[PDF]    https://doi.org/10.3952/physics.v62i4.4814

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 195–205 (2022)

CONTROVERSY ON THE FERROELECTRICITY IN METAL–FORMATE FRAMEWORKS
Paulina Peksa and Adam Sieradzki
Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Email: adam.sieradzki@pwr.edu.pl

Received 30 September 2022; accepted 4 October 2022

The metal–organic frameworks (MOFs) crystallizing in a perovskite-like architecture became extremely interesting for scientists due to a variety of applications including memory devices, energy conversion and drug delivery. These compounds are constructed from a metal–oxygen or metal–nitrogen octahedral coordinated by organic ligands. They exhibit various interesting properties due to their hybrid organic–inorganic nature. However, ferroelectric MOFs still remain scarce and the topic of ferroelectricity raises a lot of controversies. In this article, we will discuss the actual state of knowledge of these specific compounds with a focus on ferroelectric properties. We will try to create an order out of the current confusion that followed attributing ferroelectric properties to metal–formate frameworks without a direct proof.
Keywords: ferroelectricity, phase transitions, metal–formate frameworks, pyroelectric physics

METALO–FORMATO DARINIŲ FEROELEKTRIŠKUMO KONTROVERSIJA
Paulina Peksa, Adam Sieradzki

Vroclavo mokslo ir technologijų universiteto Eksperimentinės fizikos departamentas, Vroclavas, Lenkija


References / Nuorodos

[1] M. Mączka, T. Almeida da Silva, W. Paraguassu, and K. Pereira Da Silva, Raman scattering studies of pressure-induced phase transitions in perovskite formates [(CH3)2NH2][M(HCOO)3] and [(CH3)2NH2][Cd(HCOO)3], Spectrochim. Acta A 156, 112–117 (2016),
https://doi.org/10.1016/j.saa.2015.11.030
[2] S. Kitagawa, R. Kitaura, and S.I. Noro, Functional porous coordination polymers, Angew. Chem. Int. Ed. 43(18), 2334–2375 (2004),
https://doi.org/10.1002/anie.200300610
[3] Y. He, W. Zhou, G. Qian, and B. Chen, Methane storage in metal–organic frameworks, Chem. Soc. Rev. 43(16), 5657–5678 (2014),
https://doi.org/10.1039/C4CS00032C
[4] L.J. Murray, M. Dinca, and J.R. Long, Hydrogen storage in metal–organic frameworks, Chem. Soc. Rev. 38, 1294–1314 (2009),
https://doi.org/10.1039/b802256a
[5] M. Guo, H.L. Cai, and R.G. Xiong, Ferroelectric metal organic framework (MOF), Inorg. Chem. Commun. 13(12), 1590–1598 (2010),
https://doi.org/10.1016/j.inoche.2010.09.005
[6] L. Jiao, J.Y.R. Seow, W.S. Skinner, Z.U. Wang, and H.L. Jiang, Metal–organic frameworks: Structures and functional applications, Mater. Today 27, 43–68 (2019),
https://doi.org/10.1016/j.mattod.2018.10.038
[7] R.J. Kuppler, D.J. Timmons, Q.R. Fang, J.R. Li, T.A. Makal, M.D. Young, D. Yuan, D. Zhao, W. Zhuang, and H.C. Zhou, Potential applications of metal–organic frameworks, Coord. Chem. Rev. 253(23), 3042–3066 (2009),
https://doi.org/10.1016/j.ccr.2009.05.019
[8] M.D. Allendorf, C.A. Bauer, R.K. Bhakta, and R.J.T. Houk, Luminescent metal–organic frameworks, Chem. Soc. Rev. 38(5), 1330–1352 (2009),
https://doi.org/10.1039/b802352m
