References /
Nuorodos
[1] J. Rödel and J.-F. Li, Lead-free piezoceramics: status and
perspectives, MRS Bull.
43, 576 (2018),
https://doi.org/10.1557/mrs.2018.181
[2] C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J.S. Son, C.W.
Ahn, and W. Jo, Lead-free piezoceramics - Where to move on?, J.
Materiomics
2, 1 (2016),
https://doi.org/10.1016/j.jmat.2015.12.002
[3] J.Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, and D.
Damjanovic, Transferring lead-free piezoelectric ceramics into
application, J. Eur. Ceram. Soc.
35, 1659 (2015),
https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
[4] B. Jaffe, R.S. Roth, and S. Marzullo, Piezoelectric
properties of lead zirconate‐lead titanate solid‐solution
ceramics, J. Appl. Phys.
25, 809 (1954),
https://doi.org/10.1063/1.1721741
[5] B. Noheda, D.E. Cox, G. Shirane, J. Gao, and Z.-G. Ye, Phase
diagram of the ferroelectric relaxor (1–
x)PbMg
1/3Nb
2/3O
3–
xPbTiO
3,
Phys. Rev. B
66, 054104 (2002),
https://doi.org/10.1103/PhysRevB.66.054104
[6] S.-E. Park and T.R. Shrout, Ultrahigh strain and
piezoelectric behavior in relaxor based ferroelectric single
crystals, J. Appl. Phys.
82, 1804 (1997),
https://doi.org/10.1063/1.365983
[7] J.P. Remeika and A.M. Glass, The growth and ferroelectric
properties of high resistivity single crystals of lead titanate,
Mater. Res. Bull.
5, 37 (1970),
https://doi.org/10.1016/0025-5408(70)90071-1
[8] G. Shirane, J.D. Axe, J. Harada, and J.P. Remeika, Soft
ferroelectric modes in lead titanate, Phys. Rev. B
2,
155 (1970),
https://doi.org/10.1103/PhysRevB.2.155
[9] E. Sawaguchi, H. Maniwa, and S. Hoshino, Antiferroelectric
structure of lead zirconate, Phys. Rev.
83, 1078 (1951),
https://doi.org/10.1103/PhysRev.83.1078
[10] M. Ahart, M. Somayazulu, R.E. Cohen, P. Ganesh, P. Dera,
H. Mao, R.J. Hemley, Y. Ren, P. Liermann, and Z. Wu, Origin of
morphotropic phase boundaries in ferroelectrics, Nature
451,
545 (2008),
https://doi.org/10.1038/nature06459
[11] B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.-E. Park,
D.E. Cox, and G. Shirane, Tetragonal-to-monoclinic phase
transition in a ferroelectric perovskite: The structure of PbZr
0.52Ti
0.48O
3,
Phys. Rev. B
61, 8687 (2000),
https://doi.org/10.1103/PhysRevB.61.8687
[12] L.E. Cross, Relaxor ferroelectrics, Ferroelectrics
76,
241 (1987),
https://doi.org/10.1080/00150198708016945
[13] B. Noheda, D.E. Cox, G. Shirane, S.-E. Park, L.E. Cross,
and Z. Zhong, Polarization rotation via a monoclinic phase in
the piezoelectric 92% PbZn
1/3Nb
2/3O
3-8%
PbTiO
3, Phys. Rev. Lett.
86, 3891 (2001),
https://doi.org/10.1103/PhysRevLett.86.3891
[14] C.-S. Tu, V.H. Schmidt, I.-C. Shih, and R. Chien, Phase
transformation via a monoclinic phase in relaxor-based
ferroelectric crystal (PbMg
1/3Nb
2/3O
3)
1–x(PbTiO
3)
x,
Phys. Rev. B
67, 020102 (2003),
https://doi.org/10.1103/PhysRevB.67.020102
[15] Z. Kutnjak, R. Blinc, and Y. Ishibashi, Electric field
induced critical points and polarization rotations in relaxor
ferroelectrics, Phys. Rev. B
76, 104102 (2007),
https://doi.org/10.1103/PhysRevB.76.104102
[16] T. Zheng, J. Wu, D. Xiao, and J. Zhu, Recent development in
lead-free perovskite piezoelectric bulk materials, Prog. Mater.
Sci.
98, 552 (2018),
https://doi.org/10.1016/j.pmatsci.2018.06.002
[17] X. Zhou, G. Xue, H. Luo, C.R. Bowen, and D. Zhang, Phase
structure and properties of sodium bismuth titanate lead-free
piezoelectric ceramics, Prog. Mater. Sci.
