Alexei V. Gaponov
and Olena V. Abramova
References /
Nuorodos
[1] D.V. Adamchuk, V.K. Ksenevich, N.A. Poklonski, M. Navickas,
and J. Banys, Nonstoichiometric tin oxide films: study by X-ray
diffraction, Raman scattering and electron paramagnetic
resonance, Lith. J. Phys.
59(4), 224–232 (2019),
https://doi.org/10.3952/physics.v59i4.4138
[2] S.M. Ingole, Y.H. Navale, A.S. Salunkh, M.A. Chougule, G.D.
Khuspe, and V.B. Patil, Tin oxide nanostructure fabricated by
thermal evaporation as potential NO
2 sensor, J.
Nano-Electron. Phys.
12(2), 02024-1–3 (2020),
https://doi.org/10.21272/jnep.12(2).02024
[3] A.V. Gaponov and I.A. Skuratovsky, Electrical properties of
SnO
2-based varistor ceramics with solid-phase and
liquid-phase sintering, J. Phys. Stud.
23(3), 3708-1–8
(2019),
https://doi.org/10.30970/jps.23.3708
[4] E. Traversa, Ceramic sensors for humidity detection: the
state-of-the-art and future developments, Sens. Actuat. B
23(2–3),
135–156 (1995),
https://doi.org/10.1016/0925-4005(94)01268-M
[5] I. Skuratovsky, A. Glot, E. Di Bartolomeo, E. Traversa, and
R. Polini, The effect of humidity on the voltage-current
characteristic of SnO
2 based ceramic varistor, J.
Eur. Ceram. Soc.
24(9), 2597–2604 (2004),
https://doi.org/10.1016/j.jeurceramsoc.2003.09.008
[6] Z. Chen and C. Lu, Humidity sensors: a review of materials
and mechanisms, Sens. Lett.
3(4), 274–295 (2005),
https://doi.org/10.1166/sl.2005.045
[7] I. Skuratovsky, A. Glot, and E. Traversa, Modelling of the
humidity effect on the barrier height in SnO
2
varistors, Mater. Sci. Eng. B
128(1–3), 130–137 (2006),
https://doi.org/10.1016/j.mseb.2005.11.039
[8] A.V. Gaponov, A.B. Glot, A.I. Ivon, A.M. Chack, and G.
Jimenez-Santana, Varistor and humidity-sensitive properties of
SnO
2–Co
3O
4–Nb
2O
5–Cr
2O
3
ceramics with V
2O
5 addition, Mater. Sci.
Eng. B
145(1–3), 76–84 (2007),
https://doi.org/10.1016/j.mseb.2007.10.003
[9] A.V. Gaponov, Humidity sensors based on SnO
2–Co
3O
4–Nb
2O
5–Cr
2O
3
semiconductor varistor ceramics, Sens. Electron. Microsyst.
Technol. 15(3), 19–30 (2018),
https://doi.org/10.18524/1815-7459.2018.3.142041
[10] M. Velumani, S.R. Meher, and Z.C. Alex, Impedometric
humidity sensing characteristics of SnO
2 thin films
and SnO
2–ZnO composite thin films grown by magnetron
sputtering, J. Mater. Sci. Mater. Electron.
29,
3999–4010 (2018),
https://doi.org/10.1007/s10854-017-8342-z
[11] S.A. Pianaro, P.R. Bueno, E. Longo, and J.A. Varela, A new
SnO
2-based varistor system, J. Mater. Sci. Lett.
14(10),
692–694 (1995),
https://doi.org/10.1007/BF00253373
[12] W.-X. Wang, J.-F. Wang, H.-C. Chen, W.-B. Su, and G.-Z.
Zang, Effects of Cr
2O
3 on the properties
of (Co, Nb)-doped SnO
2 varistors, Mater. Sci. Eng. B
99(1–3), 470–474 (2003),
https://doi.org/10.1016/S0921-5107(02)00477-4
[13] A.V. Gaponov, Influence of yttrium oxide addition on the
characteristics of SnO
2 based ceramics, Phys. B
Condens. Matter
639, 414010-1–8 (2022),
https://doi.org/10.1016/j.physb.2022.414010
[14] A.B. Glot, The conduction of SnO
2 based
ceramics, Inorg. Mater.
20(10), 1522–1523 (1984)
[15] A.B. Glot and A.P. Zlobin, The non-ohmic conduction of tin
dioxide based ceramics, Inorg. Mater.
25(2), 274–276
(1989)
[16] A.B. Glot, A.V. Gaponov, and A.P. Sandoval-Garcia,
Electrical conduction in SnO
2 varistors, Phys. B
Condens. Matter
405, 705–711 (2010),
https://doi.org/10.1016/j.physb.2009.09.091
[17] V.O. Makarov and M. Trontelj, Sintering and electrical
conductivity of doped WO
3, J. Eur. Ceram. Soc.
16(7),
791–794 (1996),
https://doi.org/10.1016/0955-2219(95)00204-9
[18] C.-W. Nahm and C.-H. Park, Microstructure, electrical
properties, and degradation behavior of praseodymium
oxides-based zinc oxide varistors doped with Y
2O
3,
J. Mater. Sci.
35, 3037–3042 (2000),
https://doi.org/10.1023/A:1004749214640
[19] M. Batzill and U. Diebold, The surface and materials
science of tin oxide, Prog. Surf. Sci.
79, 47–154
(2005),
https://doi.org/10.1016/j.progsurf.2005.09.002
[20] J.A. Cerri, I.M.G. Santos, E. Longo, E.R. Leite, R.M.
Lebullenger, A.C. Hernandes, and J.A. Varela, Characteristics of
PbO–BiO
1.5–GaO
1.5 glasses melted in SnO
2
crucibles, J. Am. Ceram. Soc.
81(3), 705–708 (1998),
https://doi.org/10.1111/j.1151-2916.1998.tb02393.x