[9] P. Ramaswamy, N.E. Wong, and G.K.H. Shimizu, MOFs as proton conductors – challenges and opportunities, Chem. Soc. Rev. 43(16), 5913–5932 (2014),
https://doi.org/10.1039/C4CS00093E
[10] M. Kurmoo, Magnetic metal–organic frameworks, Chem. Soc. Rev. 38, 1353–1379 (2009),
https://doi.org/10.1039/b804757j
[11] C. Xu, R. Fang, R. Luque, L. Chen, and Y. Li, Functional metal–organic frameworks for catalytic applications, Coord. Chem. Rev. 388, 268–292 (2019),
https://doi.org/10.1016/j.ccr.2019.03.005
[12] Y.S. Wei, M. Zhang, R. Zou, and Q. Xu, Metal–organic framework-based catalysts with single metal sites, Chem. Rev. 120(21), 12089–12174 (2020),
https://doi.org/10.1021/acs.chemrev.9b00757
[13] J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguy­en, and J.T. Hupp, Metal–organic framework materials as catalysts, Chem. Soc. Rev. 38, 1450–1459 (2009),
https://doi.org/10.1039/b807080f
[14] X.Y. Wang, Z.M. Wang, and S. Gao, Construct­ing magnetic molecular solids by employing three-atom ligands as bridges, Chem. Commun. 3, 281–294 (2008),
https://doi.org/10.1039/B708122G
[15] W. Li, Z. Wang, F. Deschler, S. Gao, R.H. Friend, and A.K. Cheetham, Chemically diverse and multifunctional hybrid organic–inorganic perovskites, Nat. Rev. Mater. 2, 1–18 (2017),
https://doi.org/10.1038/natrevmats.2016.99
[16] P. Jain, V. Ramachandran, R.J. Clark, D.Z. Hai, B.H. Toby, N.S. Dalal, H.W. Kroto, and A.K. Cheetham, Multiferroic behavior associated with an order–disorder hydrogen bonding transition in metal–organic frameworks (MOFs) with the perovskite ABX3 architecture, J. Am. Chem. Soc. 131(38), 13625–13627 (2009),
https://doi.org/10.1021/ja904156s
[17] K. Asadi and M.A. van der Veen, Ferroelectricity in metal–organic frameworks: characterization and mechanisms, Eur. J. Inorg. Chem. 2016(27), 4332–4344 (2016),
https://doi.org/10.1002/ejic.201600932
[18] W. Li, Z. Zhang, E.G. Bithell, A.S. Batsanov, P.T. Barton, P.J. Saines, P. Jain, C.J. Howard, M.A. Car­penter, and A.K. Cheetham, Ferro­elasticity in a metal–organic framework perovskite; towards a new class of multiferroics, Acta Mater. 61(13), 4928–4938 (2013),
https://doi.org/10.1016/j.actamat.2013.04.054
[19] T. Hang, W. Zhang, H.Y. Ye, and R.G. Xiong, Metal–organic complex ferroelectrics, Chem. Soc. Rev. 40, 3577–3598 (2011),
https://doi.org/10.1039/c0cs00226g
[20] J.F. Scott, Ferroelectrics go bananas, J. Phys. Condens. Matter. 20(2), 021001 (2008),
https://doi.org/10.1088/0953-8984/20/02/021001
[21] G.C. Xu, W. Zhang, X.M. Ma, Y.H. Chen, L. Zhang, H.L. Cai, Z.M. Wang, R.G. Xiong, and S. Gao, Coexistence of magnetic and electric orderings in the metal–formate frameworks of [NH4][M(HCOO)3], J. Am. Chem. Soc. 133(38), 14948–14951 (2011),
https://doi.org/10.1021/ja206891q
[22] N. Abhyankar, J.J. Kweon, M. Orio, S. Bertaina, M. Lee, E.S. Choi, R. Fu, and N.S. Dalal, Understanding ferroelectricity in the Pb-free perovskite-like metal–organic framework [(CH3)2NH2]Zn(HCOO)3: Dielectric, 2D NMR, and theoretical studies, J. Phys. Chem. C 121(11), 6314–6322 (2017),
https://doi.org/10.1021/acs.jpcc.7b00596
