References /
Nuorodos
[1] M. Arbatti, X. Shan, and Z.-Y. Cheng, Ceramic–polymer
composites with high dielectric constant, Adv. Mater.
19,
1369–1372 (2007),
https://doi.org/10.1002/adma.200601996
[2] Y. Chu, J. Zhong, H. Liu, Y. Ma, N. Liu, Y. Song, J. Liang,
Z. Shao, Y. Sun, Y. Dong, X. Wang, and L. Lin, Human pulse
diagnosis for medical assessments using a wearable piezoelectret
sensing system, Adv. Funct. Mater.
28, 1803413 (2018),
https://doi.org/10.1002/adfm.201803413
[3] A. Chortos and Z. Bao, Skin-inspired electronic devices,
Mater. Today
17, 321–331 (2014),
https://doi.org/10.1016/j.mattod.2014.05.006
[4] J. Luo, W. Gao, and Z.L. Wang, The triboelectric
nanogenerator as an innovative technology toward intelligent
sports, Adv. Mater.
33, 2004178 (2021),
https://doi.org/10.1002/adma.202004178
[5] D. Lolla, M. Lolla, A. Abutaleb, H. Shin, D. Reneker, and
G. Chase, Fabrication, polarization of electrospun
polyvinylidene fluoride electret fibers and effect on capturing
nanoscale solid aerosols, Materials
9, 671 (2016),
https://doi.org/10.3390/ma9080671
[6] A. Seema, K.R. Dayas, and J.M. Varghese, PVDF-PZT-5H
composites prepared by hot press and tape casting techniques, J.
Appl. Polym. Sci.
106, 146–151 (2007),
https://doi.org/10.1002/app.26673
[7] C. Wisniewski, G.F.L. Ferreira, W.A. Moura, J.A.
Giacometti, C. Wisniewski, and G.F.L. Ferreira, Study of
ferroelectric polarization in poly(vinylidene fluoride) using
the constant current method, J. Phys. D Appl. Phys.
33,
2483–2488 (2000),
https://doi.org/10.1088/0022-3727/33/19/319
[8] P. Martins, A.C. Lopes, and S. Lanceros-Mendez,
Electroactive phases of poly(vinylidene fluoride):
Determination, processing and applications, Prog. Polym. Sci.
39, 683–706 (2014),
https://doi.org/10.1016/j.progpolymsci.2013.07.006
[9] H.-J. Ye, L. Yang, W.-Z. Shao, S.-B. Sun, and L. Zhen,
Effect of electroactive phase transformation on electron
structure and dielectric properties of uniaxial stretching
poly(vinylidene fluoride) films, RSC Adv.
3, 23730
(2013),
https://doi.org/10.1039/c3ra43966f
[10] C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, and G.
Srinivasan, Multiferroic magnetoelectric composites: Historical
perspective, status, and future directions, J. Appl. Phys.
103,
031101 (2008),
https://doi.org/10.1063/1.2836410
[11] R. Grigalaitis, M.M. Vijatović Petrović, D. Baltrūnas, K.
Mažeika, B.D. Stojanović, and J. Banys, Broadband dielectric and
Mössbauer studies of BaTiO
3–NiFe
2O
4
composite multiferroics, J. Mater. Sci.: Mater. Electron.
26,
9727–9734 (2015),
https://doi.org/10.1007/s10854-015-3641-8
[12] A.S. Dzunuzovic, M.M. Vijatovic Petrovic, J.D. Bobic, N.I.
Ilic, M. Ivanov, R. Grigalaitis, J. Banys, and B.D. Stojanovic,
Magneto-electric properties of xNi
0.7Zn
0.3Fe
2O
4
– (1–x)BaTiO
3 multiferroic composites, Ceram. Int.
44,
683–694 (2018),
https://doi.org/10.1016/j.ceramint.2017.09.229
[13] A. Sakanas, D. Nuzhnyy, R. Grigalaitis, J. Banys, F.
Borodavka, S. Kamba, C.E. Ciomaga, and L. Mitoseriu, Dielectric
and phonon spectroscopy of Nb-doped Pb(Zr
1–yTi
y)O
3-CoFe
2O
4
composites, J. Appl. Phys.
121, 214101 (2017),
https://doi.org/10.1063/1.4984199
[14] A. Sakanas, R. Grigalaitis, J. Banys, L. Curecheriu, L.
Mitoseriu, and V. Buscaglia, Microstructural influence on the
broadband dielectric properties of BaTiO
3-Ni
0.5Zn
0.5Fe
2O
4
core-shell composites: Experiment and modeling, J. Appl. Phys.
118,
174106 (2015),
https://doi.org/10.1063/1.4935138
[15] A.S. Dzunuzovic, M.M.V. Petrovic, J.D. Bobic, N.I. Ilic,
and B.D. Stojanovic, Influence of ferrite phase on electrical
properties of the barium zirconium titanate based multiferroic
composites, J. Electroceram.
46, 57–71 (2021),
https://doi.org/10.1007/s10832-021-00244-9
[16] S. Singh, N. Kumar, R. Bhargava, M. Sahni, K. Sung, and
J.H. Jung, Magnetodielectric effect in BaTiO
3/ZnFe
2O
4
core/shell nanoparticles, J. Alloys Compd. 587, 437–441 (2014),
https://doi.org/10.1016/j.jallcom.2013.10.136
[17] R.A. Mondal, B.S. Murty, and V.R.K. Murthy, Dielectric,
magnetic and enhanced magnetoelectric response in high energy
ball milling assisted BST-NZF particulate composite, Mater.
Chem. Phys.
