[PDF]    https://doi.org/10.3952/physics.v62i4.4823

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 267–276 (2022)

IMPROVEMENT OF TERAHERTZ IMAGES BY ADAPTIVE DISCRETE COSINE TRANSFORM (DCT)-BASED DENOISING
Victoriya V. Abramovaa,b, Sergiy K. Abramova, Volodymyr V. Lukina, Ignas Grigelionisb, Linas Minkevičiusb, and Gintaras Valušisb
a Department of Information-Communication Technologies, National Aerospace University, Chkalova 17, 61070 Kharkiv, Ukraine
b Department of Optoelectronics, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: gintaras.valusis@ftmc.lt

Received 25 October 2022; accepted 28 October 2022

Due to certain hardware limitations the quality of terahertz images is often lower than desired, which makes it difficult to extract valuable information from them. The goal of this paper is to investigate possibilities to overcome some of these limitations by means of digital image processing. The research is held on a set of images obtained at different distances from the source of terahertz radiation at 0.1 THz frequency. It is shown that the noise in these images is mixed and has a significant level of spatial correlation. For image quality enhancement a fully automatic denoising method based on the use of a discrete cosine transform with a spatially adapted spectrum is proposed. It is shown that despite an initially low spatial resolution of terahertz images and intensive noise, it provides a good noise reduction with a good preservation of edges, which allows one to noticeably improve the quality of these images and make them more convenient for visual analysis carried out by a human operator.
Keywords: terahertz imaging, image denoising, correlated noise, DCT


TERAHERCINIŲ VAIZDŲ PAGERINIMAS NAUDOJANT DISKRETINE KOSINUSINE TRANSFORMACIJA PAREMTĄ TRIUKŠMO SUMAŽINIMO METODĄ
Victoriya V. Abramovaa,b, Sergiy K. Abramova, Volodymyr V. Lukina, Ignas Grigelionisb, Linas Minkevičiusb, Gintaras Valušisb

a Nacionalinio aerokosmoso universiteto Informacijos ir komunikacijos technologijų departamentas, Charkivas, Ukraina
b Fizinių ir technologijos mokslų centro Optoelektronikos skyrius, Vilnius, Lietuva

Žemą terahercinių (THz) vaizdų kokybę dažniausiai lemia aparatūriniai apribojimai, trukdantys naudingos informacijos vaizduose išskyrimui. Šio darbo tikslas buvo ištirti galimybes apeiti iškylančius apribojimus, pasitelkiant skaitmeninio vaizdų apdorojimo metodiką. Tyrimas atliktas naudojant vaizdų, užrašytų bandiniui esant skirtingu atstumu nuo 0,1 THz dažnio terahercinės spinduliuotės šaltinio, rinkinį. Darbe parodyta, kad gautuose THz vaizduose vyrauja kelių skirtingų prigimčių stipriai erdviškai koreliuotas triukšmas. Vaizdų kokybei pagerinti siūloma naudoti automatinį triukšmo sumažinimo metodą, paremtą diskretine kosinusine transformacija su erdviškai pritaikytu spektru. Parodoma, kad tokia metodika leidžia padidinti THz vaizdų kokybę efektyviai sumažinant pradinį triukšmą bei išsaugant ryškius vaizde esančių objektų kontūrus net ir esant žemai erdvinei skyrai ir dideliam pradiniam triukšmo lygiui, taip paruošiant vaizdus tolesnei vizualinei analizei.


