[PDF]    https://doi.org/10.3952/physics.v62i4.4820

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 235–242 (2022)

MODEL FOR SELF-ASSEMBLY OF Br–H AND Br–Br BONDED Br4Py MOLECULES
Andrius Ibenskasa, Evaldas E. Tornaua, and Mantas Šimėnasb
a Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
b Faculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
Email: andrius.ibenskas@ftmc.lt

Received 12 September 2022; accepted 3 October 2022

A model, based on the pairwise intermolecular halogen–hydrogen (Br–H) and halogen–halogen (Br–Br) bonding, is proposed to describe the self-assembly of Br4Py molecules into two different planar structures (Phase I and Phase II). The pair bonding interactions are calculated by the density functional theory for the two-molecule and four-molecule clusters. It is shown that about 60% of bonding strength is due to the electrostatic Br(top)–Br(belt) interactions, while the remaining originates from Br–H interactions. The obtained values of pair interactions are further used for Monte Carlo calculations. The model for these calculations is proposed on a square lattice. The two main pair interactions are needed for the emergence of the Phase I ordering, while the Phase II ordering is obtained using a single interaction. The obtained results explain the emergence of both phases.
Keywords: molecular self-assembly, statistical models of phase transitions, Monte Carlo simulations, density functional theory calculations


Br–H IR Br–Br RYŠIAIS SUSIJUNGIANČIŲ Br4Py MOLEKULIŲ SAVAIMINIO SUSITVARKYMO MODELIS
Andrius Ibenskasa, Evaldas E. Tornaua, Mantas Šimėnasb

a Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
b Vilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva

1,3,6,8-tetrabromopireno (Br4Py) molekulių susitvarkymui į dvi skirtingas plokščias struktūras (I ir II fazes) aprašyti yra siūlomas gardelės modelis, grindžiamas porinėmis tarpmolekulinėmis halogeno–vandenilio (Br–H) ir halogeno–halogeno (Br–Br) sąveikomis ant kvadratinės gardelės. Porinių sąveikų energijos įvertinamos skaičiuojant tankio funkcionalą dviejų molekulių ir keturių molekulių klasteriams. Rezultatai rodo, kad apie 60 % sąveikų energijos sudaro elektrostatiniai Br (viršus) – Br (šonas) ryšiai, o likusi dalis atsiranda dėl Br–H ryšių. Gautos sąveikų energijų vertės toliau naudojamos Monte Karlo skaičiavimams atlikti, remiantis pasiūlytu gardelės modeliu. I fazei susiformuoti reikalingos dvi pagrindinės porinės sąveikos, o išsidėstyti į II fazę užtenka vieno sąveikos tipo. Gauti rezultatai paaiškina abiejų fazių susidarymo ypatumus.


