[PDF]    https://doi.org/10.3952/physics.v62i4.4816

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 212–220 (2022)

DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF 0.8Na0.5Bi0.5TiO3-0.2BaTiO3 MODIFIED WITH SODIUM NIOBATE
Šarūnas Svirskasa, Tomas Kudrevičiusa, Eriks Birksb, Marija Dunceb, Andris Sternbergsb, Chih-Hsien Huangc, and Jūras Banysa
a Faculty of Physics, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
b Institute of Solid State Physics, University of Latvia, Kengaraga 8, 1063 Riga, Latvia
c Department of Electrical Engineering, National Cheng Kung University, No. 1 Ta-Hseuh Road, Tainan, Taiwan 70101
Email: sarunas.svirskas@ff.vu.lt

Received 14 October 2022; accepted 18 October 2022

In this paper, we present the dielectric and piezoelectric properties of tetragonal 0.8Na0.5Bi0.5TiO3-0.2BaTiO3 modified with NaNbO3 ((1-x)[0.8Na0.5Bi0.5TiO3-0.2BaTiO3]-xNaNbO3). Our experimental study has revealed that the ferroelectric phase in these compositions is suppressed with the increase of sodium niobate concentration. A broad anomaly, resembling relaxor ferroelectrics, appears in the 325–450 K temperature interval. The investigation of the electric field dependence of polarization has indicated that the double hysteresis loop behaviour is characteristic of the modified compositions, which is associated with the 1st order phase transition under the applied electric field. The experiments below room temperature have revealed that the range of stability of the ferroelectric phase is shifted to lower temperatures upon the increase of sodium niobate concentration. The electromechanical displacement in the modified compositions shows a similar maximum displacement in the whole concentration range. The electromechanical response in 0.8Na0.5B0.5TiO3-0.2BaTiO3 solid solutions is due to the piezoelectric effect, while, in the mixed compositions, it is related to the jump-like change of the lattice constants in the vicinity of electric field-induced 1st order phase transition.
Keywords: dielectric spectroscopy, phase transitions, perovskites

0,8Na0,5Bi0,5TiO3-0,2BaTiO3, MAIŠYTO SU NATRIO NIOBATU, DIELEKTRINIŲ IR PJEZOELEKTRINIŲ SAVYBIŲ TYRIMAS
Šarūnas Svirskasa, Tomas Kudrevičiusa, Eriks Birksb, Marija Dunceb, Andris Sternbergsb, Chih-Hsien Huangc, Jūras Banysa

a Vilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
b Latvijos universiteto Kietojo kūno fizikos institutas, Ryga, Latvija
c Nacionalinio Cheng Kung universiteto Elektros inžinerijos fakultetas, Tainanas, Taivanas

Šiame darbe buvo tiriamos tetragoninio 0,8Na0,5Bi0,5TiO3-0,2BaTiO3, maišyto su NaNbO3, dielektrinės ir pjezoelektrinės savybės. Tyrimai atskleidė, kad didinant NaNbO3 koncentraciją x, feroelektrinė fazė yra slopinama kambario temperatūroje. Maišytose kompozicijose išryškėja plati anomalija 325–450 K temperatūrų intervale. Ši anomalija primena feroelektriniams relaksoriams būdingus bruožus. Detaliau ištyrus polia­rizacijos ir poslinkio histerezės kilpas buvo nustatyta, kad maišytose kompozicijose formuojasi dvigubos histerezės kilpos, būdingos elektriniu lauku indukuojamiems 1-os rūšies faziniams virsmams. Buvo nustatyta, kad kuo didesnė natrio niobato koncentracija, tuo žemesnėje temperatūroje stebimos feroelektrinės poliarizacijos kilpos. Elektromechaninės sistemos savybės skirtingose kompozicijose yra panašios, pasiekiami gana dideli pjezoelektriniai poslinkiai. Grynoje medžiagoje elektromechaninis atsakas yra susijęs su pjezoefektu, o maišytose kompozicijose – su dideliu gardelės parametrų pokyčiu, indukuojant 1-os rūšies fazinį virsmą elektriniu lauku.


