References /
Nuorodos
[1] M. Mączka, T. Almeida da Silva, W. Paraguassu, and K.
Pereira Da Silva, Raman scattering studies of pressure-induced
phase transitions in perovskite formates [(CH
3)
2NH
2][M(HCOO)
3]
and [(CH
3)
2NH
2][Cd(HCOO)
3],
Spectrochim. Acta A
156, 112–117 (2016),
https://doi.org/10.1016/j.saa.2015.11.030
[2] S. Kitagawa, R. Kitaura, and S.I. Noro, Functional porous
coordination polymers, Angew. Chem. Int. Ed.
43(18),
2334–2375 (2004),
https://doi.org/10.1002/anie.200300610
[3] Y. He, W. Zhou, G. Qian, and B. Chen, Methane storage in
metal–organic frameworks, Chem. Soc. Rev.
43(16),
5657–5678 (2014),
https://doi.org/10.1039/C4CS00032C
[4] L.J. Murray, M. Dinca, and J.R. Long, Hydrogen storage in
metal–organic frameworks, Chem. Soc. Rev.
38, 1294–1314
(2009),
https://doi.org/10.1039/b802256a
[5] M. Guo, H.L. Cai, and R.G. Xiong, Ferroelectric metal
organic framework (MOF), Inorg. Chem. Commun.
13(12),
1590–1598 (2010),
https://doi.org/10.1016/j.inoche.2010.09.005
[6] L. Jiao, J.Y.R. Seow, W.S. Skinner, Z.U. Wang, and H.L.
Jiang, Metal–organic frameworks: Structures and functional
applications, Mater. Today
27, 43–68 (2019),
https://doi.org/10.1016/j.mattod.2018.10.038
[7] R.J. Kuppler, D.J. Timmons, Q.R. Fang, J.R. Li, T.A. Makal,
M.D. Young, D. Yuan, D. Zhao, W. Zhuang, and H.C. Zhou,
Potential applications of metal–organic frameworks, Coord. Chem.
Rev.
253(23), 3042–3066 (2009),
https://doi.org/10.1016/j.ccr.2009.05.019
[8] M.D. Allendorf, C.A. Bauer, R.K. Bhakta, and R.J.T. Houk,
Luminescent metal–organic frameworks, Chem. Soc. Rev.
38(5),
1330–1352 (2009),
https://doi.org/10.1039/b802352m
[9] P. Ramaswamy, N.E. Wong, and G.K.H. Shimizu, MOFs as proton
conductors – challenges and opportunities, Chem. Soc. Rev.
43(16),
5913–5932 (2014),
https://doi.org/10.1039/C4CS00093E
[10] M. Kurmoo, Magnetic metal–organic frameworks, Chem. Soc.
Rev.
38, 1353–1379 (2009),
https://doi.org/10.1039/b804757j
[11] C. Xu, R. Fang, R. Luque, L. Chen, and Y. Li, Functional
metal–organic frameworks for catalytic applications, Coord.
Chem. Rev.
388, 268–292 (2019),
https://doi.org/10.1016/j.ccr.2019.03.005
[12] Y.S. Wei, M. Zhang, R. Zou, and Q. Xu, Metal–organic
framework-based catalysts with single metal sites, Chem. Rev.
120(21),
12089–12174 (2020),
https://doi.org/10.1021/acs.chemrev.9b00757
[13] J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen,
and J.T. Hupp, Metal–organic framework materials as catalysts,
Chem. Soc. Rev.
38, 1450–1459 (2009),
https://doi.org/10.1039/b807080f
[14] X.Y. Wang, Z.M. Wang, and S. Gao, Constructing magnetic
molecular solids by employing three-atom ligands as bridges,
Chem. Commun.
3, 281–294 (2008),
https://doi.org/10.1039/B708122G
[15] W. Li, Z. Wang, F. Deschler, S. Gao, R.H. Friend, and A.K.
Cheetham, Chemically diverse and multifunctional hybrid
organic–inorganic perovskites, Nat. Rev. Mater.
