[PDF]    https://doi.org/10.3952/physics.v62i4.4822

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 254–266 (2022)

OPTIMIZATION OF TERAHERTZ DETECTORS BASED ON GRAPHENE FIELD EFFECT TRANSISTORS BY HIGH IMPEDANCE ANTENNAE
Domantas Vizbarasa, Kęstutis Ikamasa,c, Sandra Pralgauskaitėa, Jonas Matukasa, Andrey A. Generalovd, and Alvydas Lisauskasa,b
a Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
b CENTERA Laboratories, Institute of High Pressure Physics PAS, Warsaw, 01-142 Poland
c Research Group on Logistics and Defense Technology Management, General Jonas Žemaitis Military Academy of Lithuania, Šilo 5, 10322 Vilnius, Lithuania
d VTT Technical Research Centre of Finland LTD, P.O. Box 1000, FI-02044 VTT
Email: domantas.vizbaras@ff.vu.lt

Received 23 October 2022; accepted 23 October 2022

This contribution presents the results of investigations performed on monolayer graphene field effect transistor-based (GFET-based) terahertz detectors. We have implemented three different types of planar antennae: a bow-tie, a bow-tie with transmission lines and a slot-disc, allowing us to realize different conditions for high-frequency impedance matching. We present a semi-empirical model which uses physical parameters derived from electrical characterization results of devices and electrodynamic characteristics of antennae, allowing us to predict THz responsivity. Model predictions have been compared with the responsivity measurements performed at room temperature in a frequency range from 50 to 1250 GHz. Good agreement between the model predictions and experimental results implies the eligibility of a distributed resistive mixing approximation for GFET. In addition, the device stability, the temperature dependence and the origin of noise in the transistor channel have been investigated. Finally, to the best of our knowledge, we demonstrate the record performance values for room temperature graphene-based terahertz detectors: 80V/W optical responsivity without the normalization to the antenna effective area and a noise equivalent power of 111 pW/Hz\sqrt{\mathrm{Hz}} at 336 GHz.
Keywords: power detectors, field effect transistor (FET), graphene, submillimeter wave measurements, terahertz (THz), hysteresis, analytical model

TERAHERCŲ DETEKTORIŲ SU GRAFENO LAUKO TRANZISTORIAIS OPTIMIZACIJA AUKŠTADAŽNĖS PILNUTINĖS VARŽOS ANTENOMIS
Domantas Vizbarasa, Kęstutis Ikamasa,c, Sandra Pralgauskaitėa, Jonas Matukasa, Andrey A. Generalovd, Alvydas Lisauskasa,b

a Vilniaus universiteto Taikomosios elektrodinamikos ir telekomunikacijų institutas, Vilnius, Lietuva
b Aukšto slėgio fizikos instituto CENTERA laboratorijos, Varšuva, Lenkija
c Generolo Jono Žemaičio Lietuvos karo akademijos Logistikos ir gynybos technologijų vadybos mokslo grupė, Vilnius, Lietuva
d Suomijos techninių tyrimų centras VTT, Espas, Suomija

Šiame darbe pateikiami terahercų detektorių su vieno sluoksnio grafeno lauko tranzistoriumi (GLT) tyrimų rezultatai. Ištirti detektoriai su trimis skirtingomis paviršinio tipo antenomis: peteliške, peteliške su perdavimo linijomis ir disku su plyšiu. Pasiūlytas sprendimas leido sukurti skirtingas aukštadažnės pilnutinės varžos suderinimo sąlygas. Skaičiuojant įtaisų jautrį buvo pritaikytas pusiau empirinis modelis, kuriame panaudoti fizikiniai parametrai, gauti išmatavus įtaisų elektrines charakteristikas, ir sumodeliuoti antenų elektrodinaminiai parametrai. Modeliavimo rezultatai palyginti su kambario temperatūroje 50–1250 GHz dažnių ruože išmatuotomis jautrio vertėmis. Geras eksperimentinių ir teorinių rezultatų sutapimas rodo, kad paskirstyto varžinio maišymo artinį sėkmingai galima taikyti ir vieno sluoksnio grafeno lauko tranzistoriams. Taip pat ištirtas detektorių stabilumas, parametrų priklausomybė nuo temperatūros bei įvertinta tranzistoriaus kanalo triukšmų kilmė. Darbe pateiktas rekordinis GLT terahercų detektorių optinis jautris ir efektinė triukšmų galia: atitinkamai, 80 V/W ir 111 pW/Hz\sqrt{\mathrm{Hz}} ties 336 GHz dažniu kambario temperatūroje.