References / Nuorodos

[1] J. Rödel and J.-F. Li, Lead-free piezoceramics: status and perspectives, MRS Bull. 43, 576 (2018),
https://doi.org/10.1557/mrs.2018.181
[2] C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J.S. Son, C.W. Ahn, and W. Jo, Lead-free piezoceramics - Where to move on?, J. Materiomics 2, 1 (2016),
https://doi.org/10.1016/j.jmat.2015.12.002
[3] J.Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, Transferring lead-free piezoelectric ceramics into application, J. Eur. Ceram. Soc. 35, 1659 (2015),
https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
[4] B. Jaffe, R.S. Roth, and S. Marzullo, Piezoelectric properties of lead zirconate‐lead titanate solid‐solution ceramics, J. Appl. Phys. 25, 809 (1954),
https://doi.org/10.1063/1.1721741
[5] B. Noheda, D.E. Cox, G. Shirane, J. Gao, and Z.-G. Ye, Phase diagram of the ferroelectric relaxor (1–x)PbMg1/3Nb2/3O3xPbTiO3, Phys. Rev. B 66, 054104 (2002),
https://doi.org/10.1103/PhysRevB.66.054104
[6] S.-E. Park and T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, J. Appl. Phys. 82, 1804 (1997),
https://doi.org/10.1063/1.365983
[7] J.P. Remeika and A.M. Glass, The growth and ferroelectric properties of high resistivity single crystals of lead titanate, Mater. Res. Bull. 5, 37 (1970),
https://doi.org/10.1016/0025-5408(70)90071-1
[8] G. Shirane, J.D. Axe, J. Harada, and J.P. Remeika, Soft ferroelectric modes in lead titanate, Phys. Rev. B 2, 155 (1970),
https://doi.org/10.1103/PhysRevB.2.155
[9] E. Sawaguchi, H. Maniwa, and S. Hoshino, Antiferroelectric structure of lead zirconate, Phys. Rev. 83, 1078 (1951),
https://doi.org/10.1103/PhysRev.83.1078
[10] M. Ahart, M. Somayazulu, R.E. Cohen, P. Ga­nesh, P. Dera, H. Mao, R.J. Hemley, Y. Ren, P. Lier­mann, and Z. Wu, Origin of morphotropic phase boundaries in ferroelectrics, Nature 451, 545 (2008),
https://doi.org/10.1038/nature06459
[11] B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.-E. Park, D.E. Cox, and G. Shirane, Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0.52Ti0.48O3, Phys. Rev. B 61, 8687 (2000),
https://doi.org/10.1103/PhysRevB.61.8687
[12] L.E. Cross, Relaxor ferroelectrics, Ferroelectrics 76, 241 (1987),
https://doi.org/10.1080/00150198708016945
[13] B. Noheda, D.E. Cox, G. Shirane, S.-E. Park, L.E. Cross, and Z. Zhong, Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn1/3Nb2/3O3-8% PbTiO3, Phys. Rev. Lett. 86, 3891 (2001),
https://doi.org/10.1103/PhysRevLett.86.3891
[14] C.-S. Tu, V.H. Schmidt, I.-C. Shih, and R. Chien, Phase transformation via a monoclinic phase in relaxor-based ferroelectric crystal (PbMg1/3Nb2/3O3)1–x(PbTiO3)x, Phys. Rev. B 67, 020102 (2003),
https://doi.org/10.1103/PhysRevB.67.020102
[15] Z. Kutnjak, R. Blinc, and Y. Ishibashi, Electric field induced critical points and polarization rotations in relaxor ferroelectrics, Phys. Rev. B 76, 104102 (2007),
https://doi.org/10.1103/PhysRevB.76.104102
[16] T. Zheng, J. Wu, D. Xiao, and J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials, Prog. Mater. Sci. 98, 552 (2018),
https://doi.org/10.1016/j.pmatsci.2018.06.002
[17] X. Zhou, G. Xue, H. Luo, C.R. Bowen, and D. Zhang, Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics, Prog. Mater. Sci. 122, 100836 (2021),
