[PDF]    https://doi.org/10.3952/physics.v62i3.4797

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 138–147 (2022)

INVESTIGATION OF REFLECTION BANDS OF 1D ANNULAR PHOTONIC CRYSTAL CONTAINING DOUBLE NEGATIVE INDEX MATERIAL AND NON-MAGNETIZED PLASMA
Alireza Aghajamalia, Sanjeev K. Srivastavab, and Chittaranjan Nayakc,d
a Department of Physics and Astronomy, Curtin University, Perth, WA 6102, Australia
b Department of Physics, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, India
c Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Chennai-603203, India
d Department of Communication Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
Email: sanjeev17th@yahoo.co.in

Received 8 March 2022; revised 1 July 2022; accepted 8 August 2022

In this paper, optical reflectance properties of an annular photonic crystal (APC) composed of alternate layers of double negative (DNG) material and a non-magnetized plasma (NMP) layer, immersed in free space, have been theoretically investigated and studied. The reflectance spectra of the annular PC have been obtained by employing the transfer matrix method (TMM) for the cylindrical waves in the case of TE-polarized wave only. It has been found that the spectral position and width of the reflection bands of APC are greatly influenced by the variation in the thickness of DNG metamaterial and NMP layer, respectively. Interestingly, it is observed that the presence of NMP layer causes the increase in photonic band gap (PBG) whereas the DNG layer reduces the PBG. Further, the effect of azimuthal mode number (m) on the reflectance spectra shows that for m > 0, splitting in the reflection bands occurs at the frequency corresponding to the zero permeability value of DNG metamaterial layer. Moreover, with the increase in azimuthal mode number one PBG is red-shifted and the second one is blue-shifted. Finally, the effect of change in the starting radius parameter of curved surface and plasma electron density on the reflectance spectra of APC has also been studied and very interesting results have been observed.
Keywords:annular photonic crystal, circular photonic crystal, cylindrical Bragg waves, reflectance spectra, double negative index material, non-magnetized plasma, transfer matrix method

VIENMAČIO ŽIEDINIO FOTONINIO KRISTALO IŠ NEIGIAMŲ SKVARBŲ MEDŽIAGOS IR NEĮMAGNETINTOS PLAZMOS ATSPINDŽIO JUOSTŲ TYRIMAS
Alireza Aghajamalia, Sanjeev K. Srivastavab, Chittaranjan Nayakc,d

a Kertino universiteto Fizikos ir astronomijos departamentas, Pertas, Australija
b Utar Pradešo Amity universiteto Taikomųjų mokslų institutas, Noida, Indija
c SRM Mokslo ir technologijos instituto Elektronikos ir komunikacijų inžinerijos departamentas, Čenajus, Indija
d Veloro technologijos instituto Elektronikos inžinerijos mokykla, Veloras, Indija


