[PDF]    https://doi.org/10.3952/physics.v62i4.4825

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 282–291 (2022)

TOWARDS WIRELESS DATA TRANSMISSION WITH COMPACTALL-ELECTRONIC THz SOURCE AND DETECTOR SYSTEM
Robertas Grigalaitisa, Rytis Šalaševičiusa, Jūras Banysa, Mirjana Vijatovic Petrovicb, Adis Dzunuzovicb, Maria Aparecida Zaghetec, Guilhermina F Teixeirac, and Biljana Stojanovicb
a Faculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
b Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
c Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Brazil
Email: robertas.grigalaitis@ff.vu.lt

Received 14 October 2022; accepted 18 October 2022

Flexible multiferroic composite films are perspective materials for sensors, actuators and similar components of wearable and stretchable devices. Here we present the study of functional properties of flexible composites prepared by embedding nickel zinc ferrite and barium titanate powder into polyvinylidene fluoride (PVDF) polymer optimizing the ratio of polymer and fillers to get the best flexibility and functionality. ATR-FTIR analysis revealed that hot pressing of the flexible films caused a transformation of about 38% of the electro-inactive PVDF α phase into electrically active β and γ phases. Broadband dielectric spectroscopy revealed two relaxation processes responsible for PVDF and space charge relaxations. Activation energies of both processes and the freezing temperature of PVDF to the glass phase were estimated for all films. Ferroelectric measurements have shown unsaturated hysteresis loops for all samples, although the  clear dependence of the amount of the electrically active phase on polarization values of composites is visible.
Keywords: composites, flexible films, ferroelectric properties, dielectric dispersion


FUNKCINĖS LANKSČIŲ PLĖVELIŲ PVDF PAGRINDU SU NZF IR BT SAVYBĖS
Robertas Grigalaitisa, Rytis Šalaševičiusa, Jūras Banysa, Mirjana Vijatovic Petrovicb, Adis Dzunuzovicb, Maria Aparecida Zaghetec, Guilhermina F Teixeirac, Biljana Stojanovicb

a Vilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
b Belgrado universiteto Multidisciplininių tyrimų institutas, Belgradas, Serbija
c San Paulo valstybinio universiteto Chemijos institutas, Ararakvara, Brazilija

Lankstūs multiferoiniai kompozitai yra perspektyvios medžiagos dėvimų bei lanksčių įrenginių jutik­liams, aktuatoriams ir kitiems komponentams. Šiame darbe pristatomi lanksčių kompozitų, pagamintų įterpiant cinko ferito ir bario titanato miltelius į polivinilideno fluorido polimerą, funkcinių savybių tyrimai. Polimero ir intarpų santykis kompozite gamybos metu buvo parenkamas taip, kad būtų pasiektas maksimalus lankstumas nepakenkiant funkcionalumui. ATR-FTIR analizė atskleidė, kad karštas lanksčių plėvelių presavimas transformavo apie 38 % elektriškai neaktyvios α fazės į elektriškai aktyvias β ir γ fazes. Plačiajuostė dielektrinė spektroskopija parodė šiose medžiagose du relaksacinius procesus, sukeltus PVDF ir atitinkamai erd­vinio krūvio. Buvo įvertintos abiejų procesų aktyvacijos energijos bei PVDF stiklėjimo temperatūros visoms plėvelėms. Feroelektrinių medžiagų tyrimai parodė, kad histerezės kilpos neįsisotina. Nepaisant to, matoma aiški poliarizacijos savybių priklausomybė nuo elektriškai aktyvios fazės kiekio kompozituose.


