Victoriya V. Abramova
, Sergiy K. Abramov
,
Volodymyr V. Lukin
References /
Nuorodos
[1] J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F.
Oliveira, and D. Zimdars, THz imaging and sensing for security
applications – explosives, weapons and drugs, Semicond. Sci.
Technol.
20, 266–280 (2005),
https://doi.org/10.1088/0268-1242/20/7/018
[2] N. Palka, M. Szustakowski, M. Kowalski, T. Trzcinski, R.
Ryniec, M. Piszczek, W. Ciurapinski, M. Zyczkowski, P.
Zagrajek, and J. Wrobel, THz spectroscopy and imaging in
security applications, in:
Proceedings of 19th International
Conference on Microwaves, Radar & Wireless Communications
(IEEE, 2012) pp. 265–270,
https://doi.org/10.1109/MIKON.2012.6233513
[3] M. Lu, J. Shen, N. Li, Y. Zhang, and C. Zhang, Detection and
identification of illicit drugs using terahertz imaging, J.
Appl. Phys.
100, 103104 (2006),
https://doi.org/10.1063/1.2388041
[4] I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F.
Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A.
Švigelj, and J. Trontelj, Spectroscopic terahertz maging at
room temperature employing microbolometer terahertz sensors and
its application to the study of carcinoma tissues, Sensors
16,
432 (2016),
https://doi.org/10.3390/s16040432
[5] M. Karaliūnas, K.E. Nasser, A. Urbanowicz, I. Kašalynas, D.
Bražinskienė, S. Asadauskas, and G. Valušis, Non-destructive
inspection of food and technical oils by terahertz spectroscopy,
Sci. Rep.
8, 18025 (2018),
https://doi.org/10.1038/s41598-018-36151-3
[6] K. Krügener, J. Ornik, L.M. Schneider, A. Jäckel, C.L.
Koch-Dandolo, E. Castro-Camus, N. Riedl-Siedow, M. Koch, and W.
Viöl, Terahertz inspection of buildings and architectural art,
Appl. Sci.
10, 5166 (2020),
https://doi.org/10.3390/app10155166
[7] G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H.G. Roskos,
Roadmap of terahertz imaging 2021, Sensors
21, 4092
(2021),
https://doi.org/10.3390/s21124092
[8] D. Jokubauskis, L. Minkevičius, D. Seliuta, I Kašalynas, and
G. Valušis, Terahertz homodyne spectroscopic imaging of
concealed low-absorbing objects, Opt. Eng.
58, 023104
(2019),
https://doi.org/10.1117/1.OE.58.2.023104
[9] L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G.
Valušis, A. Lisauskas, S. Boppel, H.G. Roskos, and K. Köhler,
Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,
Appl. Phys. Lett.
99, 131101 (2011),
https://doi.org/10.1063/1.3641907
[10] K. Ščupáková, V. Terzopoulos, S. Jain, D. Smeets, and R.
Heeren, A patch-based super resolution algorithm for improving
image resolution in clinical mass spectrometry, Sci. Rep.
9,
2915 (2019),
https://doi.org/10.1038/s41598-019-38914-y
[11] J. Yang and T. Huang, Image super-resolution: Historical
overview and future challenges, in:
Super-Resolution Imaging,
Vol. 1, ed. P. Milanfar (CRC Press, Boca Raton, 2011) pp. 1–33,
https://www.routledge.com/Super-Resolution-Imaging/Milanfar/p/book/9781439819302
[12] A. Shukla, S. Merugu, and K. Jain, A technical review on
image super-resolution techniques, in:
Advances in
Cybernetics, Cognition, and Machine Learning for Communication
Technologies, Lecture Notes in Electrical Engineering,
Vol. 643, eds. V.K. Gunjan, S. Senatore, A. Kumar, X. Gao, S.
Merugu (Springer, Singapore, 2020) pp. 543–565,
https://doi.org/10.1007/978-981-15-3125-5_54
[13] A. Foi, K. Dabov, V. Katkovnik, and K. Egiazarian,
Shape-adaptive DCT for denoising and image reconstruction, in:
Proceedings
of the SPIE, Vol. 6064, Electronic Imaging 2006, Image
Processing: Algorithms and Systems, Neural Networks, and Machine
Learning (San Jose, 2006), 60640N
https://doi.org/10.1117/12.642839
[14] H. Zhao, H. Yang, H. Su, and S. Zheng, Natural image
deblurring based on ringing artifacts removal via
knowledge-driven gradient distribution priors, IEEE Access
8,
129975–129991 (2020),
https://doi.org/10.1109/ACCESS.2020.3007972
[15] S. Yadav, C. Jain, and A. Chugh, Evaluation of image
deblurring techniques, Int. J. Comput. Appl.
139, 32–36
(2016),
https://doi.org/10.5120/ijca2016909492
[16] L. Fan, F. Zhang, H. Fan, and C. Zhang, Brief review of
image denoising techniques, Vis. Comput. Ind. Biomed. Art
2,
7 (2019),
https://doi.org/10.1186/s42492-019-0016-7
[17] O. Rubel, V. Lukin, S. Krivenko, V. Pavlikov, S. Zhyla, and
E. Tserne, Reduction of spatially correlated speckle in textured
SAR images, Int. J. Comput.