122, 100836
(2021),
https://doi.org/10.1016/j.pmatsci.2021.100836
[18] J. Wu, D. Xiao, and J. Zhu, Potassium-sodium niobate
lead-free piezoelectric materials: past, present, and future of
phase boundaries, Chem. Rev.
115, 2559 (2015),
https://doi.org/10.1021/cr5006809
[19] Y. Yoneda, H. Nagata, and T. Takenaka, Local structure
analysis of Bi
0.5Na
0.5TiO
3, J.
Korean Phys. Soc.
66, 1339 (2015),
https://doi.org/10.3938/jkps.66.1339
[20] M. Gröting, S. Hayn, and K. Albe, Chemical order and local
structure of the lead-free relaxor ferroelectric, J. Solid State
Chem.
184, 2041 (2011),
https://doi.org/10.1016/j.jssc.2011.05.044
[21] G.O. Jones and P.A. Thomas, Investigation of the structure
and phase transitions in the novel A-site substituted distorted
perovskite compound Na
0.5Bi
0.5TiO
3,
Acta Cryst. B
58, 168 (2002),
https://doi.org/10.1107/S0108768101020845
[22] E. Aksel, J.S. Forrester, J.C. Nino, K. Page, D.P.
Shoemaker, and J.L. Jones, Local atomic structure deviation from
average structure of Na
0.5Bi
0.5TiO
3:
Combined x-ray and neutron total scattering study, Phys. Rev. B
87, 104113 (2013),
https://doi.org/10.1103/PhysRevB.87.104113
[23] V. Dorcet, G. Trolliard, and P. Boullay, Reinvestigation
of phase transitions in Na
0.5Bi
0.5TiO
3
by TEM. Part I: First order rhombohedral to orthorhombic
phase transition, Chem. Mater.
20, 5061 (2008),
https://doi.org/10.1021/cm8004634
[24] V. Dorcet and G. Trolliard, A transmission electron
microscopy study of the A-site disordered perovskite Na
0.5Bi
0.5TiO
3,
Acta Mater.
56, 1753 (2008),
https://doi.org/10.1016/j.actamat.2007.12.027
[25] G. Trolliard and V. Dorcet, Reinvestigation of phase
transitions in Na
0.5Bi
0.5TiO
3
by TEM. Part II: Second order orthorhombic to tetragonal phase
transition, Chem. Mater.
20, 5074 (2008),
https://doi.org/10.1021/cm800464d
[26] V. Dorcet, G. Trolliard, and P. Boullay, The structural
origin of the antiferroelectric properties and relaxor behavior
of Na
0.5Bi
0.5TiO
3, J. Magn.
Magn. Mater.
321, 1758 (2009),
https://doi.org/10.1016/j.jmmm.2009.02.013
[27] A.M. Balagurov, E.Y. Koroleva, A.A. Naberezhnov, V.P.
Sakhnenko, B.N. Savenko, N.V. Ter-Oganessian, and S.B.
Vakhrushev, The rhombohedral phase with incommensurate
modulation in Na
1/2Bi
1/2TiO
3,
Phase Transit.
79, 163 (2006),
https://doi.org/10.1080/01411590500496238
[28] B.N. Rao, R. Datta, S.S. Chandrashekaran, D.K. Mishra, V.
Sathe, A. Senyshyn, and R. Ranjan, Local structural disorder and
its influence on the average global structure and polar
properties in Na
0.5Bi
0.5TiO
3,
Phys. Rev. B
88, 224103 (2013),
https://doi.org/10.1103/PhysRevB.88.224103
[29] J. Suchanicz, D. Sitko, Š. Svirskas, M. Ivanov, A.
Kežionis, J. Banys, P. Czaja, T.V. Kruzina, and J. Szczęsny,
Ferroelectric, dielectric and optic properties of Mn and
Cr-doped Na
0.5Bi
0.5TiO
3 single
crystals, Ferroelectrics
532, 38 (2018),
https://doi.org/10.1080/00150193.2018.1499402
[30] V. Bovtun, S. Veljko, S. Kamba, J. Petzelt, S. Vakhrushev,
Y. Yakymenko, K. Brinkman, and N. Setter, Broad-band dielectric
response of PbMg
1/3Nb
2/3O
3
relaxor ferroelectrics: Single crystals, ceramics and thin
films, J. Eur. Ceram. Soc.
26, 2867 (2006),
https://doi.org/10.1016/j.jeurceramsoc.2006.02.003
[31] J. Petzelt, D. Nuzhnyy, V. Bovtun, M. Paściak, S. Kamba,
R. Dittmer, Š. Svirskas, J. Banys, and J. Rödel, Peculiar Bi-ion
dynamics in Na
1/2Bi
1/2TiO
3 from
terahertz and microwave dielectric spectroscopy, Phase Transit.
