[PDF]    https://doi.org/10.3952/physics.v62i4.4818

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 229–234 (2022)

CONTRIBUTION OF FERROELECTRIC AND NON-FERROELECTRIC FACTORS TO PE HYSTERESIS LOOPS OF CuInP2S6-TYPE SINGLE CRYSTALS
Ilona Zamaraitėa, Andrius Džiaugysa, Yulian Vysochanskiib, and Jūras Banysa
a Faculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
b Institute of Solid State Physics and Chemistry, Uzhgorod University, 46 Pidgirna St., 88000 Uzhgorod, Ukraine
Email: ilona.zamaraite@ff.vu.lt

Received 18 October 2022; accepted 18 October 2022

A defining property of ferroelectricity is the switching between different states by the application of an electric field. Hysteresis loops serve like a fingerprint of ferroelectric materials giving some useful information. Sometimes the interpretation of information extracted from hysteresis measurements can be challenging due to the non-ferroelectric factors such as electrical conductivity, defect dipole presence and/or dielectric properties. In this paper, the ferroelectric and non-ferroelectric factors on PE hysteresis loops were investigated in a CuInP2S6-type single crystal. The analysis of data obtained for this single crystal allowed extracting the reliable values in the materials with a low polarization and a high conductivity.
Keywords: ferroelectrics, dielectric spectroscopy, hysteresis


FEROELEKTRINIŲ IR NEFEROELEKTRINIŲ VEIKSNIŲ ĮTAKA CuInP2S6 TIPO MONOKRISTALŲ PE HISTEREZĖS KILPOMS
Ilona Zamaraitėa, Andrius Džiaugysa, Yulian Vysochanskiib, Jūras Banysa

a Vilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
b Užhorodo nacionalinio universiteto Kietojo kūno fizikos ir chemijos institutas, Užhorodas, Ukraina

Viena pagrindinių feroelektrinius kristalus apibūdinančių savybių yra perjungimas tarp skirtingų būsenų naudojant išorinį elektrinį lauką. Histerezės kilpos dažnai interpretuojamos kaip feroelektrinių medžiagų pirštų atspaudai, suteikiantys naudingos informacijos apie medžiagos savybes. Kartais informacija, gauta iš histerezės matavimų, gali būti sudėtingai interpretuojama dėl neferoelektrinių veiksnių, tokių kaip elektros laidumas, defektų dipolių buvimas ir (arba) dielektrinės savybės. Šiame darbe feroelektriniai ir neferoelektriniai veiksniai PE histerezės kilpose buvo nagrinėjami CuInP2(Se0,98S0,02)6 monokristale.


