[PDF]    https://doi.org/10.3952/physics.2023.63.1.1

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 1–7 (2023)

MODELLING THE OPTICAL CHARACTERISTICS OF CYLINDRICAL AND ROUGH NANOWIRES WITH SILVER NANOPARTICLES
Oleksandr Havryliuk, Olha Tkachuk, Mariia Terebinska, Oleksandr Semchuk, and Anatolii Biliuk
Chuiko Institute of Surface Chemistry NAS of Ukraine, 17 General Naumov St., 03164 Kyiv, Ukraine
Email: gavrylyuk.oleksandr@gmail.com

Received 8 July 2022; accepted 18 January 2023

The optical spectra of structures with Ag nanoparticles between rough and cylindrical nanowires are calculated. The simulation was carried out using the finite-difference time-domain method (FDTD). As a source of radiation, a plane wave with the range of wavelengths 300–1000 nm is used. It is shown that with an increase in the root mean square (RMS) roughness of rough nanowires, the absorption coefficient decreases in the range of 500–750 nm due to an increase in the reflection effect. When silver nanoparticles are added, peaks appear at the wavelength of 840 nm (for cylindrical nanowires) and 900 nm (for rough nanowires), which indicates the manifestation of the surface plasmon resonance effect. It is shown that the electric field strength in a system with rough nanowires is higher than in a system with cylindrical nanowires.
Keywords: rough nanowire, cylindrical nanowire, finite-difference time-domain method, optical spectra, metal nanoparticle

CILINDRINIŲ IR ŠIURKŠČIŲ NANOVIELŲ SU SIDABRO NANODALELĖMIS OPTINIŲ CHARAKTERISTIKŲ MODELIAVIMAS
Oleksandr Havryliuk, Olha Tkachuk, Mariia Terebinska, Oleksandr Semchuk, Anatolii Biliuk

Ukrainos nacionalinės mokslų akademijos O. O. Čiujko paviršiaus chemijos institutas, Kyjivas, Ukraina


