Received 1 September 2022; revised 11 February 2023; accepted 11
February 2023
References /
Nuorodos
[1] J. Zhao and A.F. Burke, Review on supercapacitors:
Technologies and performance evaluation, J. Energy Chem.
59,
276–291 (2021),
https://doi.org/10.1016/j.jechem.2020.11.013
[2] I. Bordun, V. Pohrebennyk, V. Ptashnyk