[PDF]    https://doi.org/10.3952/physics.v62i3.4799

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 161–170 (2022),

MICROWAVE ELECTROMAGNETIC SHIELDING EFFECTIVENESS OF ZnNb2O6-CHOPPED STRANDS COMPOSITES FOR RADAR AND WIDEBAND (6.5–18 GHz),  APPLICATIONS
Ethem İlhan Şahin
 Advanced Technology Research and Application Center, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Turkey
Email: shnethem@gmail.com

Received 14 June 2022; revised 9 September 2022; accepted 12 September 2022

In this study, the traditional mixed oxide process was used to create ZnNb2O6-chopped strands composites. The single phase compound with the chemical formula ZnNb2O6 was generated after sintering at 1100°C for 4 h. For the structural investigation, various quantities of ZnNb2O6-chopped strands were generated. X-ray diffraction (XRD), scanning electron microscopy (SEM),  and energy-dispersive X-ray spectroscopy (EDS),  were carried out for the structural analysis, which indicated that the second phase did not form in ZnNb2O6. Additionally, the ZnNb2O6-strands composites were manufactured by hot pressing using the compositions of ZnNb2O6-chopped strands in various proportions and epoxy. The ZnNb2O6-chopped strands compound formed in various weights, and epoxy resin were used to fabricate microwave shielding effectiveness composites. Utilizing a network analyzer, the microwave shielding effect of ZnNb2O6-chopped strands composites was investigated in a range of 6.5–18 GHz. At a thickness of 1.5 mm, a minimum of –51.32 dB shielding effectiveness value was achieved at 6.75 GHz. The ZnNb2O6-chopped strands compounds were produced as composite and their features were characterized for shielding effectivacy. The content of components in the samples may be managed for the larger and needed frequency bands to change the microwave shielding performance.
Keywords:microwave shielding, ZnNb2O6, mixed oxide, chopped strands, matrix composites

ZnNb2O6 SUSMULKINTŲ GIJŲ KOMPOZITŲ ELEKTROMAGNETINIO EKRANAVIMO EFEKTYVUMAS TAIKANT JUOS RADARUOSE IR PLATAUS (6,5–18 GHz),  MIKROBANGŲ RUOŽO PRIETAISUOSE
Ethem İlhan Şahin

Adanos Alparslan Türkeş mokslo ir technologijų universiteto Pažangių technologijų tyrimų ir taikymo centras, Adana, Turkija

Šiame tyrime tradicinis mišraus oksido procesas buvo naudojamas ZnNb2O6 susmulkintų gijų kompozitams sukurti. Vienfazis junginys, kurio cheminė formulė yra ZnNb2O6, buvo sukurtas 4 valandas sukepinus jį 1100 °C temperatūroje. Struktūriniam tyrimui buvo sukurti įvairūs ZnNb2O6 susmulkintų gijų kiekiai. Struktūrinei analizei buvo atlikta rentgeno spindulių difrakcija (XRD), skenuojamoji elektronų mikroskopija (SEM),  ir energijos dispersinė rentgeno spektroskopija (EDS), ir jos parodė, kad antroji ZnNb2O6 fazė nesusidarė. Be to, ZnNb2O6 susmulkintų gijų kompozitai buvo pagaminti karšto presavimo būdu, naudojant įvairių proporcijų ZnNb2O6 susmulkintų gijų kompozicijas ir epoksidą.
ZnNb2O6 susmulkintų gijų junginys įvairiais svorio santykiais ir epoksidinė derva buvo naudojami mikrobangų ekranavimo efektyvumo kompozitams gaminti. Naudojant tinklo analizatorių tirtas ZnNb2O6 susmulkintų gijų kompozitų mikrobangų ekranavimo efektyvumas 6,5–18 GHz diapazone. Kai storis yra 1,5 mm, pasiekta didžiausia (pagal modulį),  –51,32 dB ekranavimo efektyvumo vertė, esant 6,75 GHz. ZnNb2O6 susmulkintų gijų junginiai buvo gaminami kaip kompozitai, o jų savybės apibūdintos siekiant užtikrinti ekranavimo kokybę. Komponentų proporcijos pavyzdžiuose gali būti parenkamos pritaikant juos tam tikriems dažniams ar reikalingoms dažnių juostoms, siekiant reikalingo mikrobangų ekranavimo.


