[PDF]    https://doi.org/10.3952/physics.v62i4.4817

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 221–228 (2022)

PHOSPHATE BONDED CoFe2O4–BaTiO3 LAYERED STRUCTURES: DIELECTRIC RELAXATIONS AND MAGNETOELECTRIC COUPLING
Artyom Plyushcha, Daniil Lewinb, Povilas Ažubalisa, Vidmantas Kalendraa, Aliaksei Sokalc, Robertas Grigalaitisa, Vladimir V. Shvartsmanb, Soma Salamond, Heiko Wended, Algirdas Selskise, Konstantin N. Lapkoc, Doru C. Lupascub, and Jūras Banysa
a Faculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
b Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 15, 45141 Essen, Germany
c Affiliation-independent researchers
d Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
e Department of Structural Analysis of Materials, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: artyom.plyushch@ff.vu.lt

Received 14 October 2022; accepted 18 October 2022

Multilayered phosphate bonded CoFe2O4–BaTiO3–CoFe2O4 (CBC) and BaTiO3–CoFe2O4–BaTiO3 (BCB) multiferroic structures were formed by means of uniaxial pressing. The dielectric properties were studied in 20 Hz – 1 GHz frequency and 120–500 K temperature ranges. The complex dielectric permittivity is 15–0.17i for CBC and 22–0.04i for BCB, it is temperature- and frequency-independent below 250 K. At higher temperatures, strong dispersion appeared governed by the Maxwell–Wagner relaxation. Such behaviour is determined by the 2–2 connectivity of the sample. The highest direct magnetoelectric coupling coefficient was found for the BaTiO3–CoFe2O4–BaTiO3 structure of 0.2 mVOe–1cm–1.
Keywords: phosphate bonded ceramics, barium titanate, cobalt ferrite, layered structures, Maxwell–Wagner relaxation, multiferroics, magnetoelectrics, magnetoelectric coupling

FOSFATAIS SURIŠTI CoFe2O4–BaTiO3 SLUOKSNINIAI DARINIAI: DIELEKTRINĖS RELAKSACIJOS IR MAGNETOELEKTRINĖ SĄVEIKA
Artyom Plyushcha, Daniil Lewinb, Povilas Ažubalisa, Vidmantas Kalendraa, Aliaksei Sokalc, Robertas Grigalaitisa, Vladimir V. Shvartsmanb, Soma Salamond, Heiko Wended, Algirdas Selskise, Konstantin N. Lapkoc, Doru C. Lupascub, Jūras Banysa

a Vilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
b Duisburgo-Eseno universiteto Medžiagų mokslo institutas ir Nanointegracijos centras, Esenas, Vokietija
c Nepriklausomi nuo afiliacijos tyrėjai
d Duisburgo-Eseno universiteto Fizikos fakultetas ir Nanointegracijos centras, Duisburgas, Vokietija
e Fizinių ir technologijos mokslų centro Medžiagų struktūrinės analizės skyrius, Vilnius, Lietuva

Daugiasluoksniai fosfatais surišti CoFe2O4–BaTiO3–CoFe2O4 (CBC) ir BaTiO3–CoFe2O4–BaTiO3 (BCB) dariniai buvo pagaminti presavimo būdu. Dielektrinės savybės ištirtos 20 Hz – 1 GHz dažnių ir 120–500 K temperatūrų intervaluose. CBC ir BCB dariniuose buvo išmatuotos dielektrinės skvarbos vertės, 15–0,17i ir 22–0,04i atitinkamai, kurios nepriklauso nuo dažnio ir temperatūros žemiau 250 K. Aukštesnėse temperatūrose atsiranda stiprioji dispersija, būdinga Maksvelo–Vagnerio relaksacijai. Toks elgesys yra susijęs su 2–2 fazių erdviniu pasiskirstymu. BaTiO3–CoFe2O4–BaTiO3 darinyje buvo išmatuotas magnetoelektrinės sąveikos koeficientas, kurio gauta vertė yra 0,2 mVOe–1cm–1.


