References /
Nuorodos
[1] C. Masquelier, Solid electrolytes: Lithium ions on the fast
track, Nat. Mater.
10, 649–650 (2011),
https://doi.org/10.1038/nmat3105
[2] G. Jasinski, P. Jasinski, A. Nowakowski, and B. Chachulski,
Properties of a lithium solid electrolyte gas sensor based on
reaction kinetics, Meas. Sci. Technol.
17, 17–21 (2006),
https://doi.org/10.1088/0957-0233/17/1/004
[3] C. Bohnke, H. Duroy, and J.L. Fourquet, pH sensors with
lithium lanthanum titanate sensitive material: applications in
food industry, Sens. Actuators B Chem.
89, 240–247
(2003),
https://doi.org/10.1016/S0925-4005(02)00473-2
[4] S. Stramare, V. Thangadurai, and W. Weppner, Lithium
lanthanum titanates: A review, Chem. Mater.
15(21),
3974–990 (2003),
https://doi.org/10.1021/cm0300516
[5] J.L. Fourquet, H. Duroy, and M.P. Crosnier-Lopez, Structural
and microstructural studies of the series La
2/3–xLi
3x□1/3–2xTiO
3,
J. Solid State Chem.
127, 283–294 (1996),
https://doi.org/10.1006/jssc.1996.0385
[6] O. Bohnke, The fast lithium-ion conducting oxides Li
3xLa
2/3–xTiO
3
from fundamentals to application, Solid State Ion.
179,
9–15 (2008),
https://doi.org/10.1016/j.ssi.2007.12.022
[7] J. Emery, O. Bohnké, J.L. Fourquet, J.Y. Buzaré, P. Florian,
and D. Massiot, Nuclear magnetic resonance investigation of Li
+-ion
dynamics in the perovskite fast-ion conductor (Li
3xLa
2/3–x□1/3–2x)TiO
3,
J. Phys. Condens. Matter
14, 523–539 (2002),
https://doi.org/10.1088/0953-8984/14/3/321
[8] O. Bohnke, J. Emery, and J.L. Fourquet, Anomalies in Li
+
ion dynamics observed by impedance spectroscopy and
7Li
NMR in the perovskite fast ion conductor (Li
3xLa
2/3–x□1/3–2x)TiO
3,
Solid State Ion.
158(1–2), 119–132 (2003),
https://doi.org/10.1016/S0167-2738(02)00720-8
[9] C.W. Ban and G.M. Choi, The effect of sintering on the grain
boundary conductivity of lithium lanthanum titanates, Solid
State Ion.
140, 285–292 (2001),
https://doi.org/10.1016/S0167-2738(01)00821-9
[10] Y. Sun, P. Guan, Y. Liu, H. Xu, S. Li, and D. Chu, Recent
progress in lithium lanthanum titanate electrolyte towards all
solid-state lithium ion secondary battery, Crit. Rev. Solid
State Mater. Sci.
44(4), 265–282 (2019),
https://doi.org/10.1080/10408436.2018.1485551
[11] F. Aguesse, V. Roddatis, J. Roqueta, P. García, D.
Pergolesi, J. Santiso, and J.A. Kilner, Micro structure and
ionic conductivity of LLTO thin films: Influence of different
substrates and excess lithium in the target, Solid State Ion.
272,
1–8 (2015),
https://doi.org/10.1016/j.ssi.2014.12.005
[12] J.K. Ahn and S.G. Yoon, Characteristics of perovskite (Li
0.5La
0.5)TiO
3
solid electrolyte thin films grown by pulsed laser deposition
for rechargeable lithium microbattery, Electrochim. Acta
50(2-3),
371–374 (2004),
https://doi.org/10.1016/j.electacta.2004.02.065
[13] O. Maqueda, F. Sauvage, L. Laffont, M.L. Martínez-Sarrión,
L. Mestres, and E. Baudrin, Structural, microstructural and
transport properties study of lanthanum lithium titanium
perovskite thin films grown by Pulsed Laser Deposition, Thin
Solid Films
516, 1651–1655 (2008),
https://doi.org/10.1016/j.tsf.2007.05.004
[14] C.L. Li, B. Zhang, and Z.W. Fu, Physical and
electrochemical characterization of amorphous lithium lanthanum
titanate solid electrolyte thin-film fabricated by e-beam
evaporation, Thin Solid Films,
515, 1886–1892 (2006),
https://doi.org/10.1016/j.tsf.2006.07.026
[15] Y. Xiong, H. Tao, J. Zhao, H. Cheng, and X. Zhao, Effects
of annealing temperature on structure and opt-electric
properties of ion-conducting LLTO thin films prepared by RF
magnetron sputtering, J. Alloys Compd.