[23] G.C. Xu, X.M. Ma, L. Zhang, Z.M. Wang, and S. Gao, Disorder–order ferroelectric transition in the metal formate framework of [NH4] [Zn(HCOO)3], J. Am. Chem. Soc. 132(28), 9588–9590 (2010),
https://doi.org/10.1021/ja104263m
[24] Z. Wang, B. Zhang, K. Inoue, H. Fujiwara, T. Otsuka, H. Kobayashi, and M. Kurmoo, Occurrence of a rare 49·66 structural topology, chirality, and weak ferromagnetism in the [NH4] [MII(HCOO)3] (M=Mn, Co, Ni) frameworks, Inorg. Chem. 46(2), 437–445 (2007),
https://doi.org/10.1021/ic0610031
[25] Z. Zhang, H. Tang, D. Cheng, J. Zhang, Y. Chen, X. Shen, and H. Yu, Strain coupling and dynamic relaxation in multiferroic metal–organic framework [(CH3)2NH2][Mn(HCOO)3] with perovskite structure, Results Phys. 12, 2183–2188 (2019),
https://doi.org/10.1016/j.rinp.2019.01.092
[26] M. Mączka, A. Gągor, K. Hermanowicz, A. Sieradzki, L. Macalik, and A. Pikul, Structural, magnetic and phonon properties of Cr(III)-doped perovskite metal formate framework [(CH3)2NH2][Mn(HCOO)3], J. Solid State Chem. 237, 150–158 (2016),
https://doi.org/10.1016/j.jssc.2016.02.010
[27] M. Mączka, M. Ptak, and L. Macalik, Infrared and Raman studies of phase transitions in metal–organic frameworks of [(CH3)2NH2][M(HCOO)3] with M=Zn, Fe, Vib. Spectrosc. 71, 98–104 (2014),
https://doi.org/10.1016/j.vibspec.2014.01.013
[28] B. Pato-Doldán, M. Sánchez-Andújar, L.C. Gó­mez-Aguirre, S. Yáñez-Vilar, J. López-Beceiro, C. Gracia-Fernández, A.A. Haghighirad, F. Ritter, S. Castro-García, and M.A. Senaris-Rodriguez, Near room temperature dielectric transition in the perovskite formate framework [(CH3)2NH2] [M(HCOO)3], Phys. Chem. Chem. Phys. 14(24), 8498–8501 (2012),
https://doi.org/10.1039/c2cp40564d
[29] K.D. Hughey, A.J. Clune, M.O. Yokosuk, J. Li, N. Abhyankar, X. Ding, N.S. Dalal, H. Xiang, D. Smirnov, J. Singleton, and J.L. Musfeldt, Structure-property relations in multiferroic [(CH3)2NH2]M(HCOO)3 (M = Mn, Co, Ni), Inorg. Chem. 57(18), 11569–11577 (2018),
https://doi.org/10.1021/acs.inorgchem.8b01609
[30] T. Besara, P. Jain, N.S. Dalal, P.L. Kuhns, A.P. Reyes, H.W. Kroto, and A.K. Cheetham, Mechanism of the order–disorder phase transition, and glassy behavior in the metal–organic framework [(CH3)2NH2]Zn(HCOO)3, Proc. Natl. Acad. Sci. 108(17), 6828–6832 (2011),
https://doi.org/10.1073/pnas.1102079108
[31] M. Šimėnas, L. Macalik, K. Aidas, V. Kalendra, D. Klose, G. Jeschke, M. Ma̧ czka, G. Völkel, J.J. Banys, and A. Pöppl, Pulse EPR and ENDOR study of manganese doped [(CH3)2NH2] [Zn(HCOO)3] hybrid perovskite framework, J. Phys. Chem. C 121(48), 27225–27232 (2017),
https://doi.org/10.1021/acs.jpcc.7b09990
[32] A. Clune, N. Harms, K.R. O’Neal, K. Hughey, K.A. Smith, D. Obeysekera, J. Haddock, N.S. Da­lal, J. Yang, Z. Liu, and J.L. Musfeldt, Developing the pressure-temperature-magnetic field phase diagram of multiferroic [(CH3)2NH2]Mn(HCOO)3, Inorg. Chem. 59(14), 10083–10090 (2020),
https://doi.org/10.1021/acs.inorgchem.0c01225
[33] M. Šimėnas, M. Ptak, A.H. Khan, L. Dagys, V. Ba­levičius, M. Bertmer, G. Völkel, M. Maczka, A. Pöppl, and J. Banys, Spectroscopic study of [(CH3)2NH2][Zn(HCOO)3] hybrid perovskite containing different nitrogen isotopes, J. Phys. Chem. C 122(18), 10284–10292 (2018),