https://doi.org/10.1016/j.pmatsci.2021.100836
[18] J. Wu, D. Xiao, and J. Zhu, Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries, Chem. Rev. 115, 2559 (2015),
https://doi.org/10.1021/cr5006809
[19] Y. Yoneda, H. Nagata, and T. Takenaka, Local structure analysis of Bi0.5Na0.5TiO3, J. Korean Phys. Soc. 66, 1339 (2015),
https://doi.org/10.3938/jkps.66.1339
[20] M. Gröting, S. Hayn, and K. Albe, Chemical order and local structure of the lead-free relaxor ferroelectric, J. Solid State Chem. 184, 2041 (2011),
https://doi.org/10.1016/j.jssc.2011.05.044
[21] G.O. Jones and P.A. Thomas, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3, Acta Cryst. B 58, 168 (2002),
https://doi.org/10.1107/S0108768101020845
[22] E. Aksel, J.S. Forrester, J.C. Nino, K. Page, D.P. Shoemaker, and J.L. Jones, Local atomic structure deviation from average structure of Na0.5Bi0.5TiO3: Combined x-ray and neutron total scattering study, Phys. Rev. B 87, 104113 (2013),
https://doi.org/10.1103/PhysRevB.87.104113
[23] V. Dorcet, G. Trolliard, and P. Boullay, Re­investigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: First order rhombohedral to orthorhombic phase transition, Chem. Mater. 20, 5061 (2008),
https://doi.org/10.1021/cm8004634
[24] V. Dorcet and G. Trolliard, A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3, Acta Mater. 56, 1753 (2008),
https://doi.org/10.1016/j.actamat.2007.12.027
[25] G. Trolliard and V. Dorcet, Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part II: Second order orthorhombic to tetragonal phase transition, Chem. Mater. 20, 5074 (2008),
https://doi.org/10.1021/cm800464d
[26] V. Dorcet, G. Trolliard, and P. Boullay, The structural origin of the antiferroelectric properties and relaxor behavior of Na0.5Bi0.5TiO3, J. Magn. Magn. Mater. 321, 1758 (2009),
https://doi.org/10.1016/j.jmmm.2009.02.013
[27] A.M. Balagurov, E.Y. Koroleva, A.A. Naberezhnov, V.P. Sakhnenko, B.N. Savenko, N.V. Ter-Oganessian, and S.B. Vakhrushev, The rhombohedral phase with incommensurate modulation in Na1/2Bi1/2TiO3, Phase Transit. 79, 163 (2006),
https://doi.org/10.1080/01411590500496238
[28] B.N. Rao, R. Datta, S.S. Chandrashekaran, D.K. Mishra, V. Sathe, A. Senyshyn, and R. Ranjan, Local structural disorder and its influence on the average global structure and polar properties in Na0.5Bi0.5TiO3, Phys. Rev. B 88, 224103 (2013),
https://doi.org/10.1103/PhysRevB.88.224103
[29] J. Suchanicz, D. Sitko, Š. Svirskas, M. Ivanov, A. Kežionis, J. Banys, P. Czaja, T.V. Kruzina, and J. Szczęsny, Ferroelectric, dielectric and optic properties of Mn and Cr-doped Na0.5Bi0.5TiO3 single crystals, Ferroelectrics 532, 38 (2018),
https://doi.org/10.1080/00150193.2018.1499402
[30] V. Bovtun, S. Veljko, S. Kamba, J. Petzelt, S. Vakhrushev, Y. Yakymenko, K. Brinkman, and N. Setter, Broad-band dielectric response of PbMg1/3Nb2/3O3 relaxor ferroelectrics: Single crystals, ceramics and thin films, J. Eur. Ceram. Soc. 26, 2867 (2006),
https://doi.org/10.1016/j.jeurceramsoc.2006.02.003