509, 1910–1914
(2011),
https://doi.org/10.1016/j.jallcom.2010.10.086
[16] R. Jiménez, A. del Campo, M.L. Calzada, J. Sanz, S.D.
Kobylianska, S.O. Solopan, and A.G. Belous, Lithium La
0.57Li
0.33TiO
3
perovskite and Li
1.3Al
0.3Ti
1.7(PO
4)
3
Li–NASICON supported thick films electrolytes prepared by tape
casting method, J. Electrochem. Soc.
163, A1653–A1659
(2016),
https://doi.org/10.1149/2.0881608jes
[17] F. Schröckert, N. Schiffmann, E.C. Bucharsky, K.G. Schell,
and M.J. Hoffmann, Tape casted thin films of solid electrolyte
Lithium-Lanthanum-Titanate, Solid State Ion.
328, 25–29
(2018),
https://doi.org/10.1016/j.ssi.2018.10.028
[18] A. Kežionis, E. Kazakevičius, S. Kazlauskas, and A. Žalga,
Metal-like temperature dependent conductivity in fast Li
+
ionic conductor Lithium Lanthanum Titanate, Solid State Ion.
342,
115050 (2019),
https://doi.org/10.1016/j.ssi.2019.115060
[19] A. Kezionis, S. Kazlauskas, D. Petrulionis, and A.F.
Orliukas, Broadband method for the determination of small
sample's electrical and dielectric properties at high
temperatures, IEEE Trans. Microw. Theory Tech.
62(10),
2456–2461 (2014),
https://doi.org/10.1109/TMTT.2014.2350963
[20] J.R. Sandifer and R.P. Buck, Impedance characteristics of
ion selective glass electrodes, J. Anal. Chem.
56,
385–398 (1974),
https://doi.org/10.1016/S0022-0728(74)80039-2
[21] J.R. Macdonald, New aspects of some small-signal ac
frequency response functions, Solid State Ion.
15,
159–161 (1985),
https://doi.org/10.1016/0167-2738(85)90095-5
[22] R.L. Hurt and J.R. Macdonald, Distributed circuit elements
in impedance spectroscopy: A unified treatment of conductive and
dielectric systems, Solid State Ion.
20, 111–124 (1986),
https://doi.org/10.1016/0167-2738(86)90018-4
[23] J.R. Macdonald, Note on the parameterization of the
constant-phase admittance element, Solid State Ion.
13,
147–149 (1984),
https://doi.org/10.1016/0167-2738(84)90049-3
[24] S. Havriliak and S. Negami, A complex plane analysis of
α-dispersions in some polymer systems, J Polym. Sci. Pol. Sym.
14(1),
99–117 (1966),
https://doi.org/10.1002/polc.5070140111
[25] J.C. Wang and J.B. Bates, Non-Debye dielectric response and
distribution of activation energies, Solid State Ion.
50,
75–86 (1992),
https://doi.org/10.1016/0167-2738(92)90039-R
[26] J.R. Macdonald and J.C. Wang, The response of systems with
exponential distributions of activation energies for two classes
of material temperature behavior, Solid State Ion.
60,
319–333 (1993),
https://doi.org/10.1016/0167-2738(93)90010-Z
[27] J.R. Dygas, Dielectric function of ionic conductors studied
by impedance spectroscopy, Solid State Ion.
176(2),
2065–2078 (2005),
https://doi.org/10.1016/j.ssi.2004.11.023
[28] A.J. Bard and L.R. Faulkner,
Electrochemical Methods:
Fundamentals and Applications, 2nd ed. (Wiley, 2000),
https://www.wiley.com/en-us/Electrochemical+Methods:+Fundamentals+and+Applications,+2nd+Edition-p-9780471043720