87, 953 (2014),
https://doi.org/10.1080/01411594.2014.953517
[32] C. Xu, D. Lin, and K.W. Kwok, Structure, electrical
properties and depolarization temperature of (Bi
0.5Na
0.5)TiO
3–BaTiO
3
lead-free piezoelectric ceramics, Solid State Sci.
10,
934 (2008),
https://doi.org/10.1016/j.solidstatesciences.2007.11.003
[33] Y. Hiruma, H. Nagata, and T. Takenaka, Thermal depoling
process and piezoelectric properties of bismuth sodium titanate
ceramics, J. Appl. Phys.
105, 084112 (2009),
https://doi.org/10.1063/1.3115409
[34] F. Yang, M. Li, L. Li, P. Wu, E. Pradal-Velázquez, and D.C.
Sinclair, Defect chemistry and electrical properties of sodium
bismuth titanate perovskite, J. Mater. Chem. A
6, 5243
(2018),
https://doi.org/10.1039/C7TA09245H
[35] S.-T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, and J.
Rödel, Giant strain in lead-free piezoceramics Bi
0.5Na
0.5TiO
3–BaTiO
3–K
0.5Na
0.5NbO
3
system, Appl. Phys. Lett.
91, 112906 (2007),
https://doi.org/10.1063/1.2783200
[36] X. Liu and X. Tan, Giant strains in non-textured (Bi
1/2Na
1/2)TiO
3-based
lead-free ceramics, Adv. Mater.
28, 574 (2016),
https://doi.org/10.1002/adma.201503768
[37] Y.J. Dai, J.S. Pan, and X.W. Zhang, Composition range of
morphotropic phase boundary and electrical properties of NBT-BT
system, Key Eng. Mater.
336–338, 206 (2007),
https://doi.org/10.4028/www.scientific.net/KEM.336-338.206
[38] V.V. Shvartsman and D.C. Lupascu, Lead-free relaxor
ferroelectrics, J. Am. Ceram. Soc.
95, 1 (2012),
https://doi.org/10.1111/j.1551-2916.2011.04952.x
[39] J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow,
and D. Damjanovic, Perspective on the development of lead-free
piezoceramics, J. Am. Ceram. Soc.
92, 1153 (2009),
https://doi.org/10.1111/j.1551-2916.2009.03061.x
[40] M. Dunce, E. Birks, M. Antonova, A. Plaude, R. Ignatans,
and A. Sternberg, Structure and dielectric properties of Na
1/2Bi
1/2TiO
3-
BaTiO
3 solid solutions, Ferroelectrics
447, 1
(2013),
https://doi.org/10.1080/00150193.2013.821382
[41] A. Plaude, R. Ignatans, E. Birks, M. Dunce, M. Antonova,
and A. Sternberg, Structure and dielectric properties at phase
transition of Na
1/2Bi
1/2TiO
3-BaTiO
3
solid solutions, Ferroelectrics
500, 47 (2016),
https://doi.org/10.1080/00150193.2016.1215220
[42] J.-R. Gomah-Pettry, S. Saıd, P. Marchet, and J.-P.
Mercurio, Sodium-bismuth titanate based lead-free ferroelectric
materials, J. Eur. Ceram. Soc.
24, 1165 (2004),
https://doi.org/10.1016/S0955-2219(03)00473-4
[43] S.-T. Zhang, A.B. Kounga, E. Aulbach, W. Jo, T. Granzow, H.
Ehrenberg, and J. Rödel, Lead-free piezoceramics with giant
strain in the system Bi
0.5Na
0.5TiO
3–BaTiO
3–K
0.5Na
0.5NbO
3.
II. Temperature dependent properties, J. Appl. Phys.
103,
034108 (2008),
https://doi.org/10.1063/1.2838476
[44] Š. Svirskas, D. Jablonskas, S. Rudys, S. Lapinskas, R.
Grigalaitis, and J. Banys, Broad-band measurements of dielectric
permittivity in coaxial line using partially filled circular
waveguide, Rev. Sci. Instrum.
91, 035106 (2020),
https://doi.org/10.1063/1.5136317
[45] R. Grigalaitis, J. Banys, A. Sternberg, K. Bormanis, and V.
Zauls, dynamics of polar clusters in PMN ceramics: Comparison
with PMN single crystal, Ferroelectrics
340, 147 (2006),
https://doi.org/10.1080/00150190600889221