https://doi.org/10.1021/acs.jpcc.8b02734
[34] R. Scatena, R.D. Johnson, P. Manuel, and P. Macchi, Formate-mediated magnetic superexchange in the model hybrid perovskite [(CH3)2NH2]Cu(HCOO)3, J. Mater. Chem. C 8(37), 12840–12847 (2020),
https://doi.org/10.1039/D0TC03913F
[35] T. Asaji, S. Yoshitake, Y. Ito, and H. Fujimori, Phase transition and cationic motion in the perovskite formate framework [(CH3)2NH2][M(HCOO)3], J. Mol. Struct. 1076, 719–723 (2014),
https://doi.org/10.1016/j.molstruc.2014.08.037
[36] R. Yadav, D. Swain, H.L. Bhat, and S. Elizabeth, Order–disorder phase transition and multiferroic behaviour in a metal organic framework compound (CH3)2NH2Co(HCOO)3, J. Appl. Phys. 119, 064103 (2016),
https://doi.org/10.1063/1.4941544
[37] P. Jain, A. Stroppa, D. Nabok, A. Marino, A. Rubano, D. Paparo, M. Matsubara, H. Nakotte, M. Fiebig, S. Picozzi, E.S. Choi, A.K. Cheetham, C. Draxl, N.S. Dalal, and V.S. Zapf, Switchable electric polarization and ferroelectric domains in a metal–organic-framework, Npj Quantum Mater. 1, 1–6 (2016),
https://doi.org/10.1038/npjquantmats.2016.12
[38] D.W. Fu, W. Zhang, H.L. Cai, Y. Zhang, J.Z. Ge, R.G. Xiong, S.D. Huang, and T. Nakamura, A multiferroic perdeutero metal–organic framework, Angew. Chem. Int. Ed. 50(50), 11947–11951 (2011),
https://doi.org/10.1002/anie.201103265
[39] I. Hatta, Experimental study on dielectric relaxation in NaNO2, J. Phys. Soc. Japan 24, 1043–1053 (1968),
https://doi.org/10.1143/JPSJ.24.1043
[40] G. Bator and R. Jakubas, Dielectric dispersion in ferroelectrics [NH2(CH3)2]3Sb2Cl9 and [NH2(CH3)2]3Sb2Br9, Phys. Status Solidi 147(2), 591–600 (1995),
https://doi.org/10.1002/pssa.2211470230
[41] M. Mączka, A. Pietraszko, B. Macalik, and K. Hermanowicz, Structure, phonon properties, and order–disorder transition in the metal formate framework of [NH4][M(HCOO)3], Inorg. Chem. 53(2), 787–794 (2014),
https://doi.org/10.1021/ic4020702
[42] H.T. Nguyen, M.T. Chau, T.B.T. Phan, A.Y. Milinskiy, and S.V. Baryshnikov, Phase transition and ferroelectricity of composites based on ferroelectric metal–organic framework of [NH4] [Zn(HCOO)3], Ferroelectr. Lett. Sect. 49(1–3), 22–29 (2022),
https://doi.org/10.1080/07315171.2022.2076465
[43] M. Maczka, P. Kadlubański, P.T.C. Freire, B. Ma­ca­lik, W. Paraguassu, K. Hermanowicz, and J. Ha­nuza, Temperature- and pressure-induced phase transitions in the metal formate framework of [ND4][Zn(DCOO)3] and [NH4][Zn(HCOO)3], Inorg. Chem. 53(18), 9615–9624 (2014),
https://doi.org/10.1021/ic501074x
[44] Y. Ma, J. Cong, Y. Chai, L. Yan, D. Shang, and Y. Sun, Large pyroelectric and thermal expansion coefficients in the [(CH3)2NH2]Mn(HCOO)3metal–organic framework, Appl. Phys. Lett. 111, 042901 (2017),
https://doi.org/10.1063/1.4989783
[45] P.J. Baker, T. Lancaster, I. Franke, W. Hayes, S.J. Blundell, F.L. Pratt, P. Jain, Z.M. Wang, and M. Kurmoo, Muon spin relaxation investigation of magnetic ordering in the hybrid organic–inorganic perovskites [(CH3)2NH2]M(HCOO)3 (M=Ni, Co, Mn, Cu), Phys. Rev. B 82, 012407 (2010),
https://doi.org/10.1103/PhysRevB.82.012407