References / Nuorodos

[1] G. Liu, C.-W. Nan, Z. Xu, and H. Chen, Coupling interaction in multiferroic BaTiO3–CoFe2O4 nanostructures, J. Phys. D Appl. Phys. 38(14), 2321 (2005),
https://doi.org/10.1088/0022-3727/38/14/005
[2] Z. Chu, H. Shi, W. Shi, G. Liu, J. Wu, J. Yang, and S. Dong, Enhanced resonance magnetoelectric coupling in (1-1) connectivity composites, Adv. Mater. 29(19), 1606022 (2017),
https://doi.org/10.1002/adma.201606022
[3] S. Mohan and P. Joy, Magnetic properties of sintered CoFe2O4–BaTiO3 particulate magnetoelectric composites, Ceram. Int. 45(9), 12307–12311 (2019),
https://doi.org/10.1016/j.ceramint.2019.03.145
[4] D. Ghosh, H. Han, J.C. Nino, G. Subhash, and J.L. Jones, Synthesis of BaTiO3-20wt%CoFe2O4 nanocomposites via spark plasma sintering, J. Am. Ceram. Soc. 95(8), 2504–2509 (2012),
https://doi.org/10.1111/j.1551-2916.2012.05221.x
[5] J. Ma, J. Hu, Z. Li, and C.-W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films, Adv. Mater. 23(9), 1062–1087 (2011),
https://doi.org/10.1002/adma.201003636
[6] J.-P. Zhou, H.-C. He, Z. Shi, G. Liu, and C.-W. Nan, Dielectric, magnetic, and magnetoelectric properties of laminated PbZr0.52Ti0.48O3/CoFe2O4 composite ceramics, J. Appl. Phys. 100(9), 094106 (2006),
https://doi.org/10.1063/1.2358191
[7] H. Yang, G. Zhang, and Y. Lin, Enhanced magnetoelectric properties of the laminated BaTiO3/CoFe2O4 composites, J. Alloys Compd. 644, 390–397 (2015),
https://doi.org/10.1016/j.jallcom.2015.05.020
[8] R.C. Kambale, D.-Y. Jeong, and J. Ryu, Current status of magnetoelectric composite thin/thick films, Adv. Condens. Matter Phys. 2012, 824643 (2012),
https://doi.org/10.1155/2012/824643
[9] J.P. Praveen, V.R. Monaji, E. Chandrakala, S. Indla, S. Dinesh Kumar, V. Subramanian, and D. Das, Enhanced magnetoelectric coupling in Ti and Ce substituted lead free CFO-BCZT laminate composites, J. Alloys Compd. 750, 392–400 (2018),
https://doi.org/10.1016/j.jallcom.2018.04.026
[10] D. Patil, J.-H. Kim, Y.S. Chai, J.-H. Nam, J.-H. Cho, B.-I. Kim, and K.H. Kim, Large longitudinal magnetoelectric coupling in NiFe2O4–BaTiO3 laminates, Appl. Phys. Express 4(7), 073001 (2011),
https://doi.org/10.1143/APEX.4.073001
[11] L. Hao, D. Zhou, Q. Fu, and Y. Hu, Multiferroic properties of multilayered BaTiO3–CoFe2O4 composites via tape casting method, J. Mater. Sci. 48(1), 178–185 (2013),
https://doi.org/10.1007/s10853-012-6726-2
[12] T. Walther, N. Quandt, R. Köferstein, R. Roth, M. Steimecke, and S.G. Ebbinghaus, BaTiO3–CoFe2O4–BaTiO3 trilayer composite thin films prepared by chemical solution deposition, J. Eur. Ceram. Soc. 36(3), 559–565 (2016),
https://doi.org/10.1016/j.jeurceramsoc.2015.10.009
[13] Q. Yang, W. Zhang, M. Yuan, L. Kang, J. Feng, W. Pan, and J. Ouyang, Preparation and characterization of self-assembled percolative BaTiO3–CoFe2O4 nanocomposites via magnetron co-sputtering, Sci. Technol. Adv. Mater. 15(2), 025003 (2014),
https://doi.org/10.1088/1468-6996/15/2/025003
[14] M. dos Santos Amarante, M.J. de Morais Santos, J.P.B. Machado, M.H. Lente, and V.L.O. de Brito, Sintering of layered ferrite-BaTiO3 ceramics: Analysis of interfaces and effects of shrinkage mismatch, Process. Appl. Ceram. 16(2), 134–142 (2022),