References / Nuorodos

[1] M. Arbatti, X. Shan, and Z.-Y. Cheng, Ceramic–polymer composites with high dielectric constant, Adv. Mater. 19, 1369–1372 (2007),
https://doi.org/10.1002/adma.200601996
[2] Y. Chu, J. Zhong, H. Liu, Y. Ma, N. Liu, Y. Song, J. Liang, Z. Shao, Y. Sun, Y. Dong, X. Wang, and L. Lin, Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system, Adv. Funct. Mater. 28, 1803413 (2018),
https://doi.org/10.1002/adfm.201803413
[3] A. Chortos and Z. Bao, Skin-inspired electronic devices, Mater. Today 17, 321–331 (2014),
https://doi.org/10.1016/j.mattod.2014.05.006
[4] J. Luo, W. Gao, and Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports, Adv. Mater. 33, 2004178 (2021),
https://doi.org/10.1002/adma.202004178
[5] D. Lolla, M. Lolla, A. Abutaleb, H. Shin, D. Re­neker, and G. Chase, Fabrication, polarization of electrospun polyvinylidene fluoride electret fibers and effect on capturing nanoscale solid aerosols, Materials 9, 671 (2016),
https://doi.org/10.3390/ma9080671
[6] A. Seema, K.R. Dayas, and J.M. Varghese, PVDF-PZT-5H composites prepared by hot press and tape casting techniques, J. Appl. Polym. Sci. 106, 146–151 (2007),
https://doi.org/10.1002/app.26673
[7] C. Wisniewski, G.F.L. Ferreira, W.A. Moura, J.A. Giaco­metti, C. Wisniewski, and G.F.L. Fer­rei­ra, Study of ferroelectric polarization in poly(vinylidene fluoride) using the constant current method, J. Phys. D Appl. Phys. 33, 2483–2488 (2000),
https://doi.org/10.1088/0022-3727/33/19/319
[8] P. Martins, A.C. Lopes, and S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications, Prog. Polym. Sci. 39, 683–706 (2014),
https://doi.org/10.1016/j.progpolymsci.2013.07.006
[9] H.-J. Ye, L. Yang, W.-Z. Shao, S.-B. Sun, and L. Zhen, Effect of electroactive phase transformation on electron structure and dielectric properties of uniaxial stretching poly(vinylidene fluoride) films, RSC Adv. 3, 23730 (2013),
https://doi.org/10.1039/c3ra43966f
[10] C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, J. Appl. Phys. 103, 031101 (2008),
https://doi.org/10.1063/1.2836410
[11] R. Grigalaitis, M.M. Vijatović Petrović, D. Balt­rūnas, K. Mažeika, B.D. Stojanović, and J. Banys, Broadband dielectric and Mössbauer studies of BaTiO3–NiFe2O4 composite multiferroics, J. Mater. Sci.: Mater. Electron. 26, 9727–9734 (2015),
https://doi.org/10.1007/s10854-015-3641-8
[12] A.S. Dzunuzovic, M.M. Vijatovic Petrovic, J.D. Bo­bic, N.I. Ilic, M. Ivanov, R. Grigalaitis, J. Banys, and B.D. Stojanovic, Magneto-electric properties of xNi0.7Zn0.3Fe2O4 – (1–x)BaTiO3 multiferroic composites, Ceram. Int. 44, 683–694 (2018),
https://doi.org/10.1016/j.ceramint.2017.09.229
[13] A. Sakanas, D. Nuzhnyy, R. Grigalaitis, J. Banys, F. Borodavka, S. Kamba, C.E. Ciomaga, and L. Mi­toseriu, Dielectric and phonon spectroscopy of Nb-doped Pb(Zr1–yTiy)O3-CoFe2O4 composites, J. Appl. Phys. 121, 214101 (2017),
https://doi.org/10.1063/1.4984199
[14] A. Sakanas, R. Grigalaitis, J. Banys, L. Curecheriu, L. Mitoseriu, and V. Buscaglia, Microstructural influence on the broadband dielectric properties of BaTiO3-Ni0.5Zn0.5Fe2O4 core-shell composites: Experiment and modeling, J. Appl. Phys. 118, 174106 (2015),
https://doi.org/10.1063/1.4935138
[15] A.S. Dzunuzovic, M.M.V. Petrovic, J.D. Bobic, N.I. Ilic, and B.D. Stojanovic, Influence of ferrite phase on electrical properties of the barium zirconium titanate based multiferroic composites, J. Electroceram. 46, 57–71 (2021),
https://doi.org/10.1007/s10832-021-00244-9
[16] S. Singh, N. Kumar, R. Bhargava, M. Sahni, K. Sung, and J.H. Jung, Magnetodielectric effect in BaTiO3/ZnFe2O4 core/shell nanoparticles, J. Alloys Compd. 587, 437–441 (2014),
https://doi.org/10.1016/j.jallcom.2013.10.136
[17] R.A. Mondal, B.S. Murty, and V.R.K. Murthy, Dielectric, magnetic and enhanced magnetoelectric response in high energy ball milling assisted BST-NZF particulate composite, Mater. Chem. Phys. 167, 338–346 (2015),
https://doi.org/10.1016/j.matchemphys.2015.10.053
[18] D. Padmapriya, D. Dhayanithi, M.T. Rahul, N. Kalarikkal, and N.V. Giridharan, Study of room-temperature magnetoelectric coupling in (1–x)BaTiO3 and (x)NiFe2O4 multiferroic composites, Appl. Phys. A 127, 293 (2021),