2, 1–18
(2017),
https://doi.org/10.1038/natrevmats.2016.99
[16] P. Jain, V. Ramachandran, R.J. Clark, D.Z. Hai, B.H. Toby,
N.S. Dalal, H.W. Kroto, and A.K. Cheetham, Multiferroic behavior
associated with an order–disorder hydrogen bonding transition in
metal–organic frameworks (MOFs) with the perovskite ABX
3
architecture, J. Am. Chem. Soc.
131(38), 13625–13627
(2009),
https://doi.org/10.1021/ja904156s
[17] K. Asadi and M.A. van der Veen, Ferroelectricity in
metal–organic frameworks: characterization and mechanisms, Eur.
J. Inorg. Chem.
2016(27), 4332–4344 (2016),
https://doi.org/10.1002/ejic.201600932
[18] W. Li, Z. Zhang, E.G. Bithell, A.S. Batsanov, P.T. Barton,
P.J. Saines, P. Jain, C.J. Howard, M.A. Carpenter, and A.K.
Cheetham, Ferroelasticity in a metal–organic framework
perovskite; towards a new class of multiferroics, Acta Mater.
61(13),
4928–4938 (2013),
https://doi.org/10.1016/j.actamat.2013.04.054
[19] T. Hang, W. Zhang, H.Y. Ye, and R.G. Xiong, Metal–organic
complex ferroelectrics, Chem. Soc. Rev.
40, 3577–3598
(2011),
https://doi.org/10.1039/c0cs00226g
[20] J.F. Scott, Ferroelectrics go bananas, J. Phys. Condens.
Matter.
20(2), 021001 (2008),
https://doi.org/10.1088/0953-8984/20/02/021001
[21] G.C. Xu, W. Zhang, X.M. Ma, Y.H. Chen, L. Zhang, H.L. Cai,
Z.M. Wang, R.G. Xiong, and S. Gao, Coexistence of magnetic and
electric orderings in the metal–formate frameworks of [NH
4][M(HCOO)
3],
J. Am. Chem. Soc.
133(38), 14948–14951 (2011),
https://doi.org/10.1021/ja206891q
[22] N. Abhyankar, J.J. Kweon, M. Orio, S. Bertaina, M. Lee,
E.S. Choi, R. Fu, and N.S. Dalal, Understanding ferroelectricity
in the Pb-free perovskite-like metal–organic framework [(CH
3)
2NH
2]Zn(HCOO)
3:
Dielectric, 2D NMR, and theoretical studies, J. Phys. Chem. C
121(11),
6314–6322 (2017),
https://doi.org/10.1021/acs.jpcc.7b00596
[23] G.C. Xu, X.M. Ma, L. Zhang, Z.M. Wang, and S. Gao,
Disorder–order ferroelectric transition in the metal formate
framework of [NH
4] [Zn(HCOO)
3], J. Am.
Chem. Soc.
132(28), 9588–9590 (2010),
https://doi.org/10.1021/ja104263m
[24] Z. Wang, B. Zhang, K. Inoue, H. Fujiwara, T. Otsuka, H.
Kobayashi, and M. Kurmoo, Occurrence of a rare 4
9·6
6
structural topology, chirality, and weak ferromagnetism in the
[NH
4] [M
II(HCOO)
3] (M=Mn, Co,
Ni) frameworks, Inorg. Chem.
46(2), 437–445 (2007),
https://doi.org/10.1021/ic0610031
[25] Z. Zhang, H. Tang, D. Cheng, J. Zhang, Y. Chen, X. Shen,
and H. Yu, Strain coupling and dynamic relaxation in
multiferroic metal–organic framework [(CH
3)
2NH
2][Mn(HCOO)
3]
with perovskite structure, Results Phys.
12, 2183–2188
(2019),
https://doi.org/10.1016/j.rinp.2019.01.092
[26] M. Mączka, A. Gągor, K. Hermanowicz, A. Sieradzki, L.
Macalik, and A. Pikul, Structural, magnetic and phonon
properties of Cr(III)-doped perovskite metal formate framework
[(CH
3)
2NH
2][Mn(HCOO)
3],
J. Solid State Chem.
237, 150–158 (2016),
https://doi.org/10.1016/j.jssc.2016.02.010
[27] M. Mączka, M. Ptak, and L. Macalik, Infrared and Raman
studies of phase transitions in metal–organic frameworks of [(CH
3)
2NH
2][M(HCOO)
3]
with M=Zn, Fe, Vib. Spectrosc.