167, 338–346 (2015),
https://doi.org/10.1016/j.matchemphys.2015.10.053
[18] D. Padmapriya, D. Dhayanithi, M.T. Rahul, N. Kalarikkal,
and N.V. Giridharan, Study of room-temperature magnetoelectric
coupling in (1–
x)BaTiO
3 and (
x)NiFe
2O
4
multiferroic composites, Appl. Phys. A
127, 293 (2021),
https://doi.org/10.1007/s00339-021-04431-x
[19] M. Vijatovic Petrovic, F. Cordero, E. Mercadelli, E.
Brunengo, N. Ilic, C. Galassi, Z. Despotovic, J. Bobic, A.
Dzunuzovic, P. Stagnaro, G. Canu, and F. Craciun, Flexible
lead-free NBT-BT/PVDF composite films by hot pressing for
low-energy harvesting and storage, J. Alloys Compd.
884,
161071 (2021),
https://doi.org/10.1016/j.jallcom.2021.161071
[20] X. Du, Z. Zhou, Z. Zhang, L. Yao, Q. Zhang, and H. Yang,
Porous, multi-layered piezoelectric composites based on highly
oriented PZT/PVDF electrospinning fibers for high-performance
piezoelectric nanogenerators, J. Adv. Ceram.
11, 331–344
(2022),
https://doi.org/10.1007/s40145-021-0537-3
[21] N. Ilić, G.F. Teixeira, J. Bobić, V. Spasojević, A.
Džunuzović, M.V. Petrović, M.Ap. Zaghete, and B. Stojanović,
Auto-combustion synthesis as a method for preparing BiFeO
3
powders and flexible BiFeO
3/PVDF films with improved
magnetic properties. Influence of doping ion position, size and
valence on electric properties, Mater. Sci. Eng. B
280,
115686 (2022),
https://doi.org/10.1016/j.mseb.2022.115686
[22] J.D. Bobić, G.F. Teixeira, R. Grigalaitis, S. Gyergyek,
M.M.V. Petrović, M.A. Zaghete, and B.D. Stojanovic, PZT–NZF/CF
ferrite flexible thick films: Structural, dielectric,
ferroelectric, and magnetic characterization, J. Adv. Ceram.
8,
545–554 (2019),
https://doi.org/10.1007/s40145-019-0337-1
[23] A.S. Dzunuzovic, M.M.V. Petrovic, B.S. Stojadinovic, N.I.
Ilic, J.D. Bobic, C.R. Foschini, M.A. Zaghete, and B.D.
Stojanovic, Multiferroic (NiZn) Fe
2O
4–BaTiO
3
composites prepared from nanopowders by auto-combustion method,
Ceram. Int.
41, 13189–13200 (2015),
https://doi.org/10.1016/j.ceramint.2015.07.096
[24] L. Yang, J. Qiu, K. Zhu, H. Ji, Q. Zhao, M. Shen, and S.
Zeng, Effect of rolling temperature on the microstructure and
electric properties of β-polyvinylidene fluoride films, J.
Mater. Sci.: Mater. Electron.
29, 15957–15965 (2018),
https://doi.org/10.1007/s10854-018-9681-0
[25] X. Cai, T. Lei, D. Sun, and L. Lin, a critical analysis of
the α, β and γ phases in poly(vinylidene fluoride) using FTIR,
RSC Adv.
7, 15382–15389 (2017),
https://doi.org/10.1039/C7RA01267E
[26] W.J. Kim, M.H. Han, Y.-H. Shin, H. Kim, and E.K. Lee,
First-principles study of the α–β phase transition of
ferroelectric poly(vinylidene difluoride): observation of
multiple transition pathways, J. Phys. Chem. B
120,
3240–3249 (2016),
https://doi.org/10.1021/acs.jpcb.6b00881
[27] G.T. Davis, J.E. McKinney, M.G. Broadhurst, and S.C. Roth,
Electric‐field‐induced phase changes in poly(vinylidene
fluoride), J. Appl. Phys.
49, 4998–5002 (1978),
https://doi.org/10.1063/1.324446
[28] Š. Svirskas, J. Belovickis, D. Šemeliovas, P. Martins, S.
Lanceros-Méndez, and J. Banys, Temperature and frequency
dependence of the dielectric and piezoelectric response of
P(VDF-TrFE)/CoFe
2O
4 magnetoelectric
composites, Lith. J. Phys.
57(2), 103–111 (2017),
https://doi.org/10.3952/physics.v57i2.3517
[29] B. Hilczer, J. Kułek, E. Markiewicz, M. Kosec, and B.
Malič, Dielectric relaxation in ferroelectric PZT–PVDF
nanocomposites, J. Non-Cryst. Solids
305, 167–173
(2002),
https://doi.org/10.1016/S0022-3093(02)01103-1
[30] S. Svirskas, M. Simenas, J. Banys, P. Martins, and S.
Lanceros-Mendez, Dielectric relaxation and ferromagnetic
resonance in magnetoelectric (Polyvinylidene-fluoride)/ferrite
composites, J. Polym. Res.
22, 141 (2015),
https://doi.org/10.1007/s10965-015-0780-9
[31] T. Furukawa, Y. Tajitsu, X. Zhang, and G.E. Johnson,
Dielectric relaxations in copolymers of vinylidene fluoride,
Ferroelectrics
135, 401–417 (1992),
https://doi.org/10.1080/00150199208230041
[32] S. Brahma, R.N.P. Choudhary, and A.K. Thakur, AC impedance
analysis of LaLiMo
2O
8 electro ceramics,
Phys. B Condens. Matter.
355, 188–201 (2005),
https://doi.org/10.1016/j.physb.2004.10.091
[33] W. Xia and Z. Zhang, PVDF‐based dielectric polymers and
their applications in electronic materials, IET Nanodielectrics
1, 17–31 (2018),
https://doi.org/10.1049/iet-nde.2018.0001