https://doi.org/10.1007/s00339-021-04431-x
[19] M. Vijatovic Petrovic, F. Cordero, E. Mercadelli, E. Brunengo, N. Ilic, C. Galassi, Z. Despotovic, J. Bobic, A. Dzunuzovic, P. Stagnaro, G. Canu, and F. Craciun, Flexible lead-free NBT-BT/PVDF composite films by hot pressing for low-energy harvesting and storage, J. Alloys Compd. 884, 161071 (2021),
https://doi.org/10.1016/j.jallcom.2021.161071
[20] X. Du, Z. Zhou, Z. Zhang, L. Yao, Q. Zhang, and H. Yang, Porous, multi-layered piezoelectric composites based on highly oriented PZT/PVDF electrospinning fibers for high-performance piezoelectric nanogenerators, J. Adv. Ceram. 11, 331–344 (2022),
https://doi.org/10.1007/s40145-021-0537-3
[21] N. Ilić, G.F. Teixeira, J. Bobić, V. Spasojević, A. Džunuzović, M.V. Petrović, M.Ap. Zaghete, and B. Stojanović, Auto-combustion synthesis as a method for preparing BiFeO3 powders and flexible BiFeO3/PVDF films with improved magnetic properties. Influence of doping ion position, size and valence on electric properties, Mater. Sci. Eng. B 280, 115686 (2022),
https://doi.org/10.1016/j.mseb.2022.115686
[22] J.D. Bobić, G.F. Teixeira, R. Grigalaitis, S. Gyer­gyek, M.M.V. Petrović, M.A. Zaghete, and B.D. Stojanovic, PZT–NZF/CF ferrite flexible thick films: Structural, dielectric, ferroelectric, and magnetic characterization, J. Adv. Ceram. 8, 545–554 (2019),
https://doi.org/10.1007/s40145-019-0337-1
[23] A.S. Dzunuzovic, M.M.V. Petrovic, B.S. Sto­ja­dinovic, N.I. Ilic, J.D. Bobic, C.R. Foschini, M.A. Zaghete, and B.D. Stojanovic, Multiferroic (NiZn) Fe2O4–BaTiO3 composites prepared from nanopowders by auto-combustion method, Ceram. Int. 41, 13189–13200 (2015),
https://doi.org/10.1016/j.ceramint.2015.07.096
[24] L. Yang, J. Qiu, K. Zhu, H. Ji, Q. Zhao, M. Shen, and S. Zeng, Effect of rolling temperature on the microstructure and electric properties of β-polyvinylidene fluoride films, J. Mater. Sci.: Mater. Electron. 29, 15957–15965 (2018),
https://doi.org/10.1007/s10854-018-9681-0
[25] X. Cai, T. Lei, D. Sun, and L. Lin, a critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR, RSC Adv. 7, 15382–15389 (2017),
https://doi.org/10.1039/C7RA01267E
[26] W.J. Kim, M.H. Han, Y.-H. Shin, H. Kim, and E.K. Lee, First-principles study of the α–β phase transition of ferroelectric poly(vinylidene difluoride): observation of multiple transition pathways, J. Phys. Chem. B 120, 3240–3249 (2016),
https://doi.org/10.1021/acs.jpcb.6b00881
[27] G.T. Davis, J.E. McKinney, M.G. Broadhurst, and S.C. Roth, Electric‐field‐induced phase changes in poly(vinylidene fluoride), J. Appl. Phys. 49, 4998–5002 (1978),
https://doi.org/10.1063/1.324446
[28] Š. Svirskas, J. Belovickis, D. Šemeliovas, P. Martins, S. Lanceros-Méndez, and J. Banys, Temperature and frequency dependence of the dielectric and piezoelectric response of P(VDF-TrFE)/CoFe2O4 magnetoelectric composites, Lith. J. Phys. 57(2), 103–111 (2017),
https://doi.org/10.3952/physics.v57i2.3517
[29] B. Hilczer, J. Kułek, E. Markiewicz, M. Kosec, and B. Malič, Dielectric relaxation in ferroelectric PZT–PVDF nanocomposites, J. Non-Cryst. Solids 305, 167–173 (2002),
https://doi.org/10.1016/S0022-3093(02)01103-1
[30] S. Svirskas, M. Simenas, J. Banys, P. Martins, and S. Lanceros-Mendez, Dielectric relaxation and ferromagnetic resonance in magnetoelectric (Polyvinylidene-fluoride)/ferrite composites, J. Polym. Res. 22, 141 (2015),
https://doi.org/10.1007/s10965-015-0780-9
[31] T. Furukawa, Y. Tajitsu, X. Zhang, and G.E. Johnson, Dielectric relaxations in copolymers of vinylidene fluoride, Ferroelectrics 135, 401–417 (1992),
https://doi.org/10.1080/00150199208230041
[32] S. Brahma, R.N.P. Choudhary, and A.K. Thakur, AC impedance analysis of LaLiMo2O8 electro­ ceramics, Phys. B Condens. Matter. 355, 188–201 (2005),
https://doi.org/10.1016/j.physb.2004.10.091
[33] W. Xia and Z. Zhang, PVDF‐based dielectric polymers and their applications in electronic materials, IET Nanodielectrics 1, 17–31 (2018),
https://doi.org/10.1049/iet-nde.2018.0001