[46] M. Sánchez-Andújar, S. Presedo, S. Yáñez-Vilar, S. Castro-García, J. Shamir, and M.A. Señarís-Rodríguez, Characterization of the order–disorder dielectric transition in the hybrid organic–inorganic perovskite-like formate Mn(HCOO)3[(CH3)2NH2], Inorg. Chem. 49(4), 1510–1516 (2010),
https://doi.org/10.1021/ic901872g
[47] M. Sánchez-Andújar, L.C. Gómez-Aguirre, B. Pa­to Doldán, S. Yáñez-Vilar, R. Artiaga, A.L. Llamas-Saiz, R.S. Manna, F. Schnelle, M. Lang, F. Ritter, A.A. Haghighirad, and M.A. Señarís-Rodríguez, First-order structural transition in the multiferroic perovskite-like formate [(CH3)2NH2] [Mn(HCOO)3], CrystEngComm, 16(17), 3558–3566 (2014),
https://doi.org/10.1039/c3ce42411a
[48] A.V. Chitnis, H. Bhatt, M. Mączka, M.N. Deo, and N. Garg, Remarkable resilience of the formate cage in a multiferroic metal organic framework material: dimethyl ammonium manganese formate (DMAMnF), Dalt. Trans. 47(37), 12993–13005 (2018),
https://doi.org/10.1039/C8DT03080D
[49] N. Abhyankar, M. Lee, M. Foley, E.S. Choi, G. Strouse, H.W. Kroto, and N.S. Dalal, Efficient synthesis and tailoring of magnetic and dielectric properties of Pb-free perovskite-like ABX 3 metal-organic frameworks, Phys. Status Solidi Rapid Res. Lett. 10(8), 600–605 (2016),
https://doi.org/10.1002/pssr.201600175
[50] S.A. Locicero, C.M. Averback, U. Shumnyk, E.S. Choi, and D.R. Talham, Particle size effects on the order–disorder phase transition in [(CH3)2NH2]M(HCOO)3, J. Phys. Chem. C 124(38), 21113–21122 (2020),
https://doi.org/10.1021/acs.jpcc.0c04505
[51] Y. Tian, A. Stroppa, Y. Chai, L. Yan, S. Wang, P. Barone, S. Picozzi, and Y. Sun, Cross coupling between electric and magnetic orders in a multiferroic metal-organic framework, Sci. Rep. 4, 1–5 (2014),
https://doi.org/10.1038/srep06062
[52] E. Bousquet, M. Dawber, N. Stucki, C. Lichten­ steiger, P. Hermet, S. Gariglio, J.M. Triscone, and P. Ghosez, Improper ferroelectricity in perovskite oxide artificial superlattices, Nature 452, 732–736 (2008),
https://doi.org/10.1038/nature06817
[53] A.P. Levanyuk and D.G. Sannikov, Improper ferroelectrics, Sov. Phys. Uspekhi 17(2), 199–214 (1974),
https://doi.org/10.1070/PU1974v017n02ABEH004336
[54] M. Mączka, A. Gągor, M. Ptak, W. Paraguassu, T.A. Da Silva, A. Sieradzki, and A. Pikul, Phase transitions and coexistence of magnetic and electric orders in the methylhydrazinium metal formate frameworks, Chem. Mater. 29(5), 2264–2275 (2017),
https://doi.org/10.1021/acs.chemmater.6b05249
[55] M. Šimėnas, A. Ibenskas, A. Stroppa, A. Gągor, M. Mączka, J.R. Banys, and E.E. Tornau, Simulation of structural phase transitions in perovskite methylhydrazinium metal–formate frameworks: coupled Ising and Potts models, J. Phys. Chem. C 123(32), 19912–19919 (2019),
https://doi.org/10.1021/acs.jpcc.9b03448
[56] P. Jain, N.S. Dalal, B.H. Toby, H.W. Kroto, and A.K. Cheetham, Order–disorder antiferroelectric phase transition in a hybrid inorganic–organic framework with the perovskite architecture, J.Am. Chem. Soc. 130(32), 10450–10451 (2008),
https://doi.org/10.1021/ja801952e
[57] S. Sawada, S. Nomura, and Y. Asao, Dielectric properties of ferroelectric NaNO2, J. Phys. Soc. Japan 16(11), 2207–2212 (1961),