References / Nuorodos

[1] J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, THz imaging and sensing for security applications – explosives, weapons and drugs, Semicond. Sci. Technol. 20, 266–280 (2005),
https://doi.org/10.1088/0268-1242/20/7/018
[2] N. Palka, M. Szustakowski, M. Kowalski, T. Trzcins­ki, R. Ryniec, M. Piszczek, W. Ciu­ra­pins­ki, M. Zyczkowski, P. Zagrajek, and J. Wrobel, THz spectroscopy and imaging in security applications, in: Proceedings of 19th International Conference on Microwaves, Radar & Wireless Communications (IEEE, 2012) pp. 265–270,
https://doi.org/10.1109/MIKON.2012.6233513
[3] M. Lu, J. Shen, N. Li, Y. Zhang, and C. Zhang, Detection and identification of illicit drugs using terahertz imaging, J. Appl. Phys. 100, 103104 (2006),
https://doi.org/10.1063/1.2388041
[4] I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Se­šek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Se­liuta, G. Valušis, A. Švigelj, and J. Trontelj, Spectro­scopic terahertz maging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues, Sensors 16, 432 (2016),
https://doi.org/10.3390/s16040432
[5] M. Karaliūnas, K.E. Nasser, A. Urbanowicz, I. Kašalynas, D. Bražinskienė, S. Asadauskas, and G. Valušis, Non-destructive inspection of food and technical oils by terahertz spectroscopy, Sci. Rep. 8, 18025 (2018),
https://doi.org/10.1038/s41598-018-36151-3
[6] K. Krügener, J. Ornik, L.M. Schneider, A. Jäckel, C.L. Koch-Dandolo, E. Castro-Camus, N. Riedl-Siedow, M. Koch, and W. Viöl, Terahertz inspection of buildings and architectural art, Appl. Sci. 10, 5166 (2020),
https://doi.org/10.3390/app10155166
[7] G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H.G. Roskos, Roadmap of terahertz imaging 2021, Sensors 21, 4092 (2021),
https://doi.org/10.3390/s21124092
[8] D. Jokubauskis, L. Minkevičius, D. Seliuta, I Kašalynas, and G. Valušis, Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects, Opt. Eng. 58, 023104 (2019),
https://doi.org/10.1117/1.OE.58.2.023104
[9] L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Se­liuta, G. Valušis, A. Lisauskas, S. Boppel, H.G. Ros­kos, and K. Köhler, Terahertz heterodyne imaging with InGaAs-based bow-tie diodes, Appl. Phys. Lett. 99, 131101 (2011),
https://doi.org/10.1063/1.3641907
[10] K. Ščupáková, V. Terzopoulos, S. Jain, D. Smeets, and R. Heeren, A patch-based super resolution algorithm for improving image resolution in clinical mass spectrometry, Sci. Rep. 9, 2915 (2019),
https://doi.org/10.1038/s41598-019-38914-y
[11] J. Yang and T. Huang, Image super-resolution: Historical overview and future challenges, in: Super-Resolution Imaging, Vol. 1, ed. P. Milanfar (CRC Press, Boca Raton, 2011) pp. 1–33,
https://www.routledge.com/Super-Resolution-Imaging/Milanfar/p/book/9781439819302
[12] A. Shukla, S. Merugu, and K. Jain, A technical review on image super-resolution techniques, in: Advances in Cybernetics, Cognition, and Machine Learning for Communication Technologies, Lecture Notes in Electrical Engineering, Vol. 643, eds. V.K. Gunjan, S. Senatore, A. Kumar, X. Gao, S. Merugu (Springer, Singapore, 2020) pp. 543–565,
https://doi.org/10.1007/978-981-15-3125-5_54
[13] A. Foi, K. Dabov, V. Katkovnik, and K. Egiazarian, Shape-adaptive DCT for denoising and image reconstruction, in: Proceedings of the SPIE, Vol. 6064, Electronic Imaging 2006, Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning (San Jose, 2006), 60640N
https://doi.org/10.1117/12.642839
[14] H. Zhao, H. Yang, H. Su, and S. Zheng, Natural image deblurring based on ringing artifacts removal via knowledge-driven gradient distribution priors, IEEE Access 8, 129975–129991 (2020),
https://doi.org/10.1109/ACCESS.2020.3007972
[15] S. Yadav, C. Jain, and A. Chugh, Evaluation of image deblurring techniques, Int. J. Comput. Appl. 139, 32–36 (2016),
https://doi.org/10.5120/ijca2016909492
[16] L. Fan, F. Zhang, H. Fan, and C. Zhang, Brief review of image denoising techniques, Vis. Comput. Ind. Biomed. Art 2, 7 (2019),