References / Nuorodos

[1] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol. 3(4), 206–209 (2008),
https://doi.org/10.1038/nnano.2008.58
[2] M.A. Yamoah, W. Yang, E. Pop, and D. Goldhaber-Gordon, High-velocity saturation in graphene encapsulated by hexagonal boron nitride, ACS Nano 11(10), 9914–9919 (2017),
https://doi.org/10.1021/acsnano.7b03878
[3] S. Rumyantsev, G. Liu, M.S. Shur, R.A. Potyrailo, and A.A. Balandin, Selective gas sensing with a single pristine graphene transistor, Nano Lett. 12(5), 2294–2298 (2012),
https://doi.org/10.1021/nl3001293
[4] B. Kumar, K. Min, M. Bashirzadeh, A.B. Farimani, M.-H. Bae, D. Estrada, Y.D. Kim, P. Yasaei, Y.D. Park, E. Pop, N.R. Aluru, and A. Salehi-Khojin, The role of external defects in chemical sensing of graphene field-effect transistors, Nano Lett. 13(5), 1962–1968 (2013),
https://doi.org/10.1021/nl304734g
[5] G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H.G. Roskos, Roadmap of terahertz imaging 2021, Sensors 21(12), 4092 (2021),
https://doi.org/10.3390/s21124092
[6] Z. Cheng, Q. Li, Z. Li, Q. Zhou, and Y. Fang, Suspended graphene sensors with improved signal and reduced noise, Nano Lett. 10(5), 1864–1868 (2010),
https://doi.org/10.1021/nl100633g
[7] N.A.M. Tran, I. Fakih, O. Durnan, A. Hu, A.M. Aygar, I. Napal, A. Centeno, A. Zurutuza, B. Reulet, and T. Szkopek, Graphene field effect transistor scaling for ultra-low-noise sensors, Nanotechnology 32(4), 045502 (2020),
https://doi.org/10.1088/1361-6528/abc0c8
[8] J. Basu, A. Baral, N. Samanta, N. Mukherjee, and C. Roychaudhuri, Low noise field effect biosensor with electrochemically reduced graphene oxide, J. Electrochem. Soc. 165(8), B3201 (2018),
https://doi.org/10.1149/2.0261808jes
[9] A.A. Generalov, M.A. Andersson, X. Yang, A. Vorobiev, and J. Stake, A 400-GHz graphene FET detector, IEEE Trans. Terahertz Sci. Technol. 7(5), 614–616 (2017),
https://doi.org/10.1109/TTHZ.2017.2722360
[10] E. Javadi, D.B. But, K. Ikamas, J. Zdanevičius, W. Knap, and A. Lisauskas, Sensitivity of field-effect transistor-based terahertz detectors, Sensors 21(9), 2909 (2021),
https://doi.org/10.3390/s21092909
[11] S.M. Song and B.-J. Cho, Contact resistance in graphene channel transistors, Carbon Lett. 14(3), 162–170 (2013),
https://doi.org/10.5714/CL.2013.14.3.162
[12] F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu, and P. Avouris, The origins and limits of metal–graphene junction resistance, Nature Nanotechnol. 6(3), 179–184 (2011),
https://doi.org/10.1038/nnano.2011.6
[13] H. Zhong, Z. Zhang, B. Chen, H. Xu, D. Yu, L. Huang, and L. Peng, Realization of low contact resistance close to theoretical limit in graphene transistors, Nano Res. 8(5), 1669–1679 (2015),
https://doi.org/10.1007/s12274-014-0656-z
[14] K. Jia, J. Yang, Y. Su, P. Nie, J. Zhong, Q. Liang, and H. Zhu, Stability analysis of a back-gate graphene transistor in air environment, J. Semicond. 34(8), 084004 (2013),
https://doi.org/10.1088/1674-4926/34/8/084004