References / Nuorodos

[1] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059 (1987),
https://doi.org/10.1103/PhysRevLett.58.2059
[2] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486 (1987),
https://doi.org/10.1103/PhysRevLett.58.2486
[3] S.K. Srivastava and S.P. Ojha, Photonic band gaps in one-dimensional metallic star waveguide structure, Prog. Electromagn. Res. 84, 349 (2008),
https://doi.org/10.2528/PIER08080501
[4] C.J. Wu, Y.H. Chung, B.J. Syu, and T.J. Yang, Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal, Prog. Electromagn. Res. 102, 81 (2010),
https://doi.org/10.2528/PIER10012004
[5]. S.M. Weiss, M. Haurylau, and P.M. Fauchet, Tunable photonic bandgap structures for optical interconnects, Opt. Mater. 27, 740 (2005),
https://doi.org/10.1016/j.optmat.2004.08.007
[6] S.K. Srivastava, M. Upadhyay, S.K. Awasthi, and S.P. Ojha, Tunable reflection bands and defect modes in one-dimensional tilted photonic crystal structure, Opt. Phot. J. 2, 230 (2012),
https://doi.org/10.4236/opj.2012.223035
[7] H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity, Opt. Express 14, 2446 (2006),
https://doi.org/10.1364/OE.14.002446
[8] J. Zimmermann, M. Kamp, A. Forchel, and R. März, Photonic crystal waveguide directional couplers as wavelength selective optical filters, Opt. Commun. 230, 387 (2004),
https://doi.org/10.1016/j.optcom.2003.11.026
[9] O.A. Abd El-Aziz, H.A. Elsayed, and M.I. Sayed, One-dimensional defective photonic crystals for the sensing and detection of protein, Appl. Opt. 58(30), 8309 (2019),
https://doi.org/10.1364/AO.58.008309
[10] Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, and E.L. Thomas, A dielectric omnidirectional reflector, Science 282, 1679 (1998),
https://doi.org/10.1126/science.282.5394.1679
[11] S.K. Srivastava and S.P. Ojha, Operating characteristics of an optical filter in a metallic photonic bandgap materials, Microw. Opt. Technol. Lett. 35, 68 (2002),
https://doi.org/10.1002/mop.10518
[12] N.R. Ramanujam, I.S. Amiri, S.A. Taya, S. Olyaee, R. Udaiykumar, A.P. Pandian, K.S.J. Wilson, P. Mahalakshmi, and P.P. Yupapin, Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal, Microsyst. Technol. 25, 189 (2019),
https://doi.org/10.1007/s00542-018-3947-6
[13] A.T. Exner, I. Pavlichenko, D. Baierl, M. Schmidt, G. Derondeau, B.V. Lotsch, P. Lugli, and G. Scarpa, A step towards the electronic nose: integrating 1D photonic crystals with organic light-emitting diodes and photodetectors, Laser Photonics Rev. 8, 726-733 (2014),
https://doi.org/10.1002/lpor.201300220
[14] F. Bayat, S.A. Kandjani, and H. Tajalli, Designing real-time biosensors and chemical sensors based on defective 1-D photonic crystals, IEEE Photonics Technol. Lett. 28, 1843 (2016),
https://doi.org/10.1109/LPT.2016.2573852
[15] V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp. 10, 509 (1968),
https://doi.org/10.1070/PU1968v010n04ABEH003699
[16] D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, 4184 (2000),
https://doi.org/10.1103/PhysRevLett.84.4184
[17] J.B. Pendry, Negative refraction makes light run backward in time, Phys. World 13, 27 (2000),
https://doi.org/10.1088/2058-7058/13/6/24
[18] R.A. Shelby, D.R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science 292, 77 (2001),
https://doi.org/10.1126/science.1058847
[19] J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966 (2000),
https://doi.org/10.1103/PhysRevLett.85.3966
[20] A. Mishra, S.K. Awasthi, S.K. Srivastava, U. Malaviya, and S.P. Ojha, Tunable and omnidirectional filters based on one-dimensional photonic crystals composed of a single-negative materials, J. Opt. Soc. Am. B 28, 1416 (2011),
https://doi.org/10.1364/JOSAB.28.001416
[21] S.K. Srivastava and A. Aghazamali, Analysis of reflectance properties in 1D photonic crystal containing metamaterial and high-temperature superconductor, J. Supercond. Nov. Magn. 30, 343 (2017),
https://doi.org/10.1007/s10948-016-3788-4
[22] J. Li, L. Zhou, C.T. Chan, and P. Sheng, Photonic band gap from a stack of positive and negative index materials, Phys. Rev. Lett. 90, 083901 (2003),
https://doi.org/10.1103/PhysRevLett.90.083901
[23] I.V. Shadrivov, A.A. Sukhorukov, and Y.S. Kivshar, Beam shaping by a periodic structure with negative refraction, Appl. Phys. Lett. 82, 3820 (2003),
https://doi.org/10.1063/1.1579849
[24] S.A. Ramakrishna, Physics of negative refractive index materials, Rep. Prog. Phys. 68, 449 (2005),
https://doi.org/10.1088/0034-4885/68/2/R06
[25] P.V. Parimi, W.T. Lu, P. Vodo, and S. Sridhar, Imaging by flat lens using negative refraction, Nature 426, 404 (2003),
https://doi.org/10.1038/426404a
[26] H. Jiang, H. Chen, H. Li, Y. Zhang, J. Zi, and S.-Y. Zhu, Properties of one-dimensional photonic crystals containing single-negative materials, Phys. Rev. E 69, 066607 (2004),
https://doi.org/10.1103/PhysRevE.69.066607
[27] S.K Srivastava and A. Aghajamali, Narrow transmission mode in one-dimensional symmetric defective photonic crystal containing metamaterial and high Tc superconductor, Opt. Appl. XLIX, 37 (2019),