References / Nuorodos

[1] H. Yan, F. Inam, G. Viola, H. Ning, H. Zhang, Q. Jiang, T. Zeng, Z. Gao, and M.J. Reece, The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops, J. Adv. Dielectr. 1, 107–118 (2011),
https://doi.org/10.1142/S2010135X11000148
[2] I. Fina, L. Fábrega, E. Langenberg, X. Mart, F. Sán­chez, M. Varela, and J. Fontcuberta, Nonferroelectric contributions to the hysteresis cycles in manganite thin films: A comparative study of measurement techniques, J. Appl. Phys. 109, 074105 (2011),
https://doi.org/10.1063/1.3555098
[3] L. Jin, F. Li, and S. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures, J. Am. Ceram. Soc. 97, 1–27 (2014),
https://doi.org/10.1111/jace.12773
[4] M. Maglione and M.A. Subramanian, Dielectric and polarization experiments in high loss dielectrics: A word of caution, Appl. Phys. Lett. 93, 032902 (2008),
https://doi.org/10.1063/1.2949752
[5] S. Zhou, L. You, H. Zhou, Y. Pu, Z. Gui, and J. Wang, Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications, Front. Phys. 16, 13301-1–30 (2021),
https://doi.org/10.1007/s11467-020-0986-0
[6] M.A. Susner, M. Chyasnavichyus, M.A. McGuire, P. Ganesh, and P. Maksymovych, Metal thio- and selenophosphates as multifunctional van der Waals layered materials, Adv. Mater. 29, 1602852 (2017),
https://doi.org/10.1002/adma.201602852
[7] V. Maisonneuve, M. Evain, C. Payen, V.B. Cajipe, and P. Molinié, Room-temperature crystal structure of the layered phase CuIInIIIP2S6, J. Alloys Compd. 218, 157–164 (1995),
https://doi.org/10.1016/0925-8388(94)01416-7
[8] A. Belianinov, Q. He, A. Dziaugys, P. Maksy­movych, E. Eliseev, A. Borisevich, A. Morozovska, J. Banys, Y. Vysochanskii, and S. Kalinin, CuInP2S6 room temperature layered ferroelectric, Nano Lett. 15, 3808–3814 (2015),
https://doi.org/10.1021/acs.nanolett.5b00491
[9] V. Maisonneuve, V. Cajipe, A. Simon, R. von der Muhll, and J. Ravez, Ferrielectric ordering in lamellar CuInP2S6, Phys. Rev. B 56, 10860–10868 (1997),
https://doi.org/10.1103/PhysRevB.56.10860
[10] J. Macutkevic, J. Banys, and Y. Vysochanskii, Electrical conductivity of layered CuInP2(SxSe1–x)6 crystals, Phys. Status Solidi B 252(8), 1–5 (2015),
https://doi.org/10.1002/pssb.201451738
[11] V. Maisonneuve, J. Reau, M. Dong, V. Cajipe, C. Payen, and J. Ravez, Ionic conductivity in ferroic CuInP2S6 and CuCrP2S6, Ferroelectrics 196, 257–260 (1997),
https://doi.org/10.1080/00150199708224175
[12] J. Banys, J. Macutkevic, R. Grigalaitis, and Yu. Vy­so­chanskii, Influence of small amount of CuInP2Se6 to conductivity of CuInP2S6 crystals, Solid State Ion. 179, 79–81 (2008),
https://doi.org/10.1016/j.ssi.2007.12.021
[13] A. Dziaugys, J. Banys, and Y. Vysochanskii, Broadband dielectric investigations of indium rich CuInP2S6 layered crystals, Z. Kristallogr. 226, 171–176 (2011),
https://doi.org/10.1524/zkri.2011.1323
[14] A. Džiaugys, Influence of Impurities on Dielectric Properties of Ferroelectric and Superionic Crystals, Doctoral thesis (Vilnius University Publishing House, Vilnius, 2011),
[PDF]
[15] A. Dziaugys, J. Banys, J. Macutkevic, and Y. Vy­sochanskii, Anisotropy effects in thick layered CuInP2S6 and CuInP2Se6 crystals, Phase Transit. 86, 878–885 (2013),
https://doi.org/10.1080/01411594.2012.745533
[16] S. Zhou, L. You, A. Chaturvedi, S.A. Morris, J.S. Herrin, N. Zhang, A. Abdelsamie, Y. Hu, J. Chen, Y. Zhou, S. Dong, and J. Wang, Anomalous polarization switching and permanent retention in a ferroelectric ionic conductor, Mater Horiz. 7, 263–274 (2020),
https://doi.org/10.1039/C9MH01215J
[17] I. Zamaraitė, Ferroelectricity, Dielectric and Low-frequency Noise Spectroscopic Studies of Phosphorus Chalcogenide Crystals, Doctoral thesis (Vilnius University Publishing House, Vilnius, 2019),
[PDF]
[18] D. Damjanovic, in: The Science of Hysteresis, eds. I. Mayergoyz, G. Bertotti (Elsevier, Amsterdam, 2005) pp. 337–465,
https://doi.org/10.1016/B978-012480874-4/50022-1
[19] D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys. 61, 1267–1324 (1998),
https://doi.org/10.1088/0034-4885/61/9/002
[20] I. Zamaraite, J. Matukas, S. Pralgauskaite, Yu. Vy­sochanskii, J. Banys, and A. Dziaugys, Low-frequency noise characteristics of lamellar ferrielectric crystal CuInP2S6 at the phase transition, J. Appl. Phys. 122, 024101 (2017),
https://doi.org/10.1063/1.4992813
[21] Yu. Vysochanskii, T. Janssen, R. Currat, R. Folk, J. Banys, J. Grigas, and V. Samulionis, Phase Transitions in Ferroelectric Phosphorous Chalco­genide Crystals (Vilnius University Publishing House, Vilnius, 2008)
[22] A. Dziaugys, J. Banys, V. Samulionis, J. Macut­kevic, Yu. Vysochanskii, W. Kleemann, and V. Shvartsman, in: Ferroelectrics – Characterization and Modeling, ed. M. Lallart (InTech, New York, 2011) pp. 153–180,
https://doi.org/10.5772/20008
[23] J. Banys, J. Macutkevic, V. Samulionis, A. Bri­lingas, and Yu. Vysochanskii, Dielectric and ultrasonic investigation of phase transition in CuInP2S6 crystals, Phase Transit. 77, 345–358 (2004),
https://doi.org/10.1080/01411590410001667608