References / Nuorodos

[1] L. Zhenbau and Y. Wang, Preparation of polymer-derived graphene-like carbon-silicon carbide nanocomposites as electromagnetic interference shielding material for high temperature applications, J. Alloys Compd. 709, 313–321 (2017),
https://doi.org/10.1016/j.jallcom.2017.03.080
[2] A.A. Al-Ghamdi and F. El-Tantawy, New electromagnetic wave shielding effectiveness at microwave frequency of polyvinyl chloride reinforced graphite/copper nanoparticles, Compos. A Appl. Sci. Manuf. 41, 1693–1701 (2010),
https://doi.org/10.1016/j.compositesa.2010.08.006
[3] D. Cao, L. Pan, H. Li, J. Li, X. Wang, X. Cheng, Z. Wang, J. Wang, and Q. Liu, A facile strategy for synthesis of spinel ferrite nano-granules and their potential applications, RSC Advances 71, 66795–66802 (2016),
https://doi.org/10.1039/C6RA13373H
[4] P.F. Wilson, M.T. Ma, and J.W. Adams, Techniques for measuring the electromagnetic shielding effectiveness of materials. I. Far-field source simulation, IEEE Trans. Electromagn. Compat. 30, 239–250 (1988),
https://doi.org/10.1109/15.3302
[5] E.I. Sahin and M. Emek, Electromagnetic shielding effectiveness of wollastonite/PANI/colemanite composites, EJOSAT 21, 83–89 (2021),
https://doi.org/10.31590/ejosat.816145
[6] H. Pan, X. Yin, J. Xue, L. Cheng, and L. Zhang, Microstructures and EMI shielding properties of composite ceramics reinforced with carbon nanowires and nanowires-nanotubes hybrid, Ceram. Int. 43, 12221–12231 (2017),
https://doi.org/10.1016/j.ceramint.2017.06.083
[7] H. Abbasi, M. Antunes, and J.I. Velasco, Recentadvances in carbon-based polymer nanocomposites for electromagnetic interference shielding, Mater. Sci. 103, 319–373 (2019),
https://doi.org/10.1016/j.pmatsci.2019.02.003
[8] A.F. Qasrawi and A.A. Hamarsheh, Structural, optical and electrical properties of band-aligned CdBr2/Au/Ga2S3 interfaces and their application as band filters suitable for 5G technologies, J. Electron. Mater. 32, 1–12 (2022),
https://doi.org/10.1007/s11664-022-09616-5
[9] S.W. Kim, Y.W. Yoon, S.J. Lee, G.Y. Kim, Y.B. Kim, Y.Y. Chun, and K.S. Lee, Electromagnetic shielding properties of soft magnetic powder-polymer composite films for the application to suppress noise in the radio frequency range, J. Magn. Magn. Mater. 316, 472–474 (2007),
https://doi.org/10.1016/j.jmmm.2007.03.133
[10] Y. Yuan, L. Liyang, M. Yang, T. Zhang, F. Xu, Z. Lin, Y. Ding, C. Wang, J. Li, W. Yin, Q. Peng, X. He, and Y. Li, Lightweight, thermally insulating and stiff carbon honeycomb-induced graphene composite foams with a horizontal laminated structure for electromagnetic interference shielding, Carbon 123, 223–232 (2017),
https://doi.org/10.1016/j.carbon.2017.07.060
[11] X. Zhang, Y. Rao, J. Guo, and G. Qin, Multiplephase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption, Carbon 96, 972–979 (2016),
https://doi.org/10.1016/j.carbon.2015.09.087
[12] S. Mondal, P. Das, S. Ganguly, R. Ravindren, S. Remanan, P. Bhawal, T.K. Das, and N.C. Das, Thermal-air ageing treatment on mechanical, electrical, and electromagnetic interference shielding properties of lightweight carbon nanotube based polymer nanocomposites, Compos. A Appl. Sci. Manuf. 107, 447–460 (2018),
https://doi.org/10.1016/j.compositesa.2018.01.025
[13] S. Mondal, S. Ganguly, P. Das, D. Khastgir, and N.C. Das, Low percolation threshold and electromagnetic shielding effectiveness of nanostructured carbon based ethylene methyl acrylate nanocomposites, Compos. B Eng. 119, 41–56 (2017),
https://doi.org/10.1016/j.compositesb.2017.03.022
[14] Y. Mu, H. Li, J. Deng, and W. Zhou, Temperature-dependent electromagnetic shielding properties of SiCf/BN/SiC composites fabricated by chemical vapor infiltration process, J. Alloys Compd. 724, 633–640 (2017),
https://doi.org/10.1016/j.jallcom.2017.07.084
[15] W. Lin Yao, G. Xiong, Y. Yang, H. Ging Huang, and Y. Fen Zhou, Effect of silica fume and colloidal graphite additions on the EMI shielding effectiveness of nickel fiber cement based composites, Constr. Build. Mater. 150, 825–832 (2017),
https://doi.org/10.1016/j.conbuildmat.2017.06.019
[16] H.B. Zhang, Q. Yan, W.G. Zheng, Z. He, and Z.Z. Yu, Tough graphene polymer microcellular foams for electromagnetic interference shielding, ACS Appl. Mater. Interfaces 3, 918–924 (2011),
