References /
Nuorodos
[1] J. Raya, A. Bianco, and J. Hirschinger, Kinetics of
1H–
13C
multiple-contact cross-polarization as a powerful tool to
determine the structure and dynamics of complex materials:
application to graphene oxide, Phys. Chem. Chem. Phys.
22,
12209–12227 (2020),
https://doi.org/10.1039/D0CP00454E
[2] E.O. Stejskal and J.D. Memory,
High Resolution NMR in
the Solid State: Fundamentals of CP/MAS (Oxford University
Press, New York, 1994)
[3] E.O. Stejskal, J. Schaefer, and J.S. Waugh, Magic-angle
spinning and polarization transfer in proton-enhanced NMR, J.
Magn. Reson.
28, 105–112 (1977),
https://doi.org/10.1016/0022-2364(77)90260-8
[4] V. Klimavicius, L. Dagys, and V. Balevicius, Subnanoscale
order and spin diffusion in complex solids through the
processing of cross-polarization kinetics, J. Phys. Chem. C
120,
3542–3549 (2016),
https://doi.org/10.1021/acs.jpcc.5b11739
[5] L. Dagys, V. Klimavicius, and V. Balevicius, Processing of
CP MAS kinetics: towards NMR crystallography for complex solids,
J. Chem. Phys.
145, 114202 (2016),
https://doi.org/10.1063/1.4962579
[6] V. Klimavicius, A. Maršalka, A. Kizalaite, A. Zarkov, A.
Kareiva, K. Aidas, J. Hirschinger, and V. Balevicius,
Step-by-step from amorphous phosphate to nano-structured calcium
hydroxyapatite: monitoring by solid-state
1H and
31P
NMR and spin dynamics, Phys. Chem. Chem. Phys. 24, 18952-18965
(2022),
https://doi.org/10.1039/D2CP02108K
[7] L. Dagys, S. Balčiūnas, J. Banys, F. Kuliešius, V. Chizhik,
and V. Balevičius, CP MAS kinetics and impedance spectroscopy
studies of local disorder in low-dimensional H-bonded
proton-conducting materials, Lith. J. Phys.
59, 130–138
(2019),
https://doi.org/10.3952/physics.v59i3.4079
[8] V. Klimavicius, L. Dagys, V. Klimkevičius, D. Lengvinaitė,
K. Aidas, S. Balčiūnas, J. Banys, V. Chizhik, and V.
Balevicius, Solid-state NMR and impedance spectroscopy study of
spin dynamics in proton-conducting polymers: an application of
anisotropic relaxing model, J. Phys. Chem. B
125,
12592–12602 (2021),
https://doi.org/10.1021/acs.jpcb.1c06533
[9] L. Dagys, V. Klimkevičius, V. Klimavicius, S. Balčiūnas,
J. Banys, and V. Balevicius, Cross-polarization with
magic-angle spinning kinetics and impedance spectroscopy study
of proton mobility, local disorder, and thermal equilibration in
hydrogen bonded poly(methacrylic acid), J. Polymer Sci.
58,
3253–3263 (2020),
https://doi.org/10.1002/pol.20200592
[10] L. Dagys, V. Klimkevičius, V. Klimavicius, K. Aidas, R.
Makuška, and V. Balevicius, CP MAS Kinetics in soft matter: Spin
diffusion, local disorder and thermal equilibration in
poly(2-hydroxyethyl methacrylate), Solid State Nuclear Magn.
Reson.
105, 101641 (2020),
https://doi.org/10.1016/j.ssnmr.2019.101641
[11] J. Niskanen, C. Wu, M. Ostrowski, G.G. Fuller, S. Hietala,
and H. Tenhu, Thermoresponsiveness of PDMAEMA. Electrostatic and
stereochemical effects, Macromolecules
46, 2331–2340
(2013),
https://doi.org/10.1021/ma302648w
[12] K.M. Huh, H.C. Kang, Y.J. Lee, and Y.H. Bae, pH-Sensitive
polymers for drug delivery, Macromol. Res.
20, 224–233
(2012),
https://doi.org/10.1007/s13233-012-0059-5
[13] G. Kocak, C. Tuncer, and V. Bütün, pH-responsive polymers,
Polym. Chem. 8, 144-176 (2017),
https://doi.org/10.1039/C6PY01872F
[14] C. Bruce, I. Javakhishvili, L. Fogelström, A. Carlmark, S.
Hvilsted, and E. Malmström, Well-defined ABA- and BAB-type block
co-polymers of PDMAEMA and PCL, RSC Adv.
4, 25809–25818
(2014),
https://doi.org/10.1039/c4ra04325a
[15] M.A. De Jesús-Téllez, D.M. Sánchez-Cerrillo, P.
Quintana-Owen, U.S. Schubert, D. Contreras-López, and C.
Guerrero-Sánchez, Kinetic investigations of quaternization
reactions of poly[2-(dimethylamino)ethyl methacrylate] with
diverse alkyl halides, Macromol. Chem. Phys.
