, Evaldas E. Tornau
References /
Nuorodos
[1] D.P. Goronzy, M. Ebrahimi, F. Rosei, Arramel, Y. Fang, S. De
Feyter, S.L. Tait, C. Wang, P.H. Beton, A.T.S. Wee, et al.,
Supramolecular assemblies on surfaces: nanopatterning,
functionality, and reactivity, ACS Nano
12, 7445–7481
(2018),
https://doi.org/10.1021/acsnano.8b03513
[2] G.R. Desiraju and T. Steiner,
The Weak Hydrogen Bond in
Structural Chemistry and Biology (Oxford, New York, 1999),
https://doi.org/10.1093/acprof:oso/9780198509707.001.0001
[3] A. Priimagi, G. Cavallo, P. Metrangolo, and G. Resnati, The
halogen bond in the design of functional supramolecular
materials: recent advances, Acc. Chem. Res.
46,
2686–2695 (2013),
https://doi.org/10.1021/ar400103r
[4] T. Clark, M. Hennemann, J.S. Murray, and P. Politzer,
Halogen bonding: the sigma-hole, J. Mol. Model.
13,
291–296 (2007),
https://doi.org/10.1007/s00894-006-0130-2
[5] G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A.
Priimagi, G. Resnati, and G. Terraneo, The halogen bond, Chem.
Rev.
116, 2478–2601 (2016),
https://doi.org/10.1021/acs.chemrev.5b00484
[6] A.M.S. Riel, R.K. Rowe, E.N. Ho, A.C. Carlsson, A.K. Rappe,
O.B. Berryman, and P.S. Ho, Hydrogen bond enhanced halogen
bonds: a synergistic interaction in chemistry and biochemistry,
Acc. Chem. Res.
52, 2870–2880 (2019),
https://doi.org/10.1021/acs.accounts.9b00189
[7] R. Gatti, J.M. MacLeod, J.A. Lipton-Duffin, A.G. Moiseev,
D.F. Perepichka, and F. Rosei, Substrate, molecular structure,
and solvent effects in 2D self-assembly via hydrogen and halogen
bonding, J. Phys. Chem. C
118, 25505–25516 (2014),
https://doi.org/10.1021/jp507729w
[8] A. Okada, S. Hasui, K. Mino, S. Hara, M. Yoshimura, and K.
Kadono, Structural variations of two-dimensional networks of
2,4,6-tris(4-bromophenyl)-1,3,5-triazine on Au(111) surface from
solutions, Surf. Sci.
702, 121718 (2020),
https://doi.org/10.1016/j.susc.2020.121718
[9] F. De Marchi, G. Galeotti, M. Simenas, M.S. Gallagher, E.
Hamzehpoor, O. MacLean, R.M. Rao, Y. Chen, D. Dettmann, G.
Contini, et al., Temperature-induced molecular reorganization on
Au(111) driven by oligomeric defects, Nanoscale
11,
19468–19476 (2019),
https://doi.org/10.1039/C9NR06117G
[10] W. Zhao, L. Dong, C. Huang, Z.M. Win, and N. Lin, Cu- and
Pd-catalyzed Ullmann reaction on a hexagonal boron nitride
layer, Chem. Commun.
52, 13225–13228 (2016),
https://doi.org/10.1039/C6CC05029H
[11] Z. Yang, L. Fromm, T. Sander, J. Gebhardt, T.A. Schaub, A.
Görling, M. Kivala, and S. Maier, On-surface assembly of
hydrogen and halogen-bonded supramolecular graphyne-like
networks, Angew. Chem. Int. Ed.
59, 9549–9555 (2020),
https://doi.org/10.1002/anie.201916708
[12] T.A. Pham, F. Song, M.-T. Nguyen, and M. Stöhr,
Self-assembly of pyrene derivatives on Au(111): substituent
effects on intermolecular interactions, Chem. Commun.
50,
14089–14092 (2014),
https://doi.org/10.1039/C4CC02753A
[13] T.A. Pham, F. Song, M.-T. Nguyen, Z. Li, F. Studener, and
M. Stöhr, Comparing Ullmann coupling on noble metal surfaces:
on-surface polymerization of 1,3,6,8-tetrabromopyrene on Cu(111)
and Au(111), Chem. Eur. J.
22, 5937–5944 (2016),
https://doi.org/10.1002/chem.201504946
[14] M. Lischka, M. Fritton, J. Eichhorn, V.S. Vyas, T.