[15] D. Čibiraitė, M. Bauer, A. Lisauskas, V. Krozer, H.G. Roskos, A. Ramer, V. Krozer, W. Heinrich, S. Pral­gauskaitė, J. Zdanevičius, J. Matukas, M. An­ders­son, and J. Stake, in: Proceedings of the 2017 International Conference on Noise and Fluctuations (ICNF) (IEEE, 2017) pp. 1–4,
https://doi.org/10.1109/ICNF.2017.7986008
[16] J. Zdanevičius, D. Čibiraitė, K. Ikamas, M. Bau­er, J. Matukas, A. Lisauskas, H. Richter, T. Ha­gels­chuer, V. Krozer, H.-W. Hubers, and H.G. Ros­kos, Field-effect transistor based detectors for power monitoring of THz quantum cascade lasers, IEEE Trans. Terahertz Sci. Technol. 8(6), 613–621 (2018),
https://doi.org/10.1109/TTHZ.2018.2871360
[17] K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H.G. Roskos, Broadband terahertz power detectors based on 90-nm silicon CMOS transistors with flat responsivity up to 2.2 THz, IEEE Electron Device Lett. 39(9), 1413–1416 (2018),
https://doi.org/10.1109/LED.2018.2859300
[18] M. Dyakonov and M. Shur, Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid, IEEE Trans. Electron. Dev. 43(3), 380–387 (1996),
https://doi.org/10.1109/16.485650
[19] A. Lisauskas, U. Pfeiffer, E. Öjefors, P. Haring Bolìvar, D. Glaab, and H.G. Roskos, Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors, J. Appl. Phys. 105(11), 114511 (2009),
https://doi.org/10.1063/1.3140611
[20] S. Boppel, A. Lisauskas, M. Mundt, D. Seliuta, L. Min­kevičius, I. Kašalynas, G. Valušis, M. Mit­tendorff, S. Winnerl, V. Krozer, and H.G. Roskos, CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz, IEEE Trans. Microwave Theory Tech. 60(12), 3834–3843 (2012),
https://doi.org/10.1109/TMTT.2012.2221732
[21] M. Bauer, A. Rämer, S.A. Chevtchenko, K.Y. Osi­pov, D. Čibiraitė, S. Pralgauskaitė, K. Ikamas, A. Li­sauskas, W. Heinrich, V. Krozer, and H.G. Ros­kos, A high-sensitivity AlGaN/GaN HEMT terahertz detector with integrated broadband bow-tie antenna, IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019),
https://doi.org/10.1109/TTHZ.2019.2917782
[22] M. Shur, T.A. Fjeldly, T. Ytterdal, and K. Lee, Unified MOSFET model, Solid State Electron. 35(12), 1795–1802 (1992),
https://doi.org/10.1016/0038-1101(92)90263-C
[23] S. Das Sarma, S. Adam, E.H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene, Rev. Mod. Phys. 83(2), 407–470 (2011),
https://doi.org/10.1103/RevModPhys.83.407
[24] V. Ariel and A. Natan, Electron Effective Mass in Graphene (2012), https://arxiv.org/abs/1206.6100,
https://doi.org/10.48550/arXiv.1206.6100
[25] E. Tiras, S. Ardali, T. Tiras, E. Arslan, S. Cak­ma­kyapan, O. Kazar, J. Hassan, E. Janzén, and E. Ozbay, Effective mass of electron in monolayer graphene: Electron-phonon interaction, J. Appl. Phys. 113(4), 043708 (2013),
https://doi.org/10.1063/1.4789385
[26] D.B. Davidson, Computational Electromagnetics for RF and Microwave Engineering (Cambridge University Press, Cambridge, New York, 2005),
https://doi.org/10.1017/CBO9780511611575
[27] A. Zak, M.A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H.G. Roskos, and J. Stake, Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene, Nano Lett. 14(10), 5834–5838 (2014),