References / Nuorodos

[1] O.O. Havryliuk, A.A. Evtukh, O.V. Pylypova, O.Yu. Semchuk, I.I. Ivanov, and V.F. Zabolotnyi, Plasmonic enhancement of light to improve the parameters of solar cells, Appl. Nanosci. 10, 4759–4766 (2020),
https://doi.org/10.1007/s13204-020-01299-w
[2] F. Enrichi, A. Quandt, and G.C. Righini, Plasmonic enhanced solar cells: Summary of possible strategies and recent results, Renew. Sustain. Energy Rev. 23(8), 2433–2439 (2018),
https://doi.org/10.1016/j.rser.2017.08.094
[3] R. Ghosh, J. Ghosh, R. Das, L.P.L. Mawlong, K.K. Paul, and P.K. Giri, Multifunctional Ag nanoparticle decorated Si nanowires for sensing, photocatalysis and light emission applications, J. Colloid Interface Sci. 532, 464–473 (2018),
https://doi.org/10.1016/j.jcis.2018.07.123
[4] A. Pal, R. Ghosh, and P.K. Giri, Early stages of growth of Si nanowires by metal assisted chemical etching: A scaling study, Appl. Phys. Lett. 107, 072104 (2015),
https://doi.org/10.1063/1.4928714
[5] O. Pylypova, O. Havryliuk, S. Antonin, A. Evtukh, V. Skryshevsky, I. Ivanov, and S. Shmahlii, Influence of nanostructure geometry on light trapping in solar cells, Appl. Nanosci. 12, 769–774 (2021),
https://doi.org/10.1007/s13204-021-01699-6
[6] R. Zaghouani, S. Aouida, N. Bachtouli, and B. Bessais, Nanoparticles effect on silicon nanowires properties, Chem. J. 1(2), 10–14 (2015),
http://www.publicscienceframework.org/journal/paperInfo/cj?paperId=294
[7] F. Es, G. Baytemir, M. Kulakci, and R. Turan, Metal-assisted nano-textured solar cells with SiO2/Si3N4 passivation, Sol. Energy Mater. Sol. Cells 160, 269–274 (2017),
https://doi.org/10.1016/j.solmat.2016.10.032
[8] E. Garnett and P. Yang, Trapping in silicon nanowire solar cells, Nano Lett. 10, 1082–1087 (2010),
https://doi.org/10.1021/nl100161z
[9] O.O. Havryliuk and O.Yu. Semchuk, Formation of periodic structures on the solid surface under laser irradiation, Ukr. J. Phys. 62(1), 20–32 (2017),
https://doi.org/10.15407/ujpe62.01.0020
[10] Z. Huang, S. Zhong, X. Hua, X. Lin, X. Kong, N. Dai, and W. Shen, An effective way to simultaneous  realization of excellent optical and electrical performance in largescale Si nano/microstructures, Prog. Photovolt.: Res. Appl. 23(8), 964–972 (2014),
https://doi.org/10.1002/pip.2506
[11] O.V. Pylypova, A.A. Evtukh, P.V. Parfenyuk, I.M. Korobchuk, O.O. Havryliuk, and O.Yu. Semchuk, Influence of Si nanowires on solar cell properties: effect of the temperature, Appl. Phys. A 124, 773 (2018),
https://doi.org/10.1007/s00339-018-2200-6
[12] H. Bao, X. Ruan, and T.S. Fisher, Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations, Opt. Express 18(6), 6347–6359 (2010),
https://doi.org/10.1364/OE.18.006347
[13] R.El. Bashar, M. Hussein, S.F. Hegazy, Y. Badr, M. Farhat, O. Hameed, and S.S.A. Obayya, Analysis of highly efficient quad-crescent-shaped Si nanowires solar cell, Opt. Express 29, 13641–13656 (2021),
https://doi.org/10.1364/OE.417652
[14] O.V. Pylypova, A.A. Evtukh, P.V. Parfenyuk, I.I. Ivanov, I.M. Korobchuk, O.O. Havryliuk, and O.Yu. Semchuk, Electrical and optical properties of nanowires based solar cell with radial p-n junction, Opto-Electron. Rev. 27(2), 143–148 (2019),
https://doi.org/10.1016/j.opelre.2019.05.003
[15] F. Toor, J.B. Miller, L.M. Davidson, W. Duan, M. Jura, J. Yim, J. Forziati, and M.R. Black, Metal assisted catalyzed etched (MACE) black Si: optics and device physics, Nanoscale 8, 15448–15466 (2016),
https://doi.org/10.1039/C6NR04506E
[16] A.P. Amalathas and M. Alkaisi, Nanostructures for light trapping in thin film solar cells, Micromachines 10(9), 619 (2019),
https://doi.org/10.3390/mi10090619
[17] H.A. Atwar and A. Polman, Plasmonics for improved photovoltaic devices, Nature Mater. 9, 205–213 (2010),
https://doi.org/10.1038/nmat2629
[18] K.R. Catchpole and A. Polman, Plasmonic solar cells, Opt. Express 16(26), 21793–21800 (2008),
https://doi.org/10.1364/OE.16.021793
[19] Y. Li, X. Yan, Y. Wu, X. Zhang and X. Ren, Plasmon-enhanced light absorption in GaAs nanowire array solar cells, Nanoscale Res. Lett. 10, 436 (2015),
https://doi.org/10.1186/s11671-015-1110-1
[20] A.A. Biliuk, O.Yu. Semchuk, and O.O. Havryliuk, Width of the surface plasmon resonance line in spherical metal nanoparticles, Semiconduct. Phys. Quantum Electron. Optoelectron. 23(3), 308–315 (2020),
https://doi.org/10.15407/spqeo23.03.308
[21] P.S. Chandrasekhar, H. Elbohy, B. Vaggensmith, A. Dubey, K.M. Reza, V.K. Komarala, and Q. Qiao, Plasmonic silver nanowires for higher efficiency dye-sensitized solar cells, Mater. Today Energy 5, 237–242 (2017),
https://doi.org/10.1016/j.mtener.2017.07.005
[22] L. Cao and K. Sendur, Surface roughness effects on the broadband reflection for refractory metals and polar dielectrics, Materials 12, 309 (2019),
https://doi.org/10.3390/ma12193090
[23] J.P. Fese, J.S. Sadhu, B.P. Azeredo, K.H. Hsu, J. Ma, J. Kim, M. Seong, N.X. Fang, X. Li, P.M. Ferreira, S. Sinha, and D.G. Gahil, Thermal conductivity of silicon nanowire arrays with controlled roughness, J. Appl. Phys. 112, 114306 (2012),
https://doi.org/10.1063/1.4767456
[24] Z. Wang, Z. Ni, R. Zhao, M. Chen, K. Bi, and Y. Chen, The effect of surface roughness on lattice thermal conductivity of silicon nanowire, Phys. B Condens. Matter 406(13), 2515–2520 (2011),
https://doi.org/10.1016/j.physb.2011.03.046
[25] J.R. Hendrickson, S. Vangala, N. Nader, K. Leedy, J. Guo, and J.W. Cleary, Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film, Appl. Phys. Lett. 107, 191906 (2015),
https://doi.org/10.1063/1.4935219
[26] S.H. Lim, W. Mar, P. Matheu, D. Derkacs, and E.T. Yu, Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles, J. Appl. Phys. 101, 104309 (2007),
https://doi.org/10.1063/1.2733649
[27] E. Fermi, Quantum theory of radiation, Rev. Mod. Phys. 4, 87 (1939),
https://doi.org/10.1103/RevModPhys.4.87
[28] S. Zou and G. Schatz, Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays, J. Chem. Phys. 121, 12606 (2004),
https://doi.org/10.1063/1.1826036