71, 98–104 (2014),
https://doi.org/10.1016/j.vibspec.2014.01.013
[28] B. Pato-Doldán, M. Sánchez-Andújar, L.C. Gómez-Aguirre, S.
Yáñez-Vilar, J. López-Beceiro, C. Gracia-Fernández, A.A.
Haghighirad, F. Ritter, S. Castro-García, and M.A.
Senaris-Rodriguez, Near room temperature dielectric transition
in the perovskite formate framework [(CH
3)
2NH
2]
[M(HCOO)
3], Phys. Chem. Chem. Phys.
14(24),
8498–8501 (2012),
https://doi.org/10.1039/c2cp40564d
[29] K.D. Hughey, A.J. Clune, M.O. Yokosuk, J. Li, N. Abhyankar,
X. Ding, N.S. Dalal, H. Xiang, D. Smirnov, J. Singleton, and
J.L. Musfeldt, Structure-property relations in multiferroic [(CH
3)
2NH
2]M(HCOO)
3
(M = Mn, Co, Ni), Inorg. Chem.
57(18), 11569–11577
(2018),
https://doi.org/10.1021/acs.inorgchem.8b01609
[30] T. Besara, P. Jain, N.S. Dalal, P.L. Kuhns, A.P. Reyes,
H.W. Kroto, and A.K. Cheetham, Mechanism of the order–disorder
phase transition, and glassy behavior in the metal–organic
framework [(CH
3)
2NH
2]Zn(HCOO)
3,
Proc. Natl. Acad. Sci.
108(17), 6828–6832 (2011),
https://doi.org/10.1073/pnas.1102079108
[31] M. Šimėnas, L. Macalik, K. Aidas, V. Kalendra, D. Klose, G.
Jeschke, M. Ma̧ czka, G. Völkel, J.J. Banys, and A. Pöppl, Pulse
EPR and ENDOR study of manganese doped [(CH
3)
2NH
2]
[Zn(HCOO)
3] hybrid perovskite framework, J. Phys.
Chem. C
121(48), 27225–27232 (2017),
https://doi.org/10.1021/acs.jpcc.7b09990
[32] A. Clune, N. Harms, K.R. O’Neal, K. Hughey, K.A. Smith, D.
Obeysekera, J. Haddock, N.S. Dalal, J. Yang, Z. Liu, and J.L.
Musfeldt, Developing the pressure-temperature-magnetic field
phase diagram of multiferroic [(CH
3)
2NH
2]Mn(HCOO)
3,
Inorg. Chem.
59(14), 10083–10090 (2020),
https://doi.org/10.1021/acs.inorgchem.0c01225
[33] M. Šimėnas, M. Ptak, A.H. Khan, L. Dagys, V. Balevičius,
M. Bertmer, G. Völkel, M. Maczka, A. Pöppl, and J. Banys,
Spectroscopic study of [(CH
3)
2NH
2][Zn(HCOO)
3]
hybrid perovskite containing different nitrogen isotopes, J.
Phys. Chem. C
122(18), 10284–10292 (2018),
https://doi.org/10.1021/acs.jpcc.8b02734
[34] R. Scatena, R.D. Johnson, P. Manuel, and P. Macchi,
Formate-mediated magnetic superexchange in the model hybrid
perovskite [(CH
3)
2NH
2]Cu(HCOO)
3,
J. Mater. Chem. C
8(37), 12840–12847 (2020),
https://doi.org/10.1039/D0TC03913F
[35] T. Asaji, S. Yoshitake, Y. Ito, and H. Fujimori, Phase
transition and cationic motion in the perovskite formate
framework [(CH
3)
2NH
2][M(HCOO)
3],
J. Mol. Struct.
1076, 719–723 (2014),
https://doi.org/10.1016/j.molstruc.2014.08.037
[36] R. Yadav, D. Swain, H.L. Bhat, and S. Elizabeth,
Order–disorder phase transition and multiferroic behaviour in a
metal organic framework compound (CH
3)
2NH
2Co(HCOO)
3,
J. Appl. Phys.
119, 064103 (2016),
https://doi.org/10.1063/1.4941544
[37] P. Jain, A. Stroppa, D. Nabok, A. Marino, A. Rubano, D.
