Olena V. Sukhova
References /
Nuorodos
[1] N. Chawla and K.K. Chawla,
Metal Matrix Composites
(Springer, New York, 2013),
https://doi.org/10.1007/978-1-4614-9548-2
[2] S. Suresh, A. Mortensen, and A. Needleman,
Fundamentals
of Metal-Matrix Composites (Butterworth-Heinemann,
Stoneham, 2013)
[3] K.U. Kainer, in:
Metal Matrix Composites. Custom-made
Materials for Automotive and Aerospace Engineering, ed.
K.U. Kainer (Wiley-VCH Verlag, Weinheim, 2006) pp. 1–54.
https://doi.org/10.1002/3527608117.ch1
[4] Y.G. Chabak, V.I. Fedun, K. Shimizu, V.G. Efremenko, and
V.I. Zurnadzhy, Phase-structural composition of coating obtained
by pulsed plasma treatment using eroded cathode of T1 high speed
steel, Probl. At. Sci. Technol.
104(4), 100–106 (2016)
[5] J.B. Ferguson, B.F. Schultz, and P.K. Rohatgi, Self-healing
metals and metal matrix composites, JOM
66(6), 866–871
(2014),
https://doi.org/10.1007/s11837-014-0912-4
[6] Z.A. Duryagina, S.A. Bespalov, A.K. Borysyuk, and V.Ya.
Pidkova, Magnetometric analysis of surface layers of 12X18H10T
steel after ion-beam nitriding, Metallofiz. Noveishie Tekhnol.
33(5),
615–622 (2011),
https://doi.org/10.1007/s11003-012-9514-x
[7] Y.L. Ivanytskyj, T.M. Lenkovskiy, Y.V. Molkov, V.V. Kulyk,
and Z.A. Duriagina, Influence of 65G steel microstructure on
crack faces friction factor under mode II fatigue fracture,
Arch. Mater. Sci. Eng.
82(2), 49–56 (2016),
https://doi.org/10.5604/01.3001.0009.7103
[8] S.I. Ryabtsev, V.А. Polonskyy, and О.V. Sukhova, Structure
and corrosion of quasicrystalline cast alloys and Al–Cu–Fe film
coatings, Mater. Sci.
56(2), 263–272 (2020),
https://doi.org/10.1007/s11003-020-00428-8
[9] I.M. Spiridonova, E.V. Sukhovaya, V.F. Butenko, А.P. Zhudra,
А.I. Litvinenko, and А.I. Belyi, Structure and properties of
boron-bearing iron granules for composites, Powder Metall. Met.
Ceram.
32(2), 139–141 (1993),
https://doi.org/10.1007/BF00560039
[10] R. Tkachenko, Z. Duriagina, I. Lemishka, I. Izonin, and A.
Trostianchyn, Development of machine learning method of titanium
alloy properties identification in additive technologies,
East.-Eur. J. Enterp. Technol.
3(12–93), 23–31 (2018),
https://doi.org/10.15587/1729-4061.2018.134319
[11] О.V. Sukhova, Structure and properties of Fe–B–C powders
alloyed with Cr, V, Mo or Nb for plasma-sprayed coatings, Probl.
At. Sci. Technol.
4(128), 77–83 (2020),
https://doi.org/10.46813/2020-128-077
[12] Y. Chabak, V. Efremenko, V. Zurnadzhy, V. Puchý, I.
Petryshynets, B. Efremenko, V. Fedun, K. Shimizu, I. Bogomol, V.
Kulyk, and D. Jakubéczyová, Structural and tribological studies
of “(TiC + WC)/hardened steel” PMMC coating deposited by air
pulsed plasma, Metals
12, 218 (2022),
https://doi.org/10.3390/met12020218
[13] P.M. Brune,
Processing and Properties of WC-based
Cu–Ni–Mn–Zn Metal Matrix Composites Produced via Pressureless
Infiltration, Masters Theses, 7850 (2017),
https://scholarsmine.mst.edu/masters_theses/7850
[14] Е.V. Sukhovaya, Structural approach to the development of
wear-resistant composite materials, J. Superhard Mater.
35(5),
277–283 (2013),
https://doi.org/10.3103/S106345761305002X
[15] О.V. Sukhova and Yu.V. Syrovatko, New metallic materials
and synthetic metals, Metallofiz. Noveishie Tekhnol.
41(9),
1171–1185 (2019),
https://doi.org/10.15407/mfint.41.09.1171
[16] I. Daoud, Dj. Miroud, and R. Yamanoglu, Microstructure
characterization and quantitative analysis of copper alloy
matrix composites reinforced with WC-xNi powders prepared by
spontaneous infiltration, J. Min. Metall. B
54(2),
169–177 (2018),
https://doi.org/10.2298/JMMB171225005D
[17] O.V. Sukhova, V.A. Polonskyy, and K.V. Ustinova,
Corrosion-electrochemical properties of quasicrystalline
Al–Cu–Fe–(Si,B) and Al–Ni–Fe alloys in NaCl solution, Vopr.