221,
1900543 (2020),
https://doi.org/10.1002/macp.201900543
[16] S. Agarwal, Y. Zhang, S. Maji, and A. Greiner, PDMAEMA
based gene delivery materials, Mater. Today
15, 388–393
(2012),
https://doi.org/10.1016/S1369-7021(12)70165-7
[17] V. Klimkevicius and R. Makuska, Successive RAFT
polymerization of poly(ethylene oxide) methyl ether
methacrylates with different length of PEO chains giving diblock
brush copolymers, Eur. Polym. J.
86, 94–105 (2017),
https://doi.org/10.1016/j.eurpolymj.2016.11.026
[18] M. Steponaviciute, V. Klimkevicius, and R. Makuska,
Synthesis and properties of cationic gradient brush copolymers
carrying PEO side chains and catechol moieties, Macromol. Chem.
Phys.
222, 2000364 (2021),
https://doi.org/10.1002/macp.202000364
[19] V. Klimkevicius, M. Steponaviciute, and R. Makuska,
Kinetics of RAFT polymerization and copolymerization of vinyl
monomers by size exclusion chromatography, Eur. Polym. J.
122,
109356 (2020),
https://doi.org/10.1016/j.eurpolymj.2019.109356
[20] J.F. Hinton and K. Wolinski, in:
Theoretical Treatments
of Hydrogen Bonding, ed. D. Hadži (John Wiley & Sons,
Chichester, 1997) pp. 75–93,
https://www.wiley.com/en-us/Theoretical+Treatments+of+Hydrogen+Bonding-p-9780471973959
[21] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,
M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A.
Petersson, H. Nakatsuji, et al., Gaussian 16, Revision A.03
(Gaussian, Inc., Wallingford CT, 2016),
https://gaussian.com/
[22] K. Aidas, A. Maršalka, Z. Gdaniec, and V. Balevičius, A
13C
NMR and DFT study of critical behavior of binary
water/2,6-lutidine solution, Lith. J. Phys.
47, 443–449
(2007),
https://doi.org/10.3952/lithjphys.47421
[23] L. Müller, A. Kumar, T. Baumann, and R.R. Ernst, Transient
oscillations in NMR cross-polarization experiments in solids,
Phys. Rev. Lett.
32, 1402–1406 (1974),
https://doi.org/10.1103/PhysRevLett.32.1402
[24] A. Naito and C.A. McDowell, Anisotropic behavior of the
13C
nuclear spin dynamics in a single crystal of L-alanine, J. Chem.
Phys.
84, 4181–4186 (1986),
https://doi.org/10.1063/1.450038
[25] W. Kolodziejski and J. Klinowski, Kinetics of
cross-polarization in solid-state NMR: a guide for chemists,
Chem. Rev.
102, 613–628 (2002),
https://doi.org/10.1021/cr000060n
[26] J. Hirschinger and J. Raya, J. Magn. Reson. Open [to be
published]
[27] J. Raya and J. Hirschinger, Sensitivity enhancement by
multiple-contact cross-polarization under magic-angle spinning,
J. Magn. Reson.
281, 253–271 (2017),
https://doi.org/10.1016/j.jmr.2017.06.011
[28] J. Hirschinger and J. Raya, Analytical descriptions of
cross-polarisation dynamics: relaxing the secular
approximations, Mol. Phys.
113, 3161–3175 (2015),
https://doi.org/10.1080/00268976.2015.1008596
[29] C.A. Fyfe, A.R. Lewis, and J.M. Chézeau, A comparison of
NMR distance determinations in the solid state by cross
polarization, REDOR, and TEDOR techniques, Can. J. Chem.
77,
1984–1993 (1999),
https://doi.org/10.1139/v99-199
[30] V. Klimavičius, F. Kuliešius, E. Orentas, and V.
Balevičius, Secular and semi-non-secular models of
cross-polarization kinetics for remote spins: An application for
nano-structured calcium hydroxyapatite, Lith. J. Phys.
61,
27–34 (2021),
https://doi.org/10.3952/physics.v61i1.4404
[31] A.G. Palmer III, J. Williams, and A. McDermott, Nuclear
magnetic resonance studies of biopolymer dynamics, J. Phys.
Chem.
100, 13293–13310 (1996),
https://doi.org/10.1021/jp9606117
[32] K. Saalwächter and H.W. Spiess, in:
Polymer Science: A
Comprehensive Reference, Vol. 2 (Elsevier, 2012) pp. 185
-219,
https://doi.org/10.1016/B978-0-444-53349-4.00025-X
[33] J.L. Lorieau and A.E. McDermott, Conformational
flexibility of a microcrystalline globular protein: order
parameters by solid-state NMR spectroscopy, J. Am. Chem. Soc.
128,
11505–11512 (2006),
https://doi.org/10.1021/ja062443u
[34] J.L. Lorieau and A.E. McDermott, Order parameters based on
13C
1H,
13C
1H
2
and
13C
1H
3 heteronuclear
dipolar powder patterns: a comparison of MAS-based solid-state
NMR sequences, Magn. Reson. Chem.
44, 334–347 (2006),
https://doi.org/10.1002/mrc.1773
[35] M. Wang, M. Bertmer, D.E. Demco, and B. Blümich, Segmental
and local chain mobilities in elastomers by
13C–
1H
residual heteronuclear dipolar couplings, J. Phys. Chem. B
108,
10911–10918 (2004),
https://doi.org/10.1021/jp048392+