Oleksandr Havryliuk, Olha Tkachuk, Mariia Terebinska,
Oleksandr Semchuk, and Anatolii Biliuk
References /
Nuorodos
[1] O.O. Havryliuk, A.A. Evtukh, O.V. Pylypova, O.Yu. Semchuk,
I.I. Ivanov, and V.F. Zabolotnyi, Plasmonic enhancement of light
to improve the parameters of solar cells, Appl. Nanosci.
10,
4759–4766 (2020),
https://doi.org/10.1007/s13204-020-01299-w
[2] F. Enrichi, A. Quandt, and G.C. Righini, Plasmonic enhanced
solar cells: Summary of possible strategies and recent results,
Renew. Sustain. Energy Rev.
23(8), 2433–2439 (2018),
https://doi.org/10.1016/j.rser.2017.08.094
[3] R. Ghosh, J. Ghosh, R. Das, L.P.L. Mawlong, K.K. Paul, and
P.K. Giri, Multifunctional Ag nanoparticle decorated Si
nanowires for sensing, photocatalysis and light emission
applications, J. Colloid Interface Sci.
532, 464–473
(2018),
https://doi.org/10.1016/j.jcis.2018.07.123
[4] A. Pal, R. Ghosh, and P.K. Giri, Early stages of growth of
Si nanowires by metal assisted chemical etching: A scaling
study, Appl. Phys. Lett.
107, 072104 (2015),
https://doi.org/10.1063/1.4928714
[5] O. Pylypova, O. Havryliuk, S. Antonin, A. Evtukh, V.
Skryshevsky, I. Ivanov, and S. Shmahlii, Influence of
nanostructure geometry on light trapping in solar cells, Appl.
Nanosci.
12, 769–774 (2021),
https://doi.org/10.1007/s13204-021-01699-6
[6] R. Zaghouani, S. Aouida, N. Bachtouli, and B. Bessais,
Nanoparticles effect on silicon nanowires properties, Chem. J.
1(2),
10–14 (2015),
http://www.publicscienceframework.org/journal/paperInfo/cj?paperId=294
[7] F. Es, G. Baytemir, M. Kulakci, and R. Turan, Metal-assisted
nano-textured solar cells with SiO
2/Si
3N
4
passivation, Sol. Energy Mater. Sol. Cells
160, 269–274
(2017),
https://doi.org/10.1016/j.solmat.2016.10.032
[8] E. Garnett and P. Yang, Trapping in silicon nanowire solar
cells, Nano Lett.
10, 1082–1087 (2010),
https://doi.org/10.1021/nl100161z
[9] O.O. Havryliuk and O.Yu. Semchuk, Formation of periodic
structures on the solid surface under laser irradiation, Ukr. J.
Phys.
62(1), 20–32 (2017),
https://doi.org/10.15407/ujpe62.01.0020
[10] Z. Huang, S. Zhong, X. Hua, X. Lin, X. Kong, N. Dai, and W.
Shen, An effective way to simultaneous realization of
excellent optical and electrical performance in largescale Si
nano/microstructures, Prog. Photovolt.: Res. Appl.
23(8),
964–972 (2014),
https://doi.org/10.1002/pip.2506
[11] O.V. Pylypova, A.A. Evtukh, P.V. Parfenyuk, I.M. Korobchuk,
O.O. Havryliuk, and O.Yu. Semchuk, Influence of Si nanowires on
solar cell properties: effect of the temperature, Appl. Phys. A
124, 773 (2018),
https://doi.org/10.1007/s00339-018-2200-6
[12] H. Bao, X. Ruan, and T.S. Fisher, Optical properties of
ordered vertical arrays of multi-walled carbon nanotubes from
FDTD simulations, Opt. Express
18(6), 6347–6359 (2010),
https://doi.org/10.1364/OE.18.006347
[13] R.El. Bashar, M. Hussein, S.F. Hegazy, Y. Badr, M. Farhat,
O. Hameed, and S.S.A. Obayya, Analysis of highly efficient
quad-crescent-shaped Si nanowires solar cell, Opt. Express
29,
13641–13656 (2021),
https://doi.org/10.1364/OE.417652
[14] O.V. Pylypova, A.A. Evtukh, P.V. Parfenyuk, I.I. Ivanov,
I.M. Korobchuk, O.O. Havryliuk, and O.Yu. Semchuk, Electrical
and optical properties of nanowires based solar cell with radial
p-n junction, Opto-Electron. Rev.