Khimii Khimicheskoi Tekhnologii
124(3), 46–52 (2019) [in
Ukrainian],
https://doi.org/10.32434/0321-4095-2019-124-3-46-52
[18] B.O. Trembach, M.G. Sukov, V.A. Vynar, I.O. Trembach, V.V.
Subbotinа, O.Yu. Rebrov, O.M. Rebrova, and V.I. Zakiev, Effect
of incomplete replacement of Cr for Cu in the deposited alloy of
Fe–C–Cr–B–Ti alloying system with a medium boron content (0.5%
wt.) on its corrosion resistance, Metallofiz. Noveishie Tekhnol.
44(4), 493–513 (2022),
https://doi.org/10.15407/mfint.44.04.0493
[19] R. Babilas, A. Bajorek, M. Spilka, A. Radon, and W. Lonski,
Structure and corrosion resistance of Al–Cu–Fe alloys, Prog.
Nat. Sci.
30(3), 393–401 (2020),
https://doi.org/10.1016/j.pnsc.2020.06.002
[20] О.V. Sukhova, The effect of carbon content and cooling rate
on the structure of boron-rich Fe–B–С alloys, Phys. Chem. Solid
State 21(2), 355–360 (2020),
https://doi.org/10.15330/pcss.21.2.355-360
[21] H. Wang, Z.-H. Zhang, Z.-Y. Hu, Q. Song, S.-P. Yin, Z.
Kang, and S.-L. Li, Improvement of interfacial interaction and
mechanical properties in copper matrix composites reinforced
with copper coated carbon nanotubes, Mater. Sci. Eng. A 715,
163–173 (2018),
https://doi.org/10.1016/j.msea.2018.01.005
[22] O.V. Sukhova, V.A. Polonskyy, and K.V. Ustinova, Structure
formation and corrosion behaviour of quasicrystalline Al–Ni–Fe
alloys, Phys. Chem. Solid State
18(2), 222–227 (2017),
https://doi.org/10.15330/pcss.18.2.222-227
[23] K. Młynarek-Żak, A. Wierzbicka-Miernik, M. Kądziołka-Gaweł,
T. Czeppe, A. Radoń, and R. Babilas, Electrochemical
characterization of rapidly solidified Al–(Cr,Cu,Ni,Y,Zr)–Fe
alloys, Electrochim. Acta
409, 139836 (2022),
https://doi.org/10.1016/j.electacta.2022.139836
[24] О.V. Sukhova and V.А. Polonskyy, Structure and corrosion of
quasicrystalline cast Al–Co–Ni and Al–Fe–Ni alloys in aqueous
NaCl solution, East Eur. J. Phys.
3, 5–10 (2020),
https://doi.org/10.26565/2312-4334-2020-3-01
[25] J. Liu, S. Yang, W. Xia, X. Jiang, and Ch. Gui,
Microstructure and wear resistance performance of Cu–Ni–Mn alloy
based hardfacing coatings reinforced by WC particles, J. Alloys
Compd.
654, 63–70 (2015),
https://doi.org/10.1016/j.jallcom.2015.09.130
[26] A.V. Muller, D. Ewert, A. Galatanu, M. Milwich, R. Neu,
J.Y. Pastor. U. Siefken, E. Tejado, and J.H. You, Melt
infiltrated tungsten–copper composites as advanced heat sink
materials for plasma facing components of future nuclear fusion
devices, Fusion Eng. Des.
124, 455–459 (2017),
https://doi.org/10.1016/j.fusengdes.2017.01.042
[27] V. Jankauskas, M. Antonov, V. Varnauskas, R. Skirkus, and
D. Goljandin, Effect of WC grain size and content on low stress
abrasive wear of manual arc welded hardfacing with low-carbon or
stainless steel matrix, Wear
328–329, 378–390 (2015),
https://doi.org/10.1016/j.wear.2015.02.063
[28] M. Jäcklein, A. Pfaff, and K. Hoschke, Developing
tungsten-filled metal matrix composite materials using laser
powder bed fusion, Appl. Sci.
10(24), 8869 (2020),
https://doi.org/10.3390/app10248869
[29]
Copper Alloys: Preparation, Properties and Applications,
eds. M. Naboka and J. Giordano, (Nova Science Publishers Inc.,
Hauppauge, N. Y., 2011)
[30] M. Schutze, R. Feser, and R. Bender,
Corrosion
Resistance of Copper and Copper Alloys (Wiley-VCH,
Weinheim, 2011).
https://www.wiley-vch.de/
[31] B. Trembach, A. Grin, V. Subbotina, V. Vynar, S. Knyazev,
V. Vakiev, I. Trembach, and O. Kabatskyi, Effect of exothermic
addition (CuO–Al) on the structure, mechanical properties and
abrasive wear resistance of the deposited metal during
self-shielded flux-cored arc welding, Tribol. Ind.