Strunskus, B.V. Lotsch, J. Björk, W.M. Heckl, and M. Lackinger,
On-surface polymerization of 1,6-dibromo-3,8-diiodpyrene -
comparative study on Au(111) versus Ag(111) by STM, XPS, and
NEXAFS, J. Phys. Chem. C
122, 5967–5977 (2018),
https://doi.org/10.1021/acs.jpcc.7b10403
[15] M. Lischka, G.S. Michelitsch, N. Martsinovich, J. Eichhorn,
A. Rastgoo-Lahrood, T. Strunskus, R. Breuer, K. Reuter, M.
Schmittel, and M. Lackinger, Remote functionalization in
surface-assisted dehalogenation by conformational mechanics:
organometallic self-assembly of
3,3',5,5'-tetrabromo-2,2',4,4',6,6'-hexafluorobiphenyl on
Ag(111), Nanoscale
10, 12035–12044 (2018),
https://doi.org/10.1039/C8NR01987H
[16] J. Hu, J. Hu, H. Wang, K. Shen, H. Zhang, C. Huang, L. Xie,
Q. Tian, H. Huang, Z. Jiang, and F. Song, Initiating
Ullmann-like coupling of Br
2Py by a semimetal
surface, Sci. Rep.
11, 3414 (2021),
https://doi.org/10.1038/s41598-021-82973-z
[17] A. Ibenskas, M. Šimėnas, and E.E. Tornau, Multiorientation
model for planar ordering of trimesic acid molecules, J. Phys.
Chem. C
122, 7344–7352 (2018),
https://doi.org/10.1021/acs.jpcc.8b01828
[18] A. Ibenskas and E.E. Tornau, Modeling of high-temperature
ordered structures with weak intermolecular C-H···F and C-H···N
bonds, J. Phys. Chem. C
125, 19560–19569 (2021),
https://doi.org/10.1021/acs.jpcc.1c05861
[19] J. Lisiecki and P. Szabelski, Surface-confined
metal-organic precursors comprising naphthalene-like derivatives
with differently distributed halogen substituents: A Monte Carlo
model, J. Phys. Chem. C
124, 20280–20293 (2020),
https://doi.org/10.1021/acs.jpcc.0c06726
[20] K. Nieckarz, P. Szabelski, and D. Nieckarz, Monte Carlo
simulations of the self-assembly of hierarchically organized
metal-organic networks on solid surfaces, Surf. Sci.
719,
122041 (2022),
https://doi.org/10.1016/j.susc.2022.122041
[21] D.K. Jacquelín, F.A. Soria, P.A. Paredes-Olivera, and E.M.
Patrito, Reactive force field-based molecular dynamics
simulations on the thermal stability of trimesic acid on
graphene: implications for the design of supramolecular
networks, ACS Appl. Nano Mater.
4, 9241–9253 (2021),
https://doi.org/10.1021/acsanm.1c01759
[22] N. Kalashnyk, M.D. Mansour, J. Pijeat, R. Plamont, X.
Bouju, T.S. Balaban, S. Campidelli, L. Masson, and S. Clair,
Edge-on self-assembly of tetra-bromoanthracenyl-porphyrin on
silver surfaces, J. Phys. Chem. C
124, 22137–22142
(2020),
https://doi.org/10.1021/acs.jpcc.0c05908
[23] A. Ibenskas and E.E. Tornau, Modeling of different ordering
schemes for halogen-functionalized molecules with triazine and
benzene core, J. Phys. Chem. C
126, 8079–8089 (2022),
https://doi.org/10.1021/acs.jpcc.2c00805
[24] F. De Marchi, G. Galeotti, M. Simenas, E.E. Tornau, A.
Pezzella, J. MacLeod, M. Ebrahimi, and F. Rosei,
Room-temperature surface-assisted reactivity of a melanin
precursor: silver metal-organic coordination versus covalent
dimerization on gold, Nanoscale
10, 16721–16729 (2018),
https://doi.org/10.1039/C8NR04002H
[25] F. Neese, Software update: the ORCA program system -
Version 5.0, WIREs Comput. Mol. Sci.
8, e1606 (2022),
https://doi.org/10.1002/wcms.1327
[26] A. Najibi and L. Goerigk, DFT-D4 counterparts of leading
meta-generalized-gradient approximation and hybrid density
functionals for energetics and geometries, J. Comput. Chem.
41,
2562–2572 (2020),
https://doi.org/10.1002/jcc.26411
[27] E. Caldeweyher, C. Bannwarth, and S. Grimme, Extension of
the D3 dispersion coefficient model, J. Chem. Phys. 147, 034112
(2017),
https://doi.org/10.1063/1.4993215
[28] E. van Lenthe, J.G. Snijders, and E.J. Baerends, The
zero‐order regular approximation for relativistic effects: the
effect of spin-orbit coupling in closed shell molecules, J.
Chem. Phys.
105, 6505–6516 (1996),
https://doi.org/10.1063/1.472460