https://doi.org/10.1186/s42492-019-0016-7
[17] O. Rubel, V. Lukin, S. Krivenko, V. Pavlikov, S. Zhyla, and E. Tserne, Reduction of spatially correlated speckle in textured SAR images, Int. J. Comput. 3, 319–327 (2021),
https://doi.org/10.47839/ijc.20.3.2276
[18] V. Lukin, S. Abramov, R. Kozhemiakin, A. Rubel, M. Uss, N. Ponomarenko, V. Abramova, B. Vozel, K. Chehdi, K. Egiazarian, and J. Astola, in: Color Image and Video Enhancement, eds. E. Celebi, M. Lecca, B. Smolka (Springer Cham, 2015) pp. 55–80,
https://doi.org/10.1007/978-3-319-09363-5_3
[19] D. Liang, F. Xue, and L. Li, Active Terahertz Imaging Dataset for Concealed Object Detection, https://arxiv.org/abs/2105.03677v1,
https://doi.org/10.48550/arXiv.2105.03677
[20] Y. Li, W. Hu, X. Zhang, Z. Xu, J. Ni, and L.P. Ligt­hart, Adaptive terahertz image super-resolution with adjustable convolutional neural network, Opt. Express 28, 22200–22217 (2020),
https://doi.org/10.1364/OE.394943
[21] Z. Long, T. Wang, C. You, Z. Yang, K. Wang, and J. Liu, Terahertz image super-resolution based on a deep convolutional neural network, Appl. Opt. 58, 2731–2735 (2019),
https://doi.org/10.1364/AO.58.002731
[22] B.K. Kundu and Pragti, in: Generation, Detection and Processing of Terahertz Signals, Lecture Notes in Electrical Engineering, 794 (Springer, Singapore, 2022) pp. 123–137,
https://doi.org/10.1007/978-981-16-4947-9_9
[23] V. Abramova, S. Abramov, V. Lukin, A. Roenko, and B. Vozel, Automatic estimation of spatially correlated noise variance in spectral domain for images, Telecommun. Radio Eng. 73, 511–527 (2014),
https://doi.org/10.1615/TelecomRadEng.v73.i6.40
[24] M. Lebrun, M. Colom, A. Buades, and J.M. Morel, Secrets of image denoising cuisine, Acta Numer. 21, 475–576 (2012),
https://doi.org/10.1017/S0962492912000062
[25] L. Sendur and I.W. Selesnick, Bivariate shrinkage with local variance estimation, IEEE Signal Process. Lett. 9, 438–441 (2002),
https://doi.org/10.1109/LSP.2002.806054
[26] V. Abramova, S. Abramov, and V. Lukin, Iterative method for blind evaluation of mixed noise characteristics on images, Inf. Telecommun. Sci. 6, 8–14 (2015),
https://doi.org/10.20535/2411-2976.12015.8-14
[27] M. Uss, B. Vozel, V. Lukin, and K. Chehdi, in: 19th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2018 (Poitiers, France) pp. 414–425,
https://doi.org/10.1007/978-3-030-01449-0_35
[28] V. Abramova, A blind method for additive noise variance evaluation based on homogeneous region detection using the fourth central moment analysis, Telecommun. Radio Eng. 74, 1651–1669 (2015),
https://doi.org/10.1615/TelecomRadEng.v74.i18.50
[29] K. Rank, M. Lendl, and R. Unbehauen, Estimation of image noise variance, IEEE Proc. Vis. Image Signal Process. 146, 80–84 (1999),
https://doi.org/10.1049/ip-vis:19990238
[30] V.V. Lukin, S.K. Abramov, A.A. Zelensky, J.T. As­to­la, B. Vozel, and K. Chehdi, Improved minimal inter-quantile distance method for blind estimation of noise variance in images, in: Proceedings of the SPIE, Vol. 6748: Image and Signal Processing for Remote Sensing XIII (Florence, Italy, 2007), 67481I,
https://doi.org/10.1117/12.738006
[31] V. Zabrodina, S. Abramov, V. Lukin, J. Astola, B. Vo­zel, and K. Chehdi, Blind estimation of mixed noise parameters in images using robust regression curve fitting, in: Proceedings of 19th European Signal Processing Conference (EUSIPCO 2011) (Barcelona, Spain, 2011) pp. 1135–1139,
https://ieeexplore.ieee.org/document/7073890
[32] V. Abramova and S. Abramov, Blind evaluation of DCT domain spectral characteristics of signal-dependent noise in images, in: Proceedings of 2020 IEEE Ukrainian Microwave Week (UkrMW) (2020) pp. 433–437,
https://doi.org/10.1109/UkrMW49653.2020.9252760
[33] L. Zhang, L. Zhang, and A.C. Bovik, A feature-enriched completely blind image quality evaluator, IEEE Trans. Image Process. 24, 2579–2591 (2015),
https://doi.org/10.1109/TIP.2015.2426416