References /
Nuorodos
[1] D. Oesterhelt and W. Stoeckenius, Rhodopsin-like protein
from the purple membrane of
Halobacterium halobium, Nat.
New. Biol.
233, 149–152 (1971),
https://doi.org/10.1038/newbio233149a0
[2] R.F. Peck, S. DasSarma, and M.P. Krebs, Homologous gene
knockout in the archaeon
Halobacterium salinarum with
ura3
as a counterselectable marker, Mol. Microbiol.
35,
667–676 (2000),
https://doi.org/10.1046/j.1365-2958.2000.01739.x
[3] N. Grigorieff, T.A. Ceska, K.H. Downing, J.M. Baldwin, and
R. Henderson, Electron-crystallographic refinement of the
structure of bacteriorhodopsin, J. Mol. Biol.
259,
393–421 (1996),
https://doi.org/10.1006/jmbi.1996.0328
[4] U.N. Morzan, D.J. Alonso de Armino, N.O. Foglia, F. Ramirez,
M.C. Gonzalez Lebrero, D.A. Scherlis, and D.A. Estrin,
Spectroscopy in complex environments from QM–MM simulations,
Chem. Rev.
118, 4071–4113 (2018),
https://doi.org/10.1021/acs.chemrev.8b00026
[5] H. Luecke, B. Schobert, H.T. Richter, J.P. Cartailler, and
J.K. Lanyi, Structure of bacteriorhodopsin at 1.55 A resolution,
J. Mol. Biol.
291, 899–911 (1999),
https://doi.org/10.1006/jmbi.1999.3027
[6] L. Essen, R. Siegert, W.D. Lehmann, and D. Oesterhelt, Lipid
patches in membrane protein oligomers: crystal structure of the
bacteriorhodopsin-lipid complex, Proc. Natl. Acad. Sci. U. S. A.
95, 11673–11678 (1998),
https://doi.org/10.1073/pnas.95.20.11673
[7] U. Haupts, J. Tittor, and D. Oesterhelt, Closing inon
bacteriorhodopsin: progress in understanding the molecule, Annu.
Rev. Biophys. Biomol. Struct.
28, 367–399 (1999),
https://doi.org/10.1146/annurev.biophys.28.1.367
[8] J.K. Lanyi, Molecular mechanism of ion transport in
bacteriorhodopsin: Insights from crystallographic,
spectroscopic, kinetic, and mutational studies, J. Phys. Chem. B
104, 11441–11448 (2000),
https://doi.org/10.1021/jp0023718
[9] J.K. Lanyi, Bacteriorhodopsin, Annu. Rev. Physiol.
66,
665–688 (2004),
https://doi.org/10.1146/annurev.physiol.66.032102.150049
[10] J.K. Lanyi, Proton transfers in the bacteriorhodopsin
photocycle, Biochim. Biophys. Acta
1757, 1012–1018
(2006),
https://doi.org/10.1016/j.bbabio.2005.11.003
[11] A. Kawanabe, Y. Furutani, K.H. Jung, and H. Kandori,
Photochromism of
Anabaena sensory rhodopsin, J. Am.
Chem. Soc.
129, 8644–8649 (2007),
https://doi.org/10.1021/ja072085a
[12] H. Kandori, Ion-pumping microbial rhodopsins, Front. Mol.
Biosci.
2, 52 (2015),
https://doi.org/10.3389/fmolb.2015.00052
[13] C. Wickstrand, R. Dods, A. Royant, and R. Neutze,
Bacteriorhodopsin: Would the real structural intermediates
please stand up?, Biochim. Biophys. Acta Gen. Subj.
1850,
536–553 (2015),
https://doi.org/10.1016/j.bbagen.2014.05.021
[14] L.S. Brown, L. Bonet, R. Needleman, and J.K. Lanyi,
Estimated acid dissociation constants of the Schiff base,
Asp-85, and Arg-82 during the bacteriorhodopsin photocycle,
Biophys. J.
