,
Andrey A. Generalov
References /
Nuorodos
[1] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer,
Intrinsic and extrinsic performance limits of graphene devices
on SiO
2, Nat. Nanotechnol.
3(4), 206–209
(2008),
https://doi.org/10.1038/nnano.2008.58
[2] M.A. Yamoah, W. Yang, E. Pop, and D. Goldhaber-Gordon,
High-velocity saturation in graphene encapsulated by hexagonal
boron nitride, ACS Nano
11(10), 9914–9919 (2017),
https://doi.org/10.1021/acsnano.7b03878
[3] S. Rumyantsev, G. Liu, M.S. Shur, R.A. Potyrailo, and A.A.
Balandin, Selective gas sensing with a single pristine graphene
transistor, Nano Lett.
12(5), 2294–2298 (2012),
https://doi.org/10.1021/nl3001293
[4] B. Kumar, K. Min, M. Bashirzadeh, A.B. Farimani, M.-H. Bae,
D. Estrada, Y.D. Kim, P. Yasaei, Y.D. Park, E. Pop, N.R. Aluru,
and A. Salehi-Khojin, The role of external defects in chemical
sensing of graphene field-effect transistors, Nano Lett.
13(5),
1962–1968 (2013),
https://doi.org/10.1021/nl304734g
[5] G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H.G. Roskos,
Roadmap of terahertz imaging 2021, Sensors
21(12), 4092
(2021),
https://doi.org/10.3390/s21124092
[6] Z. Cheng, Q. Li, Z. Li, Q. Zhou, and Y. Fang, Suspended
graphene sensors with improved signal and reduced noise, Nano
Lett.
10(5), 1864–1868 (2010),
https://doi.org/10.1021/nl100633g
[7] N.A.M. Tran, I. Fakih, O. Durnan, A. Hu, A.M. Aygar, I.
Napal, A. Centeno, A. Zurutuza, B. Reulet, and T. Szkopek,
Graphene field effect transistor scaling for ultra-low-noise
sensors, Nanotechnology
32(4), 045502 (2020),
https://doi.org/10.1088/1361-6528/abc0c8
[8] J. Basu, A. Baral, N. Samanta, N. Mukherjee, and C.
Roychaudhuri, Low noise field effect biosensor with
electrochemically reduced graphene oxide, J. Electrochem. Soc.
165(8),
B3201 (2018),
https://doi.org/10.1149/2.0261808jes
[9] A.A. Generalov, M.A. Andersson, X. Yang, A. Vorobiev, and J.
Stake, A 400-GHz graphene FET detector, IEEE Trans. Terahertz
Sci. Technol.
7(5), 614–616 (2017),
https://doi.org/10.1109/TTHZ.2017.2722360
[10] E. Javadi, D.B. But, K. Ikamas, J. Zdanevičius, W. Knap,
and A. Lisauskas, Sensitivity of field-effect transistor-based
terahertz detectors, Sensors
21(9), 2909 (2021),
https://doi.org/10.3390/s21092909
[11] S.M. Song and B.-J. Cho, Contact resistance in graphene
channel transistors, Carbon Lett.
14(3), 162–170 (2013),
https://doi.org/10.5714/CL.2013.14.3.162
[12] F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu, and P. Avouris,
The origins and limits of metal–graphene junction resistance,
Nature Nanotechnol.
6(3), 179–184 (2011),
https://doi.org/10.1038/nnano.2011.6
[13] H. Zhong, Z. Zhang, B. Chen, H. Xu, D. Yu, L. Huang, and L.
Peng, Realization of low contact resistance close to theoretical
limit in graphene transistors, Nano Res.
8(5), 1669–1679
(2015),
https://doi.org/10.1007/s12274-014-0656-z
[14] K. Jia, J. Yang, Y. Su, P. Nie, J. Zhong, Q. Liang, and H.
Zhu, Stability analysis of a back-gate graphene transistor in
air environment, J. Semicond.
34(8), 084004 (2013),
https://doi.org/10.1088/1674-4926/34/8/084004
[15] D. Čibiraitė, M. Bauer, A. Lisauskas, V. Krozer, H.G.
Roskos, A. Ramer, V. Krozer, W. Heinrich, S. Pralgauskaitė, J.