https://doi.org/10.1143/JPSJ.16.2207
[58] M. Ptak, M. Mączka, A. Gągor, A. Sieradzki, A. Stroppa, D. Di Sante, J.M. Perez-Mato, and L. Macalik, Experimental and theoretical studies of structural phase transition in a novel polar perovskite-like [C2H5NH3][Na0.5Fe0.5(HCOO)3] formate, Dalt. Trans. 45(6), 2574–2583 (2016),
https://doi.org/10.1039/C5DT04536C
[59] A. Sieradzki, S. Pawlus, S.N. Tripathy, A. Gągor, M. Ptak, M. Paluch, and M. Mączka, Dielectric relaxation and anhydrous proton conduction in [C2H5NH3][Na0.5Fe0.5(HCOO)3] metal–organic frameworks, Dalt. Trans. 46(11), 3681–3687 (2017),
https://doi.org/10.1039/C6DT04546D
[60] P. Peksa, J.K. Zarȩba, M. Ptak, M. Mączka, A. Gągor, S. Pawlus, and A. Sieradzki, Revisiting a perovskite-like copper-formate framework NH4[Cu(HCOO)3]: order–disorder transition influenced by Jahn-Teller distortion and above room-temperature switching of the nonlinear optical response between two SHG-active states, J. Phys. Chem. C 124(34), 18714–18723 (2020),
https://doi.org/10.1021/acs.jpcc.0c06141
[61] M. Mączka, K. Szymborska-Małek, A. Ciupa, and J. Hanuza, Comparative studies of vibrational properties and phase transitions in metal-organic frameworks of [NH4][M(HCOO)3] with M = Mg, Zn, Ni, Fe, Mn, Vib. Spectrosc. 77, 17–24 (2015),
https://doi.org/10.1016/j.vibspec.2015.02.003
[62] M. Maczka, A. Sieradzki, B. Bondzior, P. Dereń, J. Hanuza, and K. Hermanowicz, Effect of aliovalent doping on the properties of perovskite-like multiferroic formates, J. Mater. Chem. C 3(36), 9337–9345 (2015),
https://doi.org/10.1039/C5TC02295A
[63] P. Peksa, A. Nowok, F. Formalik, J.K. Zaręba, J. Trzmiel, A. Gągor, M. Mączka, and A. Sieradzki, More complex than originally thought: revisiting the origins of the relaxation processes in dimethylammonium zinc formate, J. Mater. Chem. C 10(17), 6866–6877 (2022),
https://doi.org/10.1039/D2TC00089J
[64] Z. Wang, P. Jain, K.-Y. Choi, J. van Tol, A.K. Cheetham, H.W. Kroto, H.-J. Koo, H. Zhou, J. Hwang, E.S. Choi, M.-H. Whangbo, and N.S. Dalal, Dimethylammonium copper formate [(CH3)2NH2]Cu(HCOO)3: A metal–organic framework with quasi-one-dimensional antiferromagnetism and magnetostriction, Phys. Rev. B 87, 224406 (2013),
https://doi.org/10.1103/PhysRevB.87.224406
[65] M. Mązka, A. Gągor, B. Macalik, A. Pikul, M. Ptak, and J. Hanuza, Order–disorder transition and weak ferromagnetism in the perovskite metal formate frameworks of [(CH3)2NH2][M(HCOO)3] and [(CH3)2ND2][M(HCOO)3] (M = Ni, Mn), Inorg. Chem. 53(1), 457–467 (2014),
https://doi.org/10.1021/ic402425n
[66] A. Sieradzki, M. Mączka, M. Simenas, J.K. Zaręba, A. Gągor, S. Balciunas, M. Kinka, A. Ciupa, M. Nyk, V. Samulionis, J. Banys, M. Paluch, and S. Pawlus, On the origin of ferroelectric structural phases in perovskite-like metal–organic formate, J. Mater. Chem. C 6(35), 9420–9429 (2018),
https://doi.org/10.1039/C8TC02421A
[67] M. Šimėnas, S. Balčiūnas, M. Trzebiatowska, M. Ptak, M. Mączka, G. Völkel, A. Pöppl, and J. Banys, Electron paramagnetic resonance and electric characterization of a [CH3NH2NH2][Zn(HCOO)3] perovskite metal formate framework, J. Mater. Chem. C 5(18), 4526–4536 (2017),