Paparo, M. Matsubara, H. Nakotte, M. Fiebig, S. Picozzi, E.S.
Choi, A.K. Cheetham, C. Draxl, N.S. Dalal, and V.S. Zapf,
Switchable electric polarization and ferroelectric domains in a
metal–organic-framework, Npj Quantum Mater.
1, 1–6
(2016),
https://doi.org/10.1038/npjquantmats.2016.12
[38] D.W. Fu, W. Zhang, H.L. Cai, Y. Zhang, J.Z. Ge, R.G. Xiong,
S.D. Huang, and T. Nakamura, A multiferroic perdeutero
metal–organic framework, Angew. Chem. Int. Ed.
50(50),
11947–11951 (2011),
https://doi.org/10.1002/anie.201103265
[39] I. Hatta, Experimental study on dielectric relaxation in
NaNO
2, J. Phys. Soc. Japan
24, 1043–1053
(1968),
https://doi.org/10.1143/JPSJ.24.1043
[40] G. Bator and R. Jakubas, Dielectric dispersion in
ferroelectrics [NH
2(CH
3)
2]
3Sb
2Cl
9
and [NH
2(CH
3)
2]
3Sb
2Br
9,
Phys. Status Solidi
147(2), 591–600 (1995),
https://doi.org/10.1002/pssa.2211470230
[41] M. Mączka, A. Pietraszko, B. Macalik, and K. Hermanowicz,
Structure, phonon properties, and order–disorder transition in
the metal formate framework of [NH
4][M(HCOO)
3],
Inorg. Chem.
53(2), 787–794 (2014),
https://doi.org/10.1021/ic4020702
[42] H.T. Nguyen, M.T. Chau, T.B.T. Phan, A.Y. Milinskiy, and
S.V. Baryshnikov, Phase transition and ferroelectricity of
composites based on ferroelectric metal–organic framework of [NH
4]
[Zn(HCOO)
3], Ferroelectr. Lett. Sect.
49(1–3),
22–29 (2022),
https://doi.org/10.1080/07315171.2022.2076465
[43] M. Maczka, P. Kadlubański, P.T.C. Freire, B. Macalik, W.
Paraguassu, K. Hermanowicz, and J. Hanuza, Temperature- and
pressure-induced phase transitions in the metal formate
framework of [ND
4][Zn(DCOO)
3] and [NH
4][Zn(HCOO)
3],
Inorg. Chem.
53(18), 9615–9624 (2014),
https://doi.org/10.1021/ic501074x
[44] Y. Ma, J. Cong, Y. Chai, L. Yan, D. Shang, and Y. Sun,
Large pyroelectric and thermal expansion coefficients in the
[(CH
3)
2NH
2]Mn(HCOO)
3metal–organic
framework, Appl. Phys. Lett.
111, 042901 (2017),
https://doi.org/10.1063/1.4989783
[45] P.J. Baker, T. Lancaster, I. Franke, W. Hayes, S.J.
Blundell, F.L. Pratt, P. Jain, Z.M. Wang, and M. Kurmoo, Muon
spin relaxation investigation of magnetic ordering in the hybrid
organic–inorganic perovskites [(CH
3)
2NH
2]M(HCOO)
3
(M=Ni, Co, Mn, Cu), Phys. Rev. B
82, 012407 (2010),
https://doi.org/10.1103/PhysRevB.82.012407
[46] M. Sánchez-Andújar, S. Presedo, S. Yáñez-Vilar, S.
Castro-García, J. Shamir, and M.A. Señarís-Rodríguez,
Characterization of the order–disorder dielectric transition in
the hybrid organic–inorganic perovskite-like formate Mn(HCOO)
3[(CH
3)
2NH
2],
Inorg. Chem.
49(4), 1510–1516 (2010),
https://doi.org/10.1021/ic901872g
[47] M. Sánchez-Andújar, L.C. Gómez-Aguirre, B. Pato Doldán, S.
Yáñez-Vilar, R. Artiaga, A.L. Llamas-Saiz, R.S. Manna, F.