https://doi.org/10.5277/oa190104
[28] H.-F. Zhang, S.-B. Liu, X.-K. Kong, B.-R. Bian, and Y. Dai, Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, Phys. Plasmas 19, 112102 (2012),
https://doi.org/10.1063/1.4765063
[29] C. Nayak, A. Aghajamali, T. Alamfard, and A. Saha, Tunable photonic band gaps in an extrinsic Octonacci magnetized cold plasma quasicrystal, Phys. B Phys. Condens. Matter 525, 41 (2017),
https://doi.org/10.1016/j.physb.2017.08.075
[30] H.-F. Zhang, S.-B. Liu, X.-K. Kong, C. Chen, and B.-R. Bian, The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice, Optics Commun. 288, 82 (2013),
https://doi.org/10.1016/j.optcom.2012.09.078
[31] H.F. Zhang, S.-B. Liu, and B.-X. Li, Investigation on the properties of omnidirectional photonic band gaps in two-dimensional plasma photonic crystals, Phys. Plasmas 23, 12105 (2016),
https://doi.org/10.1063/1.4939540
[32] M. Heiblum and J.H. Harris, Analysis of curved optical waveguides by conformal transformation, IEEE J. Quantum Electron. 11, 75 (1975),
https://doi.org/10.1109/JQE.1975.1068563
[33] E.-X. Ping, Transmission of electromagnetic waves in planar, cylindrical, and spherical dielectric layer systems and their applications, J. Appl. Phys. 76, 7188 (1994),
https://doi.org/10.1063/1.357999
[34] T. Erdogan and D.G. Hall, Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields, IEEE J. Quantum Electron. 28, 612 (1992),
https://doi.org/10.1109/3.124985
[35] J. Scheuer and Y. Yariv, Coupled-waves approach to the design and analysis of Bragg and photonic crystal annular resonators, IEEE J. Quantum Electron. 39, 1555 (2003),
https://doi.org/10.1109/JQE.2003.819548
[36] M. Toda, Single-mode behavior of a circular grating for potential disk-shaped DFB lasers, IEEE J. Quantum Electron. 26, 473 (1990),
https://doi.org/10.1109/3.52123
[37] M. Fallahi, F. Chatenoud, I.M. Templeton, M. Dion, C.M. Wu, A. Delage, and R. Barber, Electrically pumped circular-grating surface-emitting DBR laser on InGaAs strained single-quantum-well structure, IEEE Photon. Tech. Lett. 4, 1087 (1992),
https://doi.org/10.1109/68.163740
[38] T. Erdogan, O. King, G.W. Wicks, D.G. Hall, E.H. Anderson, and M.J. Rooks, Circularly symmetric operation of a concentric‐circle‐grating, surface‐emitting, AlGaAs/GaAs quantum‐well semiconductor laser, Appl. Phys. Lett. 60, 1921 (1992),
https://doi.org/10.1063/1.107151
[39] W.M.J. Green, J. Scheuer, G. DeRose, and Y. Yariv, Vertically emitting annular Bragg lasers using polymer epitaxial transfer, Appl. Phys. Lett. 85, 3669 (2004),
https://doi.org/10.1063/1.1807970
[40] J. Scheuer and Y. Yariv, Two-dimensional optical ring resonators based on radial Bragg resonance, Opt. Lett. 28, 1528 (2003),
https://doi.org/10.1364/OL.28.001528
[41] J. Scheuer and Y. Yariv, Annular Bragg defect mode resonators, J. Opt. Soc. Am. B 20, 2285 (2003),
https://doi.org/10.1364/JOSAB.20.002285
[42] J. Scheuer, W.M.J. Green, G. DeRose, and Y. Yariv, Low-threshold two-dimensional annular Bragg lasers, Opt. Lett. 29, 2641 (2004),
https://doi.org/10.1364/OL.29.002641
[43] M.A. Kaliteevski, R.A. Abram, V.V. Nikolaev, and G.S. Sokolovski, Bragg reflectors for cylindrical waves, J. Mod. Opt. 46, 875 (1999),
https://doi.org/10.1080/09500349908231310
[44] A. Aghajamali, T. Alamfard, and C. Nayak, Investigation of reflectance properties in a symmetric defective annular semiconductor-superconductor photonic crystal with a radial defect layer, Phys. B Condens. Matter 605, 412770-1 (2021),
https://doi.org/10.1016/j.physb.2020.412770
[45] S.K. Srivastava and A. Aghajamali, Investigation of reflectance properties in 1D ternary annular photonic crystal containing semiconductor and high-Tc superconductor, J. Supercond. Nov. Magn. 29, 1423 (2016),
https://doi.org/10.1007/s10948-016-3413-6
[46] M.S. Chen, C.J. Wu, and T.J. Yang, Optical properties of a semiconducting annular periodic multilayer structure, Solid State Commun. 149, 1888 (2009),
https://doi.org/10.1016/j.ssc.2009.08.002
[47] C.A. Hu, C.J. Wu, T.J. Yang, and S.L. Yang, Analysis of optical properties in cylindrical dielectric photonic crystal, Opt. Commun. 291, 424 (2013),
https://doi.org/10.1016/j.optcom.2012.11.042
[48] T.W. Chang, H.T. Hsu, and C.J. Wu, Investigation of photonic band gap in a circular photonic crystal, J. Electromag. Waves Appl. 25, 2222 (2011),
https://doi.org/10.1163/156939311798147123
[49] S.K. Srivastava and A. Aghajamali, Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) metamaterials, Phys. B Condens. Matter 489, 67 (2016),
https://doi.org/10.1016/j.physb.2016.01.036
[50] S. Gandhi, S.K. Awasthi, and A.H. Aly, Biophotonic sensor design using a 1D defective annular photonic crystal for the detection of creatinine concentration in blood serum, RSC Adv. 11, 26655 (2011),
https://doi.org/10.1039/D1RA04166E
[51] L. Shiveshwari and P. Mahto, Photonic band gap effect in one-dimensional plasma dielectric photonic crystals, Solid State Commun. 138, 160 (2006),
https://doi.org/10.1016/j.ssc.2005.11.024