65, 124–130 (1993),
https://doi.org/10.1016/S0006-3495(93)81064-6
[15] A. Accardi and C. Miller, Secondary active transport
mediated by a prokaryotic homologue of ClC Cl
-
channels, Nature
427, 803–807 (2004),
https://doi.org/10.1038/nature02314
[16] Y. Guo, F.E. Beyle, B.M. Bold, H.C. Watanabe, A. Koslowski,
W. Thiel, P. Hegemann, M. Marazzi, and M. Elstner, Active site
structure and absorption spectrum of channelrhodopsin-2
wild-type and C128T mutant, Chem. Sci.
7, 3879–3891
(2016),
https://doi.org/10.1039/C6SC00468G
[17] A.Y. Smirnov, L.G. Mourokh, and F. Nori, Kinetics of proton
pumping in cytochrome
c oxidase, J. Chem. Phys.
130,
235105 (2009),
https://doi.org/10.1063/1.3155213
[18] L. Mourokh and M. Vittadello, Physical model of
proton-pumping Q-cycle in respiratory and photosynthetic
electron transport chains, Chem. Phys.
530, 110638
(2020),
https://doi.org/10.1016/j.chemphys.2019.110638
[19] A. Onufriev, A. Smondyrev, and D. Bashford, Proton affinity
changes driving unidirectional proton transport in the
bacteriorhodopsin photocycle, J. Mol. Biol.
332,
1183–1193 (2003),
https://doi.org/10.1016/S0022-2836(03)00903-3
[20] N. Calimet and G. Matthias Ullmann, The influence of a
transmembrane pH gradient on protonation probabilities of
bacteriorhodopsin: The structural basis of the back-pressure
effect, J. Mol. Biol.
339, 571–589 (2004),
https://doi.org/10.1016/j.jmb.2004.03.075
[21] R.B. Gennis and T.G. Ebrey, Proton pump caught in the act,
Science
286, 252–253 (1999),
https://doi.org/10.1126/science.286.5438.252
[22] H. Luecke, B. Schobert, H.T. Richter, J.P. Cartailler, and
J.K. Lanyi, Structural changes in bacteriorhodopsin during ion
transport at 2 angstrom resolution, Science
286, 255–260
(1999),
https://doi.org/10.1126/science.286.5438.255
[23] E. Nango, A. Royant, M. Kubo, T. Nakane, C. Wickstrand, T.
Kimura, T. Tanaka, K. Tono, C. Song, R. Tanaka, et al., A
three-dimensional movie of structural changes in
bacteriorhodopsin, Science
354, 1552–1557 (2016),
https://doi.org/10.2210/pdb5b6v/pdb
[24] D. Bashford and M. Karplus, Multiple-site titration curves
of proteins: an analysis of exact and approximate methods for
their calculation, J. Phys. Chem. B
95, 9556–9561
(1991),
https://doi.org/10.1021/j100176a093
[25] J. Iles-Smith, N. Lambert, and A. Nazir, Environmental
dynamics, correlations, and the emergence of noncanonical
equilibrium states in open quantum systems, Phys. Rev. A
90,
032114 (2014),
https://doi.org/10.1103/PhysRevA.90.032114
[26] J. Iles-Smith, A.G. Dijkstra, N. Lambert, and A. Nazir,
Energy transfer in structured and unstructured environments:
Master equations beyond the Born-Markov approximations, J. Chem.
Phys.
144, 044110 (2016),
https://doi.org/10.1063/1.4940218
[27] B.P. Kietis, M. Mačernis, J. Šulskus, and L. Valkūnas,
Estimation of the permanent dipole moment of bacteriorhodopsin,
Lith. J. Phys.