Schnelle, M. Lang, F. Ritter, A.A. Haghighirad, and M.A.
Señarís-Rodríguez, First-order structural transition in the
multiferroic perovskite-like formate [(CH
3)
2NH
2]
[Mn(HCOO)
3], CrystEngComm,
16(17), 3558–3566
(2014),
https://doi.org/10.1039/c3ce42411a
[48] A.V. Chitnis, H. Bhatt, M. Mączka, M.N. Deo, and N. Garg,
Remarkable resilience of the formate cage in a multiferroic
metal organic framework material: dimethyl ammonium manganese
formate (DMAMnF), Dalt. Trans.
47(37), 12993–13005
(2018),
https://doi.org/10.1039/C8DT03080D
[49] N. Abhyankar, M. Lee, M. Foley, E.S. Choi, G. Strouse, H.W.
Kroto, and N.S. Dalal, Efficient synthesis and tailoring of
magnetic and dielectric properties of Pb-free perovskite-like
ABX 3 metal-organic frameworks, Phys. Status Solidi Rapid Res.
Lett.
10(8), 600–605 (2016),
https://doi.org/10.1002/pssr.201600175
[50] S.A. Locicero, C.M. Averback, U. Shumnyk, E.S. Choi, and
D.R. Talham, Particle size effects on the order–disorder phase
transition in [(CH
3)
2NH
2]M(HCOO)
3,
J. Phys. Chem. C
124(38), 21113–21122 (2020),
https://doi.org/10.1021/acs.jpcc.0c04505
[51] Y. Tian, A. Stroppa, Y. Chai, L. Yan, S. Wang, P. Barone,
S. Picozzi, and Y. Sun, Cross coupling between electric and
magnetic orders in a multiferroic metal-organic framework, Sci.
Rep.
4, 1–5 (2014),
https://doi.org/10.1038/srep06062
[52] E. Bousquet, M. Dawber, N. Stucki, C. Lichten steiger, P.
Hermet, S. Gariglio, J.M. Triscone, and P. Ghosez, Improper
ferroelectricity in perovskite oxide artificial superlattices,
Nature
452, 732–736 (2008),
https://doi.org/10.1038/nature06817
[53] A.P. Levanyuk and D.G. Sannikov, Improper ferroelectrics,
Sov. Phys. Uspekhi
17(2), 199–214 (1974),
https://doi.org/10.1070/PU1974v017n02ABEH004336
[54] M. Mączka, A. Gągor, M. Ptak, W. Paraguassu, T.A. Da Silva,
A. Sieradzki, and A. Pikul, Phase transitions and coexistence of
magnetic and electric orders in the methylhydrazinium metal
formate frameworks, Chem. Mater.
29(5), 2264–2275
(2017),
https://doi.org/10.1021/acs.chemmater.6b05249
[55] M. Šimėnas, A. Ibenskas, A. Stroppa, A. Gągor, M. Mączka,
J.R. Banys, and E.E. Tornau, Simulation of structural phase
transitions in perovskite methylhydrazinium metal–formate
frameworks: coupled Ising and Potts models, J. Phys. Chem. C
123(32),
19912–19919 (2019),
https://doi.org/10.1021/acs.jpcc.9b03448
[56] P. Jain, N.S. Dalal, B.H. Toby, H.W. Kroto, and A.K.
Cheetham, Order–disorder antiferroelectric phase transition in a
hybrid inorganic–organic framework with the perovskite
architecture, J.Am. Chem. Soc.
130(32), 10450–10451
(2008),
https://doi.org/10.1021/ja801952e
[57] S. Sawada, S. Nomura, and Y. Asao, Dielectric properties of
ferroelectric NaNO
2, J. Phys. Soc. Japan
16(11),
2207–2212 (1961),
https://doi.org/10.1143/JPSJ.16.2207
[58] M. Ptak, M. Mączka, A. Gągor, A. Sieradzki, A. Stroppa, D.
Di Sante, J.M. Perez-Mato, and L. Macalik, Experimental and
theoretical studies of structural phase transition in a novel
polar perovskite-like [C
2H
5NH
3][Na
0.5Fe
0.5(HCOO)
3]
formate, Dalt. Trans.