Zdanevičius, J. Matukas, M. Andersson, and J. Stake, in:
Proceedings of the 2017 International Conference on Noise and
Fluctuations (ICNF) (IEEE, 2017) pp. 1–4,
https://doi.org/10.1109/ICNF.2017.7986008
[16] J. Zdanevičius, D. Čibiraitė, K. Ikamas, M. Bauer, J.
Matukas, A. Lisauskas, H. Richter, T. Hagelschuer, V. Krozer,
H.-W. Hubers, and H.G. Roskos, Field-effect transistor based
detectors for power monitoring of THz quantum cascade lasers,
IEEE Trans. Terahertz Sci. Technol.
8(6), 613–621
(2018),
https://doi.org/10.1109/TTHZ.2018.2871360
[17] K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer,
and H.G. Roskos, Broadband terahertz power detectors based on
90-nm silicon CMOS transistors with flat responsivity up to 2.2
THz, IEEE Electron Device Lett.
39(9), 1413–1416 (2018),
https://doi.org/10.1109/LED.2018.2859300
[18] M. Dyakonov and M. Shur, Detection, mixing, and frequency
multiplication of terahertz radiation by two-dimensional
electronic fluid, IEEE Trans. Electron. Dev.
43(3),
380–387 (1996),
https://doi.org/10.1109/16.485650
[19] A. Lisauskas, U. Pfeiffer, E. Öjefors, P. Haring Bolìvar,
D. Glaab, and H.G. Roskos, Rational design of high-responsivity
detectors of terahertz radiation based on distributed
self-mixing in silicon field-effect transistors, J. Appl. Phys.
105(11), 114511 (2009),
https://doi.org/10.1063/1.3140611
[20] S. Boppel, A. Lisauskas, M. Mundt, D. Seliuta, L.
Minkevičius, I. Kašalynas, G. Valušis, M. Mittendorff, S.
Winnerl, V. Krozer, and H.G. Roskos, CMOS integrated
antenna-coupled field-effect transistors for the detection of
radiation from 0.2 to 4.3 THz, IEEE Trans. Microwave Theory
Tech.
60(12), 3834–3843 (2012),
https://doi.org/10.1109/TMTT.2012.2221732
[21] M. Bauer, A. Rämer, S.A. Chevtchenko, K.Y. Osipov, D.
Čibiraitė, S. Pralgauskaitė, K. Ikamas, A. Lisauskas, W.
Heinrich, V. Krozer, and H.G. Roskos, A high-sensitivity
AlGaN/GaN HEMT terahertz detector with integrated broadband
bow-tie antenna, IEEE Trans. Terahertz Sci. Technol.
9(4),
430–444 (2019),
https://doi.org/10.1109/TTHZ.2019.2917782
[22] M. Shur, T.A. Fjeldly, T. Ytterdal, and K. Lee, Unified
MOSFET model, Solid State Electron.
35(12), 1795–1802
(1992),
https://doi.org/10.1016/0038-1101(92)90263-C
[23] S. Das Sarma, S. Adam, E.H. Hwang, and E. Rossi, Electronic
transport in two-dimensional graphene, Rev. Mod. Phys.
83(2),
407–470 (2011),
https://doi.org/10.1103/RevModPhys.83.407
[24] V. Ariel and A. Natan, Electron Effective Mass in Graphene
(2012),
https://arxiv.org/abs/1206.6100,
https://doi.org/10.48550/arXiv.1206.6100
[25] E. Tiras, S. Ardali, T. Tiras, E. Arslan, S. Cakmakyapan,
O. Kazar, J. Hassan, E. Janzén, and E. Ozbay, Effective mass of
electron in monolayer graphene: Electron-phonon interaction, J.
Appl. Phys.
113(4), 043708 (2013),
https://doi.org/10.1063/1.4789385
[26] D.B. Davidson,
Computational Electromagnetics for RF
and Microwave Engineering (Cambridge University Press,
Cambridge, New York, 2005),
https://doi.org/10.1017/CBO9780511611575
[27] A. Zak, M.A. Andersson, M. Bauer, J. Matukas, A. Lisauskas,
H.G. Roskos, and J. Stake, Antenna-integrated 0.6 THz FET direct
detectors based on CVD graphene, Nano Lett.