https://doi.org/10.1021/nl5027309
[28] H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, Hysteresis of electronic transport in graphene transistors, ACS Nano 4(12), 7221–7228 (2010),
https://doi.org/10.1021/nn101950n
[29] S. Rumyantsev, G. Liu, W. Stillman, M. Shur, and A.A. Balandin, Electrical and noise characteristics of graphene field-effect transistors: ambient effects, noise sources and physical mechanisms, J. Phys. Condens. Matter 22(39), 395302 (2010),
https://doi.org/10.1088/0953-8984/22/39/395302
[30] A.A. Balandin, Low-frequency 1/f noise in graphene devices, Nat. Nanotechnol. 8(8), 549–555 (2013),
https://doi.org/10.1038/nnano.2013.144
[31] T. Wu, A. Alharbi, T. Taniguchi, K. Watanabe, and D. Shahrjerdi, Low-frequency noise in irradiated graphene FETs, Appl. Phys. Lett. 113(19), 193502 (2018),
https://doi.org/10.1063/1.5051658
[32] X. Yang, A. Vorobiev, K. Jeppson, J. Stake, L. Bans­zerus, C. Stampfer, M. Otto, and D. Neumaier, in: Proceedings of the 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2018) pp. 1–2,
https://doi.org/10.1109/IRMMW-THz.2018.8510404
[33] M. Tian, Q. Hu, C. Gu, X. Xiong, Z. Zhang, X. Li, and Y. Wu, Tunable 1/f noise in CVD Bernal-stacked bilayer graphene transistors, ACS Appl. Mater. Interfaces 12(15), 17686–17690 (2020),
https://doi.org/10.1021/acsami.9b21070
[34] J.S. Moon, H.-C. Seo, M. Antcliffe, S. Lin, C. McGui­re, D. Le, L.O. Nyakiti, D.K. Gaskill, P.M. Camp­bell, K.-M. Lee, and P. Asbeck, Grap­hene FET-based zero-bias RF to millimeter-wave detection, IEEE Electron Device Lett. 33(10), 1357–1359 (2012),
https://doi.org/10.1109/LED.2012.2210184
[35] A. Rehman, J.A. Delgado Notario, J. Salvador Sanchez, Y.M. Meziani, G. Cywiński, W. Knap, A.A. Balandin, M. Levinshtein, and S. Rumy­antsev, Nature of the 1/f noise in graphene–direct evidence for the mobility fluctuation mechanism, Nanoscale 14, 7242–7249 (2022),
https://doi.org/10.1039/D2NR00207H
[36] S. Pralgauskaitė, K. Ikamas, J. Matukas, A. Li­saus­kas, V. Jakštas, V. Janonis, I. Kašalynas, P. Prys­tawko, and M. Leszczynski, in: Proceedings of the 2018 22nd International Microwave and Radar Conference (MIKON) (IEEE, 2018) pp. 186–189,
https://doi.org/10.23919/MIKON.2018.8405173
[37] A. Lisauskas, A. Rämer, M. Burakevič, S. Chevt­chenko, V. Krozer, W. Heinrich, and H.G. Roskos, Terahertz emission from biased AlGaN/GaN high-electron-mobility transistors, J. Appl. Phys. 125(15), 151614 (2019),
https://doi.org/10.1063/1.5083838
[38] M. Bauer, M. Andersson, A. Zak, P. Sakalas, D. Čibiraitė, A. Lisauskas, M. Schröter, J. Stake, and H.G. Roskos, The potential for sensitivity enhancement by the thermoelectric effect in carbon-nanotube and graphene Tera-FETs, J. Phys. Conf. Ser. 647(1), 012004 (2015),
https://doi.org/10.1088/1742-6596/647/1/012004
[39] D.A. Bandurin, I. Gayduchenko, Y. Cao, M. Mos­kotin, A. Principi, I.V. Grigorieva, G. Goltsman, G. Fedorov, and D. Svintsov, Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors, Appl. Phys. Lett. 112(14), 141101 (2018),
https://doi.org/10.1063/1.5018151