50, 451–462 (2010),
https://doi.org/10.3952/lithjphys.50404
[28] B.F.E. Curchod and T.J. Martínez,
Ab initio
nonadiabatic quantum molecular dynamics, Chem. Rev. 118,
3305–3336 (2018),
https://doi.org/10.1021/acs.chemrev.7b00423
[29] J.K. Yu, R. Liang, F. Liu, and T.J. Martínez,
First-principles characterization of the elusive I fluorescent
state and the structural evolution of retinal protonated Schiff
base in bacteriorhodopsin, J. Am. Chem. Soc.
141,
18193–18203 (2019),
https://doi.org/10.1021/jacs.9b08941
[30] C. Lee, S. Sekharan, and B. Mertz, Theoretical insights
into the mechanism of wavelength regulation in blue-absorbing
proteorhodopsin, J. Phys. Chem. B
123, 10631–10641
(2019),
https://doi.org/10.1021/acs.jpcb.9b08189
[31] R. Tripathi, H. Forbert, and D. Marx, Settling the
long-standing debate on the proton storage site of the prototype
light-driven proton pump bacteriorhodopsin, J. Phys. Chem. B
123,
9598–9608 (2019),
https://doi.org/10.1021/acs.jpcb.9b09608
[32] Y. Guo, F.E. Wolff, I. Schapiro, M. Elstner, and M.
Marazzi, Different hydrogen bonding environments of the retinal
protonated Schiff base control the photoisomerization in
channelrhodopsin-2, Phys. Chem. Chem. Phys.
20,
27501–27509 (2018),
https://doi.org/10.1039/C8CP05210G
[33] Y. Zhang, P. Xie, X. He, and K. Han, High-efficiency
microiterative optimization in QM/MM simulations of large
flexible systems, J. Chem. Theory Comput.
12, 4632–4643
(2016),
https://doi.org/10.1021/acs.jctc.6b00547
[34] S. Hayashi and I. Ohmine, Proton transfer in
bacteriorhodopsin: structure, excitation, IR spectra, and
potential energy surface analyses by an ab initio QM/MM method,
J. Phys. Chem. B
104, 10678–10691 (2000),
https://doi.org/10.1021/jp001508r
[35] S. Hayashi, E. Tajkhorshid, and K. Schulten, Molecular
dynamics simulation of bacteriorhodopsin's photoisomerization
using ab initio forces for the excited chromophore, Biophys. J.
85, 1440–1449 (2003),
https://doi.org/10.1016/S0006-3495(03)74576-7
[36] C. Punwong, J. Owens, and T.J. Martínez, Direct QM/MM
excited-state dynamics of retinal protonated Schiff base in
isolation and methanol solution, J. Phys. Chem. B.
119,
704–714 (2015),
https://doi.org/10.1021/jp5038798
[37] J.-Y. Hasegawa, K.J. Fujimoto, and T. Kawatsu, A
configuration interaction picture for a molecular environment
using localized molecular orbitals: The excited states of
retinal proteins, J. Chem. Theory Comput.
8, 4452–4461
(2012),
https://doi.org/10.1021/ct300510b
[38] S. Zhu, M.F. Brown, and S.E. Feller, Retinal conformation
governs p
Ka of protonated Schiff base in
rhodopsin activation, J. Am. Chem. Soc.
135, 9391–9398
(2013),
https://doi.org/10.1021/ja4002986
[39] N.J.A. Coughlan, K.J. Catani, B.D. Adamson, U. Wille, and
E.J. Bieske, Photoisomerization action spectrum of retinal
protonated Schiff base in the gas phase, J. Chem. Phys.
140,
164307 (2014),
https://doi.org/10.1063/1.4871883
[40] M. Huix-Rotllant, M. Filatov, S. Gozem, I. Schapiro, M.
Olivucci, and N. Ferré, Assessment of density functional theory
for describing the correlation effects on the ground and excited
state potential energy surfaces of a retinal chromophore model,
J. Chem. Theory Comput.
9, 3917–3932 (2013),
https://doi.org/10.1021/ct4003465
[41] A.-N. Bondar, M. Elstner, S. Suhai, J.C. Smith, and S.