References / Nuorodos

[1] D.P. Goronzy, M. Ebrahimi, F. Rosei, Arramel, Y. Fang, S. De Feyter, S.L. Tait, C. Wang, P.H. Beton, A.T.S. Wee, et al., Supramolecular assemblies on surfaces: nanopatterning, functionality, and reactivity, ACS Nano 12, 7445–7481 (2018),
https://doi.org/10.1021/acsnano.8b03513
[2] G.R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford, New York, 1999),
https://doi.org/10.1093/acprof:oso/9780198509707.001.0001
[3] A. Priimagi, G. Cavallo, P. Metrangolo, and G. Resnati, The halogen bond in the design of functional supramolecular materials: recent advances, Acc. Chem. Res. 46, 2686–2695 (2013),
https://doi.org/10.1021/ar400103r
[4] T. Clark, M. Hennemann, J.S. Murray, and P. Politzer, Halogen bonding: the sigma-hole, J. Mol. Model. 13, 291–296 (2007),
https://doi.org/10.1007/s00894-006-0130-2
[5] G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, and G. Terraneo, The halogen bond, Chem. Rev. 116, 2478–2601 (2016),
https://doi.org/10.1021/acs.chemrev.5b00484
[6] A.M.S. Riel, R.K. Rowe, E.N. Ho, A.C. Carlsson, A.K. Rappe, O.B. Berryman, and P.S. Ho, Hydrogen bond enhanced halogen bonds: a synergistic interaction in chemistry and biochemistry, Acc. Chem. Res. 52, 2870–2880 (2019),
https://doi.org/10.1021/acs.accounts.9b00189
[7] R. Gatti, J.M. MacLeod, J.A. Lipton-Duffin, A.G. Moiseev, D.F. Perepichka, and F. Rosei, Substrate, molecular structure, and solvent effects in 2D self-assembly via hydrogen and halogen bonding, J. Phys. Chem. C 118, 25505–25516 (2014),
https://doi.org/10.1021/jp507729w
[8] A. Okada, S. Hasui, K. Mino, S. Hara, M. Yoshimura, and K. Kadono, Structural variations of two-dimensional networks of 2,4,6-tris(4-bromophenyl)-1,3,5-triazine on Au(111) surface from solutions, Surf. Sci. 702, 121718 (2020),
https://doi.org/10.1016/j.susc.2020.121718
[9] F. De Marchi, G. Galeotti, M. Simenas, M.S. Gallagher, E. Hamzehpoor, O. MacLean, R.M. Rao, Y. Chen, D. Dettmann, G. Contini, et al., Temperature-induced molecular reorganization on Au(111) driven by oligomeric defects, Nanoscale 11, 19468–19476 (2019),
https://doi.org/10.1039/C9NR06117G
[10] W. Zhao, L. Dong, C. Huang, Z.M. Win, and N. Lin, Cu- and Pd-catalyzed Ullmann reaction on a hexagonal boron nitride layer, Chem. Commun. 52, 13225–13228 (2016),
https://doi.org/10.1039/C6CC05029H
[11] Z. Yang, L. Fromm, T. Sander, J. Gebhardt, T.A. Schaub, A. Görling, M. Kivala, and S. Maier, On-surface assembly of hydrogen and halogen-bonded supramolecular graphyne-like networks, Angew. Chem. Int. Ed. 59, 9549–9555 (2020),
https://doi.org/10.1002/anie.201916708
[12] T.A. Pham, F. Song, M.-T. Nguyen, and M. Stöhr, Self-assembly of pyrene derivatives on Au(111): substituent effects on intermolecular interactions, Chem. Commun. 50, 14089–14092 (2014),
https://doi.org/10.1039/C4CC02753A
[13] T.A. Pham, F. Song, M.-T. Nguyen, Z. Li, F. Studener, and M. Stöhr, Comparing Ullmann coupling on noble metal surfaces: on-surface polymerization of 1,3,6,8-tetrabromopyrene on Cu(111) and Au(111), Chem. Eur. J. 22, 5937–5944 (2016),
https://doi.org/10.1002/chem.201504946
[14] M. Lischka, M. Fritton, J. Eichhorn, V.S. Vyas, T. Strunskus, B.V. Lotsch, J. Björk, W.M. Heckl, and M. Lackinger, On-surface polymerization of 1,6-dibromo-3,8-diiodpyrene - comparative study on Au(111) versus Ag(111) by STM, XPS, and NEXAFS, J. Phys. Chem. C 122, 5967–5977 (2018),
https://doi.org/10.1021/acs.jpcc.7b10403