3, 319–327 (2021),
https://doi.org/10.47839/ijc.20.3.2276
[18] V. Lukin, S. Abramov, R. Kozhemiakin, A. Rubel, M. Uss, N.
Ponomarenko, V. Abramova, B. Vozel, K. Chehdi, K. Egiazarian,
and J. Astola, in:
Color Image and Video Enhancement,
eds. E. Celebi, M. Lecca, B. Smolka (Springer Cham, 2015) pp.
55–80,
https://doi.org/10.1007/978-3-319-09363-5_3
[19] D. Liang, F. Xue, and L. Li, Active Terahertz Imaging
Dataset for Concealed Object Detection,
https://arxiv.org/abs/2105.03677v1,
https://doi.org/10.48550/arXiv.2105.03677
[20] Y. Li, W. Hu, X. Zhang, Z. Xu, J. Ni, and L.P. Ligthart,
Adaptive terahertz image super-resolution with adjustable
convolutional neural network, Opt. Express
28,
22200–22217 (2020),
https://doi.org/10.1364/OE.394943
[21] Z. Long, T. Wang, C. You, Z. Yang, K. Wang, and J. Liu,
Terahertz image super-resolution based on a deep convolutional
neural network, Appl. Opt.
58, 2731–2735 (2019),
https://doi.org/10.1364/AO.58.002731
[22] B.K. Kundu and Pragti, in:
Generation, Detection and
Processing of Terahertz Signals, Lecture Notes in
Electrical Engineering, 794 (Springer, Singapore, 2022) pp.
123–137,
https://doi.org/10.1007/978-981-16-4947-9_9
[23] V. Abramova, S. Abramov, V. Lukin, A. Roenko, and B. Vozel,
Automatic estimation of spatially correlated noise variance in
spectral domain for images, Telecommun. Radio Eng.
73,
511–527 (2014),
https://doi.org/10.1615/TelecomRadEng.v73.i6.40
[24] M. Lebrun, M. Colom, A. Buades, and J.M. Morel, Secrets of
image denoising cuisine, Acta Numer.
21, 475–576 (2012),
https://doi.org/10.1017/S0962492912000062
[25] L. Sendur and I.W. Selesnick, Bivariate shrinkage with
local variance estimation, IEEE Signal Process. Lett.
9,
438–441 (2002),
https://doi.org/10.1109/LSP.2002.806054
[26] V. Abramova, S. Abramov, and V. Lukin, Iterative method for
blind evaluation of mixed noise characteristics on images, Inf.
Telecommun. Sci.
6, 8–14 (2015),
https://doi.org/10.20535/2411-2976.12015.8-14
[27] M. Uss, B. Vozel, V. Lukin, and K. Chehdi, in:
19th
International Conference on Advanced Concepts for Intelligent
Vision Systems, ACIVS 2018 (Poitiers, France) pp. 414–425,
https://doi.org/10.1007/978-3-030-01449-0_35
[28] V. Abramova, A blind method for additive noise variance
evaluation based on homogeneous region detection using the
fourth central moment analysis, Telecommun. Radio Eng.
74,
1651–1669 (2015),
https://doi.org/10.1615/TelecomRadEng.v74.i18.50
[29] K. Rank, M. Lendl, and R. Unbehauen, Estimation of image
noise variance, IEEE Proc. Vis. Image Signal Process.
146,
80–84 (1999),
https://doi.org/10.1049/ip-vis:19990238
[30] V.V. Lukin, S.K. Abramov, A.A. Zelensky, J.T. Astola, B.
Vozel, and K. Chehdi, Improved minimal inter-quantile distance
method for blind estimation of noise variance in images, in:
Proceedings
of the SPIE, Vol. 6748: Image and Signal Processing for
Remote Sensing XIII (Florence, Italy, 2007), 67481I,
https://doi.org/10.1117/12.738006
[31] V. Zabrodina, S. Abramov, V. Lukin, J. Astola, B. Vozel,
and K. Chehdi, Blind estimation of mixed noise parameters in
images using robust regression curve fitting, in:
Proceedings
of 19th European Signal Processing Conference (EUSIPCO 2011)
(Barcelona, Spain, 2011) pp. 1135–1139,
https://ieeexplore.ieee.org/document/7073890
[32] V. Abramova and S. Abramov, Blind evaluation of DCT domain
spectral characteristics of signal-dependent noise in images,
in:
Proceedings of 2020 IEEE Ukrainian Microwave Week
(UkrMW) (2020) pp. 433–437,
https://doi.org/10.1109/UkrMW49653.2020.9252760
[33] L. Zhang, L. Zhang, and A.C. Bovik, A feature-enriched
completely blind image quality evaluator, IEEE Trans. Image
Process.
24, 2579–2591 (2015),
https://doi.org/10.1109/TIP.2015.2426416