Fischer, Mechanism of primary proton transfer in
bacteriorhodopsin, Structure
12, 1281–1288 (2004),
https://doi.org/10.1016/j.str.2004.04.016
[42] A.-N. Bondar, S. Fischer, J.C. Smith, M. Elstner, and S.
Suhai, Key role of electrostatic interactions in
bacteriorhodopsin proton transfer, J. Am. Chem. Soc.
126,
14668–14677 (2004),
https://doi.org/10.1021/ja047982i
[43] K. Edman, A. Royant, G. Larsson, F. Jacobson, T. Taylor, D.
van der Spoel, E.M. Landau, E. Pebay-Peyroula, and R. Neutze,
Deformation of helix C in the low temperature L-intermediate of
bacteriorhodopsin, J. Biol. Chem.
279, 2147–2158 (2004),
https://doi.org/10.1074/jbc.M300709200
[44] G. Mathias and D. Marx, Structures and spectral signatures
of protonated water networks in bacteriorhodopsin, Proc. Natl.
Acad. Sci.
104, 6980–6985 (2007),
https://doi.org/10.1073/pnas.0609229104
[45] S. Gozem, P.J.M. Johnson, A. Halpin, H.L. Luk, T. Morizumi,
V.I. Prokhorenko, O.P. Ernst, M. Olivucci, and R.J.D. Miller,
Excited-state vibronic dynamics of bacteriorhodopsin from
two-dimensional electronic photon echo spectroscopy and
multiconfigurational quantum chemistry, J. Phys. Chem. Lett.
11,
3889–3896 (2020),
https://doi.org/10.1021/acs.jpclett.0c01063
[46] D. Friedrich, F.N. Brünig, A.J. Nieuwkoop, R.R. Netz, P.
Hegemann, and H. Oschkinat, Collective exchange processes reveal
an active site proton cage in bacteriorhodopsin, Commun. Biol.
3,
4 (2020),
https://doi.org/10.1038/s42003-019-0733-7
[47] G. Nass Kovacs, J.-P. Colletier, M.L. Grünbein, Y. Yang, T.
Stensitzki, A. Batyuk, S. Carbajo, R.B. Doak, D. Ehrenberg, L.
Foucar, et al., Three-dimensional view of ultrafast dynamics in
photoexcited bacteriorhodopsin, Nat. Commun.
10, 3177
(2019),
https://doi.org/10.1038/s41467-019-10758-0
[48] V.R.I. Kaila, R. Send, and D. Sundholm, The effect of
protein environment on photoexcitation properties of retinal, J.
Phys. Chem. B.
116, 2249–2258 (2012),
https://doi.org/10.1021/jp205918m
[49] M. Macernis, J. Sulskus, C.D.P. Duffy, A.V. Ruban, and L.
Valkunas, Electronic spectra of structurally deformed lutein, J.
Phys. Chem. A.
116, 9843–9853 (2012),
https://doi.org/10.1021/jp304363q
[50] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,
M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A.
Petersson, H. Nakatsuji, et al.,
Gaussian 16,
Revision C.01, Wallingford, CT (2016)
[51] D. Oesterhelt, The structure and mechanism of the family of
retinal proteins from halophilic archaea, Curr. Opin. Struct.
Biol.
8, 489–500 (1998),
https://doi.org/10.1016/S0959-440X(98)80128-0
[52] J.K. Lanyi, Proton translocation mechanism and energetics
in the light-driven pump bacteriorhodopsin, Biochim. Biophys.
Acta Bioenerg.
1183, 241–261 (1993),
https://doi.org/10.1016/0005-2728(93)90226-6
[53] J.K. Lanyi, Mechanism of ion transport across membranes.
Bacteriorhodopsin as a prototype for proton pumps, J. Biol.
Chem.