[15] M. Lischka, G.S. Michelitsch, N. Martsinovich, J. Eichhorn, A. Rastgoo-Lahrood, T. Strunskus, R. Breuer, K. Reuter, M. Schmittel, and M. Lac­kinger, Remote functionalization in surface-assisted dehalogenation by conformational mechanics: organometallic self-assembly of 3,3',5,5'-tetrabromo-2,2',4,4',6,6'-hexafluorobiphenyl on Ag(111), Nanoscale 10, 12035–12044 (2018),
https://doi.org/10.1039/C8NR01987H
[16] J. Hu, J. Hu, H. Wang, K. Shen, H. Zhang, C. Huang, L. Xie, Q. Tian, H. Huang, Z. Jiang, and F. Song, Initiating Ullmann-like coupling of Br2Py by a semimetal surface, Sci. Rep. 11, 3414 (2021),
https://doi.org/10.1038/s41598-021-82973-z
[17] A. Ibenskas, M. Šimėnas, and E.E. Tornau, Multiorientation model for planar ordering of trimesic acid molecules, J. Phys. Chem. C 122, 7344–7352 (2018),
https://doi.org/10.1021/acs.jpcc.8b01828
[18] A. Ibenskas and E.E. Tornau, Modeling of high-temperature ordered structures with weak intermolecular C-H···F and C-H···N bonds, J. Phys. Chem. C 125, 19560–19569 (2021),
https://doi.org/10.1021/acs.jpcc.1c05861
[19] J. Lisiecki and P. Szabelski, Surface-confined metal-organic precursors comprising naphthalene-like derivatives with differently distributed halogen substituents: A Monte Carlo model, J. Phys. Chem. C 124, 20280–20293 (2020),
https://doi.org/10.1021/acs.jpcc.0c06726
[20] K. Nieckarz, P. Szabelski, and D. Nieckarz, Monte Carlo simulations of the self-assembly of hierarchically organized metal-organic networks on solid surfaces, Surf. Sci. 719, 122041 (2022),
https://doi.org/10.1016/j.susc.2022.122041
[21] D.K. Jacquelín, F.A. Soria, P.A. Paredes-Olivera, and E.M. Patrito, Reactive force field-based molecular dynamics simulations on the thermal stability of trimesic acid on graphene: implications for the design of supramolecular networks, ACS Appl. Nano Mater. 4, 9241–9253 (2021),
https://doi.org/10.1021/acsanm.1c01759
[22] N. Kalashnyk, M.D. Mansour, J. Pijeat, R. Plamont, X. Bouju, T.S. Balaban, S. Campidelli, L. Masson, and S. Clair, Edge-on self-assembly of tetra-bromoanthracenyl-porphyrin on silver surfaces, J. Phys. Chem. C 124, 22137–22142 (2020),
https://doi.org/10.1021/acs.jpcc.0c05908
[23] A. Ibenskas and E.E. Tornau, Modeling of different ordering schemes for halogen-functionalized molecules with triazine and benzene core, J. Phys. Chem. C 126, 8079–8089 (2022),
https://doi.org/10.1021/acs.jpcc.2c00805
[24] F. De Marchi, G. Galeotti, M. Simenas, E.E. Tornau, A. Pezzella, J. MacLeod, M. Ebrahimi, and F. Rosei, Room-temperature surface-assisted reactivity of a melanin precursor: silver metal-organic coordination versus covalent dimerization on gold, Nanoscale 10, 16721–16729 (2018),
https://doi.org/10.1039/C8NR04002H
[25] F. Neese, Software update: the ORCA program system - Version 5.0, WIREs Comput. Mol. Sci. 8, e1606 (2022),
https://doi.org/10.1002/wcms.1327
[26] A. Najibi and L. Goerigk, DFT-D4 counterparts of leading meta-generalized-gradient approximation and hybrid density functionals for energetics and geometries, J. Comput. Chem. 41, 2562–2572 (2020),
https://doi.org/10.1002/jcc.26411
[27] E. Caldeweyher, C. Bannwarth, and S. Grimme, Extension of the D3 dispersion coefficient model, J. Chem. Phys. 147, 034112 (2017),
https://doi.org/10.1063/1.4993215
[28] E. van Lenthe, J.G. Snijders, and E.J. Baerends, The zero‐order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules, J. Chem. Phys. 105, 6505–6516 (1996),
https://doi.org/10.1063/1.472460