https://doi.org/10.1039/C7TC01140G
[68] M. Mączka, A. Ciupa, A. Gągor, A. Sieradzki, A. Pikul, B. Macalik, and M. Drozd, Perovskite metal formate framework of [NH2-CH+-NH2]Mn(HCOO)3]: Phase transition, magnetic, dielectric, and phonon properties, Inorg. Chem. 53(10), 5260–5268 (2014),
https://doi.org/10.1021/ic500479e
[69] M. Mączka, J. Janczak, M. Trzebiatowska, A. Sieradzki, S. Pawlus, and A. Pikul, Synthesis and temperature-dependent studies of a perovskite-like manganese formate framework templated with protonated acetamidine, Dalt. Trans. 46(26), 8476–8485 (2017),
https://doi.org/10.1039/C7DT01251A
[70] Y. Imai, B. Zhou, Y. Ito, H. Fijimori, A. Kobayashi, Z.M. Wang, and H. Kobayashi, Freezing of ring-puckering molecular motion and giant dielectric anomalies in metal–organic perovskites, Chem. Asian J. 7(12), 2786–2790 (2012),
https://doi.org/10.1002/asia.201200673
[71] T. Asaji, Y. Ito, H. Fujimori, and B. Zhou, Ring-puckering motion of azetidinium cations in a metal–organic perovskite [(CH2)3NH2] [M(HCOO)3] (M = Zn, Mg) – A thermal and 1H NMR relaxation study, J. Phys. Chem. C 123(7), 4291–4298 (2019),
https://doi.org/10.1021/acs.jpcc.8b11789
[72] R. Shang, S. Chen, B.W. Wang, Z.M. Wang, and S. Gao, Temperature-induced irreversible phase transition from perovskite to diamond but pressure-driven back-transition in an ammonium copper formate, Angew. Chem. Int. Ed. 55(6), 2097–2100 (2016),
https://doi.org/10.1002/anie.201510024
[73] R. Shang, G.C. Xu, Z.M. Wang, and S. Gao, Phase transitions, prominent dielectric anomalies, and negative thermal expansion in three high thermally stable ammonium magnesium-formate frameworks, Chem. Eur. J. 20(4), 1146–1158 (2014),
https://doi.org/10.1002/chem.201303425
[74] S. Chen, R. Shang, K.L. Hu, Z.M. Wang, and S. Gao, [NH2NH3][M(HCOO)3] (M = Mn2+, Zn2+, Co2+ and Mg2+): structural phase transitions, prominent dielectric anomalies and negative thermal expansion, and magnetic ordering, Inorg. Chem. Front. 1(1), 83–98 (2014),
https://doi.org/10.1039/C3QI00034F
[75] J. Trzmiel, A. Sieradzki, S. Pawlus, and M. Mączka, Insight into understanding structural relaxation dynamics of [NH2NH3][Mn(HCOO)3] metal-organic formate, Mater. Sci. Eng. B 236–237, 24–31 (2018),
https://doi.org/10.1016/j.mseb.2018.12.005
[76] M. Mączka, K. Pasińska, M. Ptak, W. Paraguassu, T.A. da Silva, A. Sieradzki, and A. Pikul, Effect of solvent, temperature and pressure on the stability of chiral and perovskite metal formate frameworks of [NH2NH3][M(HCOO)3] (M = Mn, Fe, Zn), Phys. Chem. Chem. Phys. 18(46), 31653–31663 (2016),
https://doi.org/10.1039/C6CP06648H
[77] M. Mączka, N.L. Marinho Costa, A. Gągor, W. Pa­raguassu, A. Sieradzki, and J. Hanuza, Structural, thermal, dielectric and phonon properties of perovskite-like imidazolium magnesium formate, Phys. Chem. Chem. Phys. 18(20), 13993–14000 (2016),
https://doi.org/10.1039/C6CP01353H
[78] S. Horiuchi, F. Kagawa, K. Hatahara, K. Kobayashi, R. Kumai, Y. Murakami, and Y. Tokura, Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles, Nat. Commun. 3, 1–6 (2012),
https://doi.org/10.1038/ncomms2322