272, 31209–31212 (1997),
https://doi.org/10.1074/jbc.272.50.31209
[54] S.P. Balashov, E.S. Imasheva, R. Govindjee, M. Sheves, and
T.G. Ebrey, Evidence that aspartate-85 has a higher pK
a
in all-
trans than in 13-
cisbacteriorhodopsin,
Biophys. J.
71, 1973–1984 (1996),
https://doi.org/10.1016/S0006-3495(96)79395-5
[55] R. Rammelsberg, G. Huhn, M. Lübben, and K. Gerwert,
Bacteriorhodopsin's intramolecular proton-release pathway
consists of a hydrogen-bondednetwork, Biochemistry
37,
5001–5009 (1998),
https://doi.org/10.1021/bi971701k
[56] H. Luecke, H.T. Richter, and J.K. Lanyi, Proton transfer
pathways in bacteriorhodopsin at 2.3 angstrom resolution,
Science
280, 1934–1937 (1998),
https://doi.org/10.1126/science.280.5371.1934
[57] H.-T. Richter, L.S. Brown, R. Needleman, and J.K. Lanyi, A
linkage of the p
Ka's of asp-85 and glu-204
forms part of the reprotonation switch of bacteriorhodopsin,
Biochemistry
35, 4054–4062 (1996),
https://doi.org/10.1021/bi952883q
[58] M. Hatanaka, H. Kandori, and A. Maeda, Localization and
orientation of functional water molecules in bacteriorhodopsin
as revealed by polarized Fourier transform infrared
spectroscopy, Biophys. J.
73, 1001–1006 (1997),
https://doi.org/10.1016/S0006-3495(97)78133-5
[59] L.A. Curtiss, K. Raghavachari, P.C. Redfern, and J.A.
Pople, Assessment of Gaussian-3 and density functional theories
for a larger experimental test set, J. Chem. Phys.
112,
7374–7383 (2000),
https://doi.org/10.1063/1.481336
[60] M. Olivucci, T. Tran, G.A. Worth, and M.A. Robb, Unlocking
the double bond in protonated Schiff bases by coherent
superposition of S
1 and S
2, J. Phys. Chem.
Lett.
12, 5639–5643 (2021),
https://doi.org/10.1021/acs.jpclett.1c01379
[61] T. Tran, G.A. Worth, and M.A. Robb, Control of nuclear
dynamics in the benzene cation by electronic wavepacket
composition, Commun. Chem.
4, 48 (2021),
https://doi.org/10.1038/s42004-021-00485-3
[62] H. Kandori, Y. Yamazaki, J. Sasaki, R. Needleman, J.K.
Lanyi, and A. Maeda, Water-mediated proton transfer in proteins:
An FTIR study of bacteriorhodopsin, J. Am. Chem. Soc.
117,
2118–2119 (1995),
https://doi.org/10.1021/ja00112a036
[63] R. Neutze, E. Pebay-Peyroula, K. Edman, A. Royant, J.
Navarro, and E.M. Landau, Bacteriorhodopsin: a high-resolution
structural view of vectorial proton transport, Biochim. Biophys.
Acta Biomembr.
1565, 144–167 (2002),
https://doi.org/10.1016/S0005-2736(02)00566-7
[64] J.K. Lanyi and B. Schobert, Structural changes in the L
photointermediate of bacteriorhodopsin, J. Mol. Biol.
365,
1379–1392 (2007),
https://doi.org/10.1016/j.jmb.2006.11.016
[65] E. Nango, A. Royant, M. Kubo, T. Nakane, C. Wickstrand, T.
Kimura, T. Tanaka, K. Tono, C. Song, R. Tanaka, et al., A
three-dimensional movie of structural changes in
bacteriorhodopsin, Science
354, 1552–1557 (2016),
https://doi.org/10.2210/pdb5b6v/pdb
[66] P. Kietis, M. Vengris, and L. Valkunas,
Electricalto-mechanical coupling in purple membranes: membrane
as electrostrictive medium, Biophys. J.
80, 1631–1640
(2001),
https://doi.org/10.1016/S0006-3495(01)76135-8