45(6), 2574–2583 (2016),
https://doi.org/10.1039/C5DT04536C
[59] A. Sieradzki, S. Pawlus, S.N. Tripathy, A. Gągor, M. Ptak,
M. Paluch, and M. Mączka, Dielectric relaxation and anhydrous
proton conduction in [C
2H
5NH
3][Na
0.5Fe
0.5(HCOO)
3]
metal–organic frameworks, Dalt. Trans.
46(11), 3681–3687
(2017),
https://doi.org/10.1039/C6DT04546D
[60] P. Peksa, J.K. Zarȩba, M. Ptak, M. Mączka, A. Gągor, S.
Pawlus, and A. Sieradzki, Revisiting a perovskite-like
copper-formate framework NH
4[Cu(HCOO)
3]:
order–disorder transition influenced by Jahn-Teller distortion
and above room-temperature switching of the nonlinear optical
response between two SHG-active states, J. Phys. Chem. C
124(34),
18714–18723 (2020),
https://doi.org/10.1021/acs.jpcc.0c06141
[61] M. Mączka, K. Szymborska-Małek, A. Ciupa, and J. Hanuza,
Comparative studies of vibrational properties and phase
transitions in metal-organic frameworks of [NH
4][M(HCOO)
3]
with M = Mg, Zn, Ni, Fe, Mn, Vib. Spectrosc.
77, 17–24
(2015),
https://doi.org/10.1016/j.vibspec.2015.02.003
[62] M. Maczka, A. Sieradzki, B. Bondzior, P. Dereń, J. Hanuza,
and K. Hermanowicz, Effect of aliovalent doping on the
properties of perovskite-like multiferroic formates, J. Mater.
Chem. C
3(36), 9337–9345 (2015),
https://doi.org/10.1039/C5TC02295A
[63] P. Peksa, A. Nowok, F. Formalik, J.K. Zaręba, J. Trzmiel,
A. Gągor, M. Mączka, and A. Sieradzki, More complex than
originally thought: revisiting the origins of the relaxation
processes in dimethylammonium zinc formate, J. Mater. Chem. C
10(17),
6866–6877 (2022),
https://doi.org/10.1039/D2TC00089J
[64] Z. Wang, P. Jain, K.-Y. Choi, J. van Tol, A.K. Cheetham,
H.W. Kroto, H.-J. Koo, H. Zhou, J. Hwang, E.S. Choi, M.-H.
Whangbo, and N.S. Dalal, Dimethylammonium copper formate [(CH
3)
2NH
2]Cu(HCOO)
3:
A metal–organic framework with quasi-one-dimensional
antiferromagnetism and magnetostriction, Phys. Rev. B
87,
224406 (2013),
https://doi.org/10.1103/PhysRevB.87.224406
[65] M. Mązka, A. Gągor, B. Macalik, A. Pikul, M. Ptak, and J.
Hanuza, Order–disorder transition and weak ferromagnetism in the
perovskite metal formate frameworks of [(CH
3)
2NH
2][M(HCOO)
3]
and [(CH
3)
2ND
2][M(HCOO)
3]
(M = Ni, Mn), Inorg. Chem.
53(1), 457–467 (2014),
https://doi.org/10.1021/ic402425n
[66] A. Sieradzki, M. Mączka, M. Simenas, J.K. Zaręba, A. Gągor,
S. Balciunas, M. Kinka, A. Ciupa, M. Nyk, V. Samulionis, J.
Banys, M. Paluch, and S. Pawlus, On the origin of ferroelectric
structural phases in perovskite-like metal–organic formate, J.
Mater. Chem. C
6(35), 9420–9429 (2018),
https://doi.org/10.1039/C8TC02421A
[67] M. Šimėnas, S. Balčiūnas, M. Trzebiatowska, M. Ptak, M.
Mączka, G. Völkel, A. Pöppl, and J. Banys, Electron paramagnetic
resonance and electric characterization of a [CH
3NH
2NH
2][Zn(HCOO)
3]
perovskite metal formate framework, J. Mater. Chem. C
5(18),
4526–4536 (2017),
https://doi.org/10.1039/C7TC01140G
[68] M. Mączka, A. Ciupa, A. Gągor, A. Sieradzki, A. Pikul, B.