https://doi.org/10.2298/PAC2202134A
[15] A. Plyushch, D. Lewin, A. Sokal, R. Grigalaitis, V. Shvartsman, J. Macutkevič, S. Salamon, H. Wende, K. Lapko, P. Kuzhir, et al., Magnetoelectric coupling in nonsintered bulk BaTiO3–xCoFe2O4 multiferroic composites, J. Alloys Compd. 917, 165519 (2022),
https://doi.org/10.1016/j.jallcom.2022.165519
[16] M. Etier, V.V. Shvartsman, S. Salamon, Y. Gao, H. Wende, and D.C. Lupascu, The direct and the converse magnetoelectric effect in multiferroic cobalt ferrite–barium titanate ceramic composites, J. Am. Ceram. Soc. 99(11), 3623–3631 (2016),
https://doi.org/10.1111/jace.14362
[17] G.V. Duong, R. Groessinger, M. Schoenhart, and D. Bueno-Basques, The lock-in technique for studying magnetoelectric effect, J. Magn. Magn. Mater. 316(2), 390–393 (2007),
https://doi.org/10.1016/j.jmmm.2007.03.185
[18] N. Sivakumar, A. Narayanasamy, C. Chinnasamy, and B. Jeyadevan, Influence of thermal annealing on the dielectric properties and electrical relaxation behaviour in nanostructured CoFe2O4 ferrite, J. Phys. Condens. Matter 19(38), 386201 (2007),
https://doi.org/10.1088/0953-8984/19/38/386201
[19] W. Zhong, P. Zhang, Y. Wang, and T. Ren, Size effect on the dielectric properties of BaTiO3, Ferroelectrics 160(1), 55–59 (1994),
https://doi.org/10.1080/00150199408007694
[20] C. Chinnasamy, M. Senoue, B. Jeyadevan, O. Perales-Perez, K. Shinoda, and K. Tohji, Synthesis of size-controlled cobalt ferrite particles with high coercivity and squareness ratio, J. Colloid Interface Sci. 263(1), 80–83 (2003),
https://doi.org/10.1016/S0021-9797(03)00258-3
[21] A. Plyushch, N. Mačiulis, A. Sokal, R. Grigalaitis, J. Macutkevič, A. Kudlash, N. Apanasevich, K. Lapko, A. Selskis, S.A. Maksimenko, et al., 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 phosphate composites: dielectric and ferroelectric properties, Materials 14(17), 5065 (2021),
https://doi.org/10.3390/ma14175065
[22] X. Zhao, R. Cui, and C. Deng, Magnetoelectric properties of three-layered composite thin film fabricated by pulsed laser deposition, Vacuum 200, 110978 (2022),
https://doi.org/10.1016/j.vacuum.2022.110978
[23] A. Guzu, C.E. Ciomaga, M. Airimioaei, L. Padu­rariu, L.P. Curecheriu, I. Dumitru, F. Gheorghiu, G. Stoian, M. Grigoras, N. Lupu, et al., Functional properties of randomly mixed and layered BaTiO3-CoFe2O4 ceramic composites close to the percolation limit, J. Alloys Compd. 796, 55–64 (2019),
https://doi.org/10.1016/j.jallcom.2019.05.068
[24] B. Yang, Z. Li, Y. Gao, Y. Lin, and C.-W. Nan, Multiferroic properties of Bi3.15Nd0.85Ti3O12–CoFe2O4 bilayer films derived by a sol–gel processing, J. Alloys Compd. 509(13), 4608–4612 (2011),
https://doi.org/10.1016/j.jallcom.2011.01.124
[25] D. Zhou, L. Hao, S. Gong, Q. Fu, F. Xue, and G. Jian, Magnetoelectric effect of the multilayered CoFe2O4/BaTiO3 composites fabricated by tape casting, J. Mater. Sci. Mater. Electron. 23(12), 2098–2103 (2012),
https://doi.org/10.1007/s10854-012-0706-9
[26] D. Zhou, G. Jian, Y. Zheng, S. Gong, and F. Shi, Electrophoretic deposition of BaTiO3/CoFe2O4 multiferroic composite films, Appl. Surf. Sci. 257(17), 7621–7626 (2011),
https://doi.org/10.1016/j.apsusc.2011.03.141