[31] J. Petzelt, D. Nuzhnyy, V. Bovtun, M. Paściak, S. Kam­ba, R. Dittmer, Š. Svirskas, J. Banys, and J. Rödel, Peculiar Bi-ion dynamics in Na1/2Bi1/2TiO3 from terahertz and microwave dielectric spectroscopy, Phase Transit. 87, 953 (2014),
https://doi.org/10.1080/01411594.2014.953517
[32] C. Xu, D. Lin, and K.W. Kwok, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics, Solid State Sci. 10, 934 (2008),
https://doi.org/10.1016/j.solidstatesciences.2007.11.003
[33] Y. Hiruma, H. Nagata, and T. Takenaka, Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics, J. Appl. Phys. 105, 084112 (2009),
https://doi.org/10.1063/1.3115409
[34] F. Yang, M. Li, L. Li, P. Wu, E. Pradal-Velázquez, and D.C. Sinclair, Defect chemistry and electrical properties of sodium bismuth titanate perovskite, J. Mater. Chem. A 6, 5243 (2018),
https://doi.org/10.1039/C7TA09245H
[35] S.-T. Zhang, A.B. Kounga, E. Aulbach, H. Ehren­berg, and J. Rödel, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system, Appl. Phys. Lett. 91, 112906 (2007),
https://doi.org/10.1063/1.2783200
[36] X. Liu and X. Tan, Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics, Adv. Mater. 28, 574 (2016),
https://doi.org/10.1002/adma.201503768
[37] Y.J. Dai, J.S. Pan, and X.W. Zhang, Composition range of morphotropic phase boundary and electrical properties of NBT-BT system, Key Eng. Mater. 336–338, 206 (2007),
https://doi.org/10.4028/www.scientific.net/KEM.336-338.206
[38] V.V. Shvartsman and D.C. Lupascu, Lead-free relaxor ferroelectrics, J. Am. Ceram. Soc. 95, 1 (2012),
https://doi.org/10.1111/j.1551-2916.2011.04952.x
[39] J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Gran­zow, and D. Damjanovic, Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc. 92, 1153 (2009),
https://doi.org/10.1111/j.1551-2916.2009.03061.x
[40] M. Dunce, E. Birks, M. Antonova, A. Plaude, R. Ignatans, and A. Sternberg, Structure and dielectric properties of Na1/2Bi1/2TiO3- BaTiO3 solid solutions, Ferroelectrics 447, 1 (2013),
https://doi.org/10.1080/00150193.2013.821382
[41] A. Plaude, R. Ignatans, E. Birks, M. Dunce, M. An­tonova, and A. Sternberg, Structure and dielectric properties at phase transition of Na1/2Bi1/2TiO3-BaTiO3 solid solutions, Ferroelectrics 500, 47 (2016),
https://doi.org/10.1080/00150193.2016.1215220
[42] J.-R. Gomah-Pettry, S. Saıd, P. Marchet, and J.-P. Mercurio, Sodium-bismuth titanate based lead-free ferroelectric materials, J. Eur. Ceram. Soc. 24, 1165 (2004),
https://doi.org/10.1016/S0955-2219(03)00473-4
[43] S.-T. Zhang, A.B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg, and J. Rödel, Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. II. Temperature dependent properties, J. Appl. Phys. 103, 034108 (2008),
https://doi.org/10.1063/1.2838476
[44] Š. Svirskas, D. Jablonskas, S. Rudys, S. Lapinskas, R. Grigalaitis, and J. Banys, Broad-band measurements of dielectric permittivity in coaxial line using partially filled circular waveguide, Rev. Sci. Instrum. 91, 035106 (2020),
https://doi.org/10.1063/1.5136317
[45] R. Grigalaitis, J. Banys, A. Sternberg, K. Bormanis, and V. Zauls, dynamics of polar clusters in PMN ceramics: Comparison with PMN single crystal, Ferroelectrics 340, 147 (2006),
https://doi.org/10.1080/00150190600889221