43(3),
452–464 (2021),
https://doi.org/10.24874/ti.1104.05.21.07
[32] О.V. Sukhova, Solubility of Cu, Ni, Mn in boron-rich Fe–B–C
alloys, Phys. Chem. Solid State
22(1), 110–116 (2021),
https://doi.org/10.15330/pcss.22.1.110-116
[33] P. Sakiewicz, R. Nowosielski, and R. Babilas, Production
aspects of inhomogeneous hot deformation in as-cast CuNi25
alloy, Indian J. Eng. Mater. Sci.
22(4), 389–398 (2015),
[PDF]
[34] R. Wang, Y. Fu, G. Xie, Z. Hao, S. Zhang, and X. Liu, The
microstructure and mechanical properties of Cu–20Ni–20Mn alloy
fabricated by a compact preparation process, Metals
10,
1528–1537 (2020),
https://doi.org/10.3390/met10111528
[35] B. Trembach, A. Grin, N. Makarenko, S. Zharikov, I.
Trembach, and O. Markov, Influence of the core filler
composition on the recovery of alloying elements during the
self-shielded flux-cored arc welding, J. Mater. Res. Technol.
9(5),
10520–10528 (2020),
https://doi.org/10.1016/j.jmrt.2020.07.052
[36] S. Sharma, X.N. Dong, P. Wei, and C. Long, Electro-chemical
deposited Cu–Ni binary and Cu–Ni–Mn ternary alloys from sulphate
bath for anti-corrosive coating applications in brine
environment: Effect of corrosion behaviour, polarization
studies, morphological and structural characterizations, Key
Eng. Mater.
837, 102–108 (2020),
https://doi.org/10.4028/www.scientific.net/KEM.837.102
[37] О.V. Sukhova, The effect of iron on precipitation hardening
in the Cu–Ni–Mn alloys, Phys. Chem. Solid State
22(3),
487–493 (2021),
https://doi.org/10.15330/pcss.22.3.487-493
[38] H. Kang, Z. Yang, X. Yang, J. Li, W. He, Z. Chen, E. Guo,
L.-D. Zhao, and T. Wang, Preparing bulk Cu–Ni–Mn based
thermoelectric alloys and synergistically improving their
thermoelectric and mechanical properties using nanotwins and
nanoprecipitates, Mater. Today Phys.
17, 100332 (2020),
https://doi.org/10.1016/j.mtphys.2020.100332
[39] W. Xie, Q. Wang, X. Mi, G. Xie, D. Liu, X. Gao, and Y. Li,
Microstructure evolution and properties of Cu–20Ni–20Mn alloy
during aging process, Trans. Nonferrous Met. Soc. China
25(10),
3247–3251 (2015),
https://doi.org/10.1016/S1003-6326(15)63960-7
[40] J. Zou, L. Shi, H. Shi, Q. Feng, and S. Liang, Study on
aging strengthening and nano precipitates of Cu–Ni–Mn–Fe alloy,
Mater. Res. Express
7, 056504 (2020),
https://doi.org/10.1088/2053-1591/ab8b1d
[41] S. Reeh, D. Music, M. Ekholm, I. Abrikosov, and J.M.
Schneider, Elastic properties of fcc Fe–Mn–X(X=Cr, Co, Ni, Cu)
alloys from first-principles calculations, Phys. Rev. B.
87,
224103 (2013),
https://doi.org/10.1103/PhysRevB.87.224103
[42] S. Hocker, P. Binkele, and S. Schmauder, Precipitation in
α-Fe based Fe–Cu–Ni–Mn-alloys: behaviour of Ni and Mn modelled
by ab initio and kinetic Monte Carlo simulations, Appl. Phys.
Res.
115(2), 679–687 (2014),
https://doi.org/10.1007/s00339-013-7850-9
[43] R.Y. Lin, Composite interfacial reactions, JOM
45,
20 (1993),
https://doi.org/10.1007/BF03222343
[44] A.I. Mertens and J. Lecomte-Beckers, in:
New Trends in
3D Printing, ed. I.V. Shishkovsky (Intech, Liege, 2016)
pp. 187–213,
https://doi.org/10.5772/63045
[45] Yu.M. Ivashchenko and V.N. Eremenko,
Basics of Precise
Measurement of Surface Energy by Sessile Drop Method
(Naukova dumka, Kyiv, 1972) [in Russian]
[46] C.J. Smithells,
Metal Reference Book (Butterworth
& Co., London-Boston, 1976)
[47] T.Ya. Kosolapova,
Properties, Preparation and
Application of Refractory Compounds (Metallurgy, Moscow,
1986) [in Russian]
[48] L.N. Larikov and Yu.F. Yurchenko,
Thermal Properties of
Metals and Alloys (Naukova dumka, Kyiv, 1985) [in Russian]