Macalik, and M. Drozd, Perovskite metal formate framework of [NH
2-CH
+-NH
2]Mn(HCOO)
3]:
Phase transition, magnetic, dielectric, and phonon properties,
Inorg. Chem.
53(10), 5260–5268 (2014),
https://doi.org/10.1021/ic500479e
[69] M. Mączka, J. Janczak, M. Trzebiatowska, A. Sieradzki, S.
Pawlus, and A. Pikul, Synthesis and temperature-dependent
studies of a perovskite-like manganese formate framework
templated with protonated acetamidine, Dalt. Trans.
46(26),
8476–8485 (2017),
https://doi.org/10.1039/C7DT01251A
[70] Y. Imai, B. Zhou, Y. Ito, H. Fijimori, A. Kobayashi, Z.M.
Wang, and H. Kobayashi, Freezing of ring-puckering molecular
motion and giant dielectric anomalies in metal–organic
perovskites, Chem. Asian J.
7(12), 2786–2790 (2012),
https://doi.org/10.1002/asia.201200673
[71] T. Asaji, Y. Ito, H. Fujimori, and B. Zhou, Ring-puckering
motion of azetidinium cations in a metal–organic perovskite [(CH
2)
3NH
2]
[M(HCOO)
3] (M = Zn, Mg) – A thermal and
1H
NMR relaxation study, J. Phys. Chem. C
123(7), 4291–4298
(2019),
https://doi.org/10.1021/acs.jpcc.8b11789
[72] R. Shang, S. Chen, B.W. Wang, Z.M. Wang, and S. Gao,
Temperature-induced irreversible phase transition from
perovskite to diamond but pressure-driven back-transition in an
ammonium copper formate, Angew. Chem. Int. Ed.
55(6),
2097–2100 (2016),
https://doi.org/10.1002/anie.201510024
[73] R. Shang, G.C. Xu, Z.M. Wang, and S. Gao, Phase
transitions, prominent dielectric anomalies, and negative
thermal expansion in three high thermally stable ammonium
magnesium-formate frameworks, Chem. Eur. J.
20(4),
1146–1158 (2014),
https://doi.org/10.1002/chem.201303425
[74] S. Chen, R. Shang, K.L. Hu, Z.M. Wang, and S. Gao, [NH
2NH
3][M(HCOO)
3]
(M = Mn
2+, Zn
2+, Co
2+ and Mg
2+):
structural phase transitions, prominent dielectric anomalies and
negative thermal expansion, and magnetic ordering, Inorg. Chem.
Front.
1(1), 83–98 (2014),
https://doi.org/10.1039/C3QI00034F
[75] J. Trzmiel, A. Sieradzki, S. Pawlus, and M. Mączka, Insight
into understanding structural relaxation dynamics of [NH
2NH
3][Mn(HCOO)
3]
metal-organic formate, Mater. Sci. Eng. B
236–237, 24–31
(2018),
https://doi.org/10.1016/j.mseb.2018.12.005
[76] M. Mączka, K. Pasińska, M. Ptak, W. Paraguassu, T.A. da
Silva, A. Sieradzki, and A. Pikul, Effect of solvent,
temperature and pressure on the stability of chiral and
perovskite metal formate frameworks of [NH
2NH
3][M(HCOO)
3]
(M = Mn, Fe, Zn), Phys. Chem. Chem. Phys.
18(46),
31653–31663 (2016),
https://doi.org/10.1039/C6CP06648H
[77] M. Mączka, N.L. Marinho Costa, A. Gągor, W. Paraguassu, A.
Sieradzki, and J. Hanuza, Structural, thermal, dielectric and
phonon properties of perovskite-like imidazolium magnesium
formate, Phys. Chem. Chem. Phys.
18(20), 13993–14000
(2016),
https://doi.org/10.1039/C6CP01353H
[78] S. Horiuchi, F. Kagawa, K. Hatahara, K. Kobayashi, R.
Kumai, Y. Murakami, and Y. Tokura, Above-room-temperature
ferroelectricity and antiferroelectricity in benzimidazoles,
Nat. Commun.
3, 1–6 (2012),
https://doi.org/10.1038/ncomms2322