https://doi.org/10.1021/am200021v
[17] B.P. Singh, V. Choudhary, P. Saini, and R.B. Mathur, Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding, AIP Adv. 2, 022151-1–7 (2012),
https://doi.org/10.1063/1.4730043
[18] G.G. Tibbetts, M.L. Lake, K.L. Strong, and B.P. Rice, A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites, Compos. Sci. Technol. 67, 1709–1718 (2007),
https://doi.org/10.1016/j.compscitech.2006.06.015
[19] D.W. Kim, K.H. Ko, and K.S. Hong, Influence of copper (II),  oxide additions to zinc niobate microwave ceramics on sintering temperature and dielectric properties, J. Am. Ceram. Soc. 84, 1286–1290 (2001),
https://doi.org/10.1111/j.1151-2916.2001.tb00830.x
[20] S.H. Wee, D.W. Kim, and S.I. Yoo, Microwave dielectric properties of low-fired ZnNb2O6 ceramics with BiVO4 addition, J. Am. Ceram. Soc. 87, 871–874 (2004),
https://doi.org/10.1111/j.1551-2916.2004.00871.x
[21] G. Feng, L. Jiaji, H. Rongzi, L. Zhen, and T. Changsheng, Microstructure and dielectric properties of low temperature sintered ZnNb2O6 microwave ceramics, Ceram. Int. 35, 2687–2692 (2009),
https://doi.org/10.1016/j.ceramint.2009.03.012
[22] L. Guo, D. Jinhui, T. Jintao, Z. Zhibin, T. He, X. Qu, and L. Zhongfang, Effects of ZnCl2 addition on the ZnNb2O6 powder synthesis through molten salt method, Mater. Chem. Phys. 105, 148–150 (2007),
https://doi.org/10.1016/j.matchemphys.2007.04.049
[23] H.J. Lee, I.T. Kim, and K.S. Hong, Dielectric properties of AB2O6 compounds at microwave frequencies, Jpn. J. Appl. Phys. 36, 1318–1320 (1997),
https://doi.org/10.1143/JJAP.36.L1318
[24] H.B. Bafrooei, E.T. Nassaj, T. Ebadzadeh, and C.F. Hu, Reaction sintering of nano-sized ZnO-Nb2O5 powder mixture: sintering, microstructure and microwave dielectric properties, J. Mater. Sci. Mater. Electron. 25, 1620–1626 (2014),
https://doi.org/10.1007/s10854-014-1774-9
[25] M.A. Shayed, Ch. Cherif, R.D. Hund, T. Cheng, and F. Osterod, Carbon and glass fibers modified by polysilazane based thermal resistant coating, Text. Res. J. 80(11), 1118–1128 (2010),
https://doi.org/10.1177/0040517509357648
[26] F.M. Zhao and N. Takeda, Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites. Part I: experiment results, Compos. A Appl. Sci. Manuf. 31, 1203–1214 (2000),
https://doi.org/10.1016/S1359-835X(00)00085-3
[27] N. Gupta, T.C. Lin, and M. Shapiro, Clay-epoxy nanocomposites: Processing and properties, JOM 59, 61–65 (2007),
https://doi.org/10.1007/s11837-007-0041-4
[28] E.I. Şahi̇n, M. Emek, B. Ertug, and M. Kartal, Electromagnetic shielding performances of colemanite/PANI/SiO2 composites in radar and wider frequency ranges, BUJSE 13(1), 34–42 (2020),
https://doi.org/10.20854/bujse.742821
[29] J. Nie, G. Wang, D. Hou, F. Guo, and Y. Han, The preparation and research on the electromagnetic shielding effectiveness of T-ZnO@Ag/silicone rubber composites, Mater. Sci.-Medzg. 26(2), 205–209 (2018),
https://doi.org/10.5755/j01.ms.26.2.21286
[30] B.V.S.R.N. Santhosi, K. Ramji, and N.B.R. Mohan Rao, Design and development of polymeric nanocomposite reinforced with graphene for effective EMI shielding in X-band, Phys. B Condens. Matter 586, 1–9 (2020),
https://doi.org/10.1016/j.physb.2020.412144
[31] F. Tariq, M. Shifa, S.K. Hasan, and R.A. Baloch, Hybrid nanocomposite material for EMI shielding in spacecrafts, Adv. Mater. Res. 1101, 46–50 (2015),
https://doi.org/10.4028/www.scientific.net/AMR.1101.46
[32] D.D.L. Chung, Materials for electromagnetic interference shielding, J. Mater. Eng. Perform. 9, 350–354 (2000),
https://doi.org/10.1361/105994900770346042
[33] T.H. Ting, R.P. Yu, and Y.N. Jau, Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2-40 GHz, Mater. Chem. Phys. 126, 364–368 (2011),
https://doi.org/10.1016/j.matchemphys.2010.11.011
[34] S. Yang, K. Lozano, A. Lomeli, H.D. Foltz, and R. Jones, Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites, Compos. A Appl. Sci. Manuf. 36(5), 691–697 (2005),
https://doi.org/10.1016/j.compositesa.2004.07.009
[35] N. Ucar, B.K. Kayaoglu, A. Bilge, G. Gurel, P. Sencandan, and S. Paker, Electromagnetic shielding effectiveness of carbon fabric/epoxy composite with continuous graphene oxide fiber and multiwalled carbon nanotube, J. Compos. Mater. 52(24), 3341–3350 (2018),
https://doi.org/10.1177/0021998318765273