. Miyahara, and A. Matsuzawa, in: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2014) pp. 346–347,
https://doi.org/10.1109/ISSCC.2014.6757463
[23] S. Kawai, R. Minami, Y. Tsukui, Y. Takeuchi, H. Asada, A. Musa, R. Murakami, T. Sato, Q. Bu, N. Li, M. Miyahara, K. Okada, and A. Matsuzawa, in: Proceedings of 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (2013) pp. 137–140,
https://doi.org/10.1109/RFIC.2013.6569543
[24] P.-J. Peng, J.-F. Li, L.-Y. Chen, and J. Lee, in: Proceedings of 2017 IEEE International Solid-State Circuits Conference (ISSCC) (2017) pp. 110–111,
https://doi.org/10.1109/ISSCC.2017.7870285
[25] S. Lee, R. Dong, T. Yoshida, S. Amakawa, S. Hara, A. Kasamatsu, J. Sato, and M. Fujishima, in: Proceedings of 2019 IEEE International Solid-State Circuits Conference (ISSCC) (2019) pp. 170–172,
https://doi.org/10.1109/ISSCC.2019.8662314
[26] K. Takano, S. Amakawa, K. Katayama, S. Hara, R. Dong, A. Kasamatsu, I. Hosako, K. Mizuno, K. Takahashi, T. Yoshida, and M. Fujishima, in: Proceedings of 2017 IEEE International Solid-State Circuits Conference (ISSCC) (2017) pp. 308–309,
https://doi.org/10.1109/ISSCC.2017.7870384
[27] Z. Wang, P.-Y. Chiang, P. Nazari, C.-C. Wang, Z. Chen, and P. Heydari, A CMOS 210-GHz fundamental transceiver with OOK modulation, IEEE J. Solid-State Circuits 49(3), 564–580 (2014),
https://doi.org/10.1109/JSSC.2013.2297415
[28] Y. Yang, S. Zihir, H. Lin, O. Inac, W. Shin, and G.M. Rebeiz, in: Proceedings of 2014 IEEE Radio Frequency Integrated Circuits Symposium (2014) pp. 365–368,
https://doi.org/10.1109/RFIC.2014.6851743
[29] S.V. Thyagarajan, S. Kang, and A.M. Niknejad, A 240 GHz fully integrated wideband QPSK receiver in 65 nm CMOS, IEEE J. Solid-State Circuits 50(10), 2268–2280 (2015),
https://doi.org/10.1109/JSSC.2015.2467216
[30] K.K. Tokgoz, S. Maki, S. Kawai, N. Nagashima, J. Emmei, M. Dome, H. Kato, J. Pang, Y. Kawano, T. Suzuki, et al., in: Proceedings of 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016) pp. 242–243,
https://doi.org/10.1109/ISSCC.2016.7417997
[31] I. Abdo, T. Fujimura, T. Miura, K.K. Tokgoz, H. Hamada, H. Nosaka, A. Shirane, and K. Okada, in: Proceedings of 2020 IEEE/MTT-S International Microwave Symposium (IMS) (2020) pp. 623–626,
https://doi.org/10.1109/IMS30576.2020.9224033
[32] M.M. Wiecha, R. Kapoor, A.V. Chernyadiev, K. Ikamas, A. Lisauskas, and H. G. Roskos, Antenna-coupled field-effect transistors as detectors for terahertz near-field microscopy, Nanoscale Adv. 3, 1717–1724 (2021),
https://doi.org/10.1039/D0NA00928H
[33] D. Čibiraitė-Lukenskienė, K. Ikamas, T. Lisauskas, V. Krozer, H.G. Roskos, and A. Lisauskas, Passive detection and imaging of human body radiation using an uncooled field-effect transistor-based THz detector, Sensors 20(15), 4087 (2020),
https://doi.org/10.3390/s20154087
[34] O. Momeni and E. Afshari, High power terahertz and millimeter-wave oscillator design: A systematic approach, IEEE J. Solid-State Circuits 46(3), 583–597 (2011),
https://doi.org/10.1109/JSSC.2011.2104553
[35] J. Grzyb, Y. Zhao, and U.R. Pfeiffer, A 288-GHz lens-integrated balanced triple-push source in a 65-nm CMOS technology, IEEE J. Solid-State Circuits 48(7), 1751–1761 (2013),
https://doi.org/10.1109/JSSC.2013.2253403
[36] J.V. Rudd and D.M. Mittleman, Influence of substrate-lens design in terahertz time-domain spectroscopy, J. Opt. Soc. Am. B 19(2), 319–329 (2002),
https://doi.org/10.1364/JOSAB.19.000319
[37] J.G. Proakis, Digital Communications, 4th ed. (McGraw-Hill Education, Boston, 2000)