[PDF]    https://doi.org/10.3952/physics.2023.63.1.2

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 8–14 (2023)

ELECTRICAL PROPERTIES OF TIN OXIDE BASED VARISTORS WITH PbO ADDITION IN HUMID AIR
Alexei V. Gaponova and Olena V. Abramovab
a Oles Honchar Dnipro National University, 72 Gagarin Ave., 49010 Dnipro, Ukraine
b Ukrainian State University of Science and Technologies, 2 Lazaryana St., 49010 Dnipro, Ukraine
Email: alexei_gaponov@ukr.net

Received 7 July 2022; accepted 18 January 2023

In order to decrease the humidity sensitivity of SnO2–Co3O4–Nb2O5–Cr2O3 varistor ceramics, lead oxide was added and the electric characteristics of synthesized materials with the PbO concentration of 0, 0.1, 0.5, 0.7, 1 and 2 mol.% in the air with relative humidity of 10–86% were investigated. All tested samples have non-linear current–voltage characteristics with large values of the nonlinearity coefficient of 38–51. The optimal concentration of PbO addition in ceramics is 0.5–0.7 mol.%. The addition of such quantity of lead oxide to the ceramics leads to the decrease of the breakdown electric field up to 4390 V/cm and the humidity sensitivity coefficient up to 172. The increase of the PbO concentration provides the increase of the electrical conductivity of samples at low fields. The barrier mechanism of electrical conductivity of the studied ceramics is proved by the obtained values of potential barrier heights of 0.85–0.90 еV on the SnO2 crystallite boundaries.
Keywords: varistor, ceramics, SnO2, PbO, relative humidity
PACS: 73.30.+y, 73.40.Ty, 73.50.Fq

ALAVO OKSIDO VARISTORIŲ SU PbO PRIEMAIŠA ELEKTRINĖS SAVYBĖS DRĖGNAME ORE
Alexei V. Gaponova, Olena V. Abramovab

a Olesio Gončiaro vardo Dnipro nacionalinis universitetas, Dnipras, Ukraina
b Ukrainos valstybinis mokslo ir technologijų universitetas, Dnipras, Ukraina


References / Nuorodos

[1] D.V. Adamchuk, V.K. Ksenevich, N.A. Poklonski, M. Navickas, and J. Banys, Nonstoichiometric tin oxide films: study by X-ray diffraction, Raman scattering and electron paramagnetic resonance, Lith. J. Phys. 59(4), 224–232 (2019),
https://doi.org/10.3952/physics.v59i4.4138
[2] S.M. Ingole, Y.H. Navale, A.S. Salunkh, M.A. Chougule, G.D. Khuspe, and V.B. Patil, Tin oxide nanostructure fabricated by thermal evaporation as potential NO2 sensor, J. Nano-Electron. Phys. 12(2), 02024-1–3 (2020),
https://doi.org/10.21272/jnep.12(2).02024
[3] A.V. Gaponov and I.A. Skuratovsky, Electrical properties of SnO2-based varistor ceramics with solid-phase and liquid-phase sintering, J. Phys. Stud. 23(3), 3708-1–8 (2019),
https://doi.org/10.30970/jps.23.3708
[4] E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments, Sens. Actuat. B 23(2–3), 135–156 (1995),
https://doi.org/10.1016/0925-4005(94)01268-M
[5] I. Skuratovsky, A. Glot, E. Di Bartolomeo, E. Traversa, and R. Polini, The effect of humidity on the voltage-current characteristic of SnO2 based ceramic varistor, J. Eur. Ceram. Soc. 24(9), 2597–2604 (2004),
https://doi.org/10.1016/j.jeurceramsoc.2003.09.008
[6] Z. Chen and C. Lu, Humidity sensors: a review of materials and mechanisms, Sens. Lett. 3(4), 274–295 (2005),
https://doi.org/10.1166/sl.2005.045
[7] I. Skuratovsky, A. Glot, and E. Traversa, Modelling of the humidity effect on the barrier height in SnO2 varistors, Mater. Sci. Eng. B 128(1–3), 130–137 (2006),
https://doi.org/10.1016/j.mseb.2005.11.039
[8] A.V. Gaponov, A.B. Glot, A.I. Ivon, A.M. Chack, and G. Jimenez-Santana, Varistor and humidity-sensitive properties of SnO2–Co3O4–Nb2O5–Cr2O3 ceramics with V2O5 addition, Mater. Sci. Eng. B 145(1–3), 76–84 (2007),
https://doi.org/10.1016/j.mseb.2007.10.003
[9] A.V. Gaponov, Humidity sensors based on SnO2–Co3O4–Nb2O5–Cr2O3 semiconductor varistor ceramics, Sens. Electron. Microsyst. Technol. 15(3), 19–30 (2018),
https://doi.org/10.18524/1815-7459.2018.3.142041
[10] M. Velumani, S.R. Meher, and Z.C. Alex, Impedometric humidity sensing characteristics of SnO2 thin films and SnO2–ZnO composite thin films grown by magnetron sputtering, J. Mater. Sci. Mater. Electron. 29, 3999–4010 (2018),
https://doi.org/10.1007/s10854-017-8342-z
[11] S.A. Pianaro, P.R. Bueno, E. Longo, and J.A. Varela, A new SnO2-based varistor system, J. Mater. Sci. Lett. 14(10), 692–694 (1995),
https://doi.org/10.1007/BF00253373
[12] W.-X. Wang, J.-F. Wang, H.-C. Chen, W.-B. Su, and G.-Z. Zang, Effects of Cr2O3 on the properties of (Co, Nb)-doped SnO2 varistors, Mater. Sci. Eng. B 99(1–3), 470–474 (2003),
https://doi.org/10.1016/S0921-5107(02)00477-4
[13] A.V. Gaponov, Influence of yttrium oxide addition on the characteristics of SnO2 based ceramics, Phys. B Condens. Matter 639, 414010-1–8 (2022),
https://doi.org/10.1016/j.physb.2022.414010
[14] A.B. Glot, The conduction of SnO2 based ceramics, Inorg. Mater. 20(10), 1522–1523 (1984)
[15] A.B. Glot and A.P. Zlobin, The non-ohmic conduction of tin dioxide based ceramics, Inorg. Mater. 25(2), 274–276 (1989)
[16] A.B. Glot, A.V. Gaponov, and A.P. Sandoval-Garcia, Electrical conduction in SnO2 varistors, Phys. B Condens. Matter 405, 705–711 (2010),
https://doi.org/10.1016/j.physb.2009.09.091
[17] V.O. Makarov and M. Trontelj, Sintering and electrical conductivity of doped WO3, J. Eur. Ceram. Soc. 16(7), 791–794 (1996),
https://doi.org/10.1016/0955-2219(95)00204-9
[18] C.-W. Nahm and C.-H. Park, Microstructure, electrical properties, and degradation behavior of praseodymium oxides-based zinc oxide varistors doped with Y2O3, J. Mater. Sci. 35, 3037–3042 (2000),
https://doi.org/10.1023/A:1004749214640
[19] M. Batzill and U. Diebold, The surface and materials science of tin oxide, Prog. Surf. Sci. 79, 47–154 (2005),
https://doi.org/10.1016/j.progsurf.2005.09.002
[20] J.A. Cerri, I.M.G. Santos, E. Longo, E.R. Leite, R.M. Lebullenger, A.C. Hernandes, and J.A. Varela, Characteristics of PbO–BiO1.5–GaO1.5 glasses melted in SnO2 crucibles, J. Am. Ceram. Soc. 81(3), 705–708 (1998),
https://doi.org/10.1111/j.1151-2916.1998.tb02393.x