14(10),
5834–5838 (2014),
https://doi.org/10.1021/nl5027309
[28] H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, Hysteresis of
electronic transport in graphene transistors, ACS Nano
4(12),
7221–7228 (2010),
https://doi.org/10.1021/nn101950n
[29] S. Rumyantsev, G. Liu, W. Stillman, M. Shur, and A.A.
Balandin, Electrical and noise characteristics of graphene
field-effect transistors: ambient effects, noise sources and
physical mechanisms, J. Phys. Condens. Matter
22(39),
395302 (2010),
https://doi.org/10.1088/0953-8984/22/39/395302
[30] A.A. Balandin, Low-frequency 1/
f noise in graphene
devices, Nat. Nanotechnol.
8(8), 549–555 (2013),
https://doi.org/10.1038/nnano.2013.144
[31] T. Wu, A. Alharbi, T. Taniguchi, K. Watanabe, and D.
Shahrjerdi, Low-frequency noise in irradiated graphene FETs,
Appl. Phys. Lett.
113(19), 193502 (2018),
https://doi.org/10.1063/1.5051658
[32] X. Yang, A. Vorobiev, K. Jeppson, J. Stake, L. Banszerus,
C. Stampfer, M. Otto, and D. Neumaier, in:
Proceedings of
the 2018 43rd International Conference on Infrared,
Millimeter, and Terahertz Waves (IRMMW-THz) (2018) pp.
1–2,
https://doi.org/10.1109/IRMMW-THz.2018.8510404
[33] M. Tian, Q. Hu, C. Gu, X. Xiong, Z. Zhang, X. Li, and Y.
Wu, Tunable 1/f noise in CVD Bernal-stacked bilayer graphene
transistors, ACS Appl. Mater. Interfaces
12(15),
17686–17690 (2020),
https://doi.org/10.1021/acsami.9b21070
[34] J.S. Moon, H.-C. Seo, M. Antcliffe, S. Lin, C. McGuire, D.
Le, L.O. Nyakiti, D.K. Gaskill, P.M. Campbell, K.-M. Lee, and
P. Asbeck, Graphene FET-based zero-bias RF to millimeter-wave
detection, IEEE Electron Device Lett.
33(10), 1357–1359
(2012),
https://doi.org/10.1109/LED.2012.2210184
[35] A. Rehman, J.A. Delgado Notario, J. Salvador Sanchez, Y.M.
Meziani, G. Cywiński, W. Knap, A.A. Balandin, M. Levinshtein,
and S. Rumyantsev, Nature of the 1/f noise in graphene–direct
evidence for the mobility fluctuation mechanism, Nanoscale
14,
7242–7249 (2022),
https://doi.org/10.1039/D2NR00207H
[36] S. Pralgauskaitė, K. Ikamas, J. Matukas, A. Lisauskas, V.
Jakštas, V. Janonis, I. Kašalynas, P. Prystawko, and M.
Leszczynski, in:
Proceedings of the 2018 22nd International
Microwave and Radar Conference (MIKON) (IEEE, 2018) pp.
186–189,
https://doi.org/10.23919/MIKON.2018.8405173
[37] A. Lisauskas, A. Rämer, M. Burakevič, S. Chevtchenko, V.
Krozer, W. Heinrich, and H.G. Roskos, Terahertz emission from
biased AlGaN/GaN high-electron-mobility transistors, J. Appl.
Phys.
125(15), 151614 (2019),
https://doi.org/10.1063/1.5083838
[38] M. Bauer, M. Andersson, A. Zak, P. Sakalas, D. Čibiraitė,
A. Lisauskas, M. Schröter, J. Stake, and H.G. Roskos, The
potential for sensitivity enhancement by the thermoelectric
effect in carbon-nanotube and graphene Tera-FETs, J. Phys. Conf.
Ser.
647(1), 012004 (2015),
https://doi.org/10.1088/1742-6596/647/1/012004
[39] D.A. Bandurin, I. Gayduchenko, Y. Cao, M. Moskotin, A.
Principi, I.V. Grigorieva, G. Goltsman, G. Fedorov, and D.
Svintsov, Dual origin of room temperature sub-terahertz
photoresponse in graphene field effect transistors, Appl. Phys.
Lett.
112(14), 141101 (2018),
https://doi.org/10.1063/1.5018151