27(2), 143–148 (2019),
https://doi.org/10.1016/j.opelre.2019.05.003
[15] F. Toor, J.B. Miller, L.M. Davidson, W. Duan, M. Jura, J.
Yim, J. Forziati, and M.R. Black, Metal assisted catalyzed
etched (MACE) black Si: optics and device physics, Nanoscale
8,
15448–15466 (2016),
https://doi.org/10.1039/C6NR04506E
[16] A.P. Amalathas and M. Alkaisi, Nanostructures for light
trapping in thin film solar cells, Micromachines
10(9),
619 (2019),
https://doi.org/10.3390/mi10090619
[17] H.A. Atwar and A. Polman, Plasmonics for improved
photovoltaic devices, Nature Mater.
9, 205–213 (2010),
https://doi.org/10.1038/nmat2629
[18] K.R. Catchpole and A. Polman, Plasmonic solar cells, Opt.
Express
16(26), 21793–21800 (2008),
https://doi.org/10.1364/OE.16.021793
[19] Y. Li, X. Yan, Y. Wu, X. Zhang and X. Ren, Plasmon-enhanced
light absorption in GaAs nanowire array solar cells, Nanoscale
Res. Lett.
10, 436 (2015),
https://doi.org/10.1186/s11671-015-1110-1
[20] A.A. Biliuk, O.Yu. Semchuk, and O.O. Havryliuk, Width of
the surface plasmon resonance line in spherical metal
nanoparticles, Semiconduct. Phys. Quantum Electron.
Optoelectron.
23(3), 308–315 (2020),
https://doi.org/10.15407/spqeo23.03.308
[21] P.S. Chandrasekhar, H. Elbohy, B. Vaggensmith, A. Dubey,
K.M. Reza, V.K. Komarala, and Q. Qiao, Plasmonic silver
nanowires for higher efficiency dye-sensitized solar cells,
Mater. Today Energy
5, 237–242 (2017),
https://doi.org/10.1016/j.mtener.2017.07.005
[22] L. Cao and K. Sendur, Surface roughness effects on the
broadband reflection for refractory metals and polar
dielectrics, Materials
12, 309 (2019),
https://doi.org/10.3390/ma12193090
[23] J.P. Fese, J.S. Sadhu, B.P. Azeredo, K.H. Hsu, J. Ma, J.
Kim, M. Seong, N.X. Fang, X. Li, P.M. Ferreira, S. Sinha, and
D.G. Gahil, Thermal conductivity of silicon nanowire arrays with
controlled roughness, J. Appl. Phys.
112, 114306 (2012),
https://doi.org/10.1063/1.4767456
[24] Z. Wang, Z. Ni, R. Zhao, M. Chen, K. Bi, and Y. Chen, The
effect of surface roughness on lattice thermal conductivity of
silicon nanowire, Phys. B Condens. Matter
406(13),
2515–2520 (2011),
https://doi.org/10.1016/j.physb.2011.03.046
[25] J.R. Hendrickson, S. Vangala, N. Nader, K. Leedy, J. Guo,
and J.W. Cleary, Plasmon resonance and perfect light absorption
in subwavelength trench arrays etched in gallium-doped zinc
oxide film, Appl. Phys. Lett.
107, 191906 (2015),
https://doi.org/10.1063/1.4935219
[26] S.H. Lim, W. Mar, P. Matheu, D. Derkacs, and E.T. Yu,
Photocurrent spectroscopy of optical absorption enhancement in
silicon photodiodes via scattering from surface plasmon
polaritons in gold nanoparticles, J. Appl. Phys.
101,
104309 (2007),
https://doi.org/10.1063/1.2733649
[27] E. Fermi, Quantum theory of radiation, Rev. Mod. Phys.
4,
87 (1939),
https://doi.org/10.1103/RevModPhys.4.87
[28] S. Zou and G. Schatz, Narrow plasmonic/photonic extinction
and scattering line shapes for one and two dimensional silver
nanoparticle arrays, J. Chem. Phys.
121, 12606 (2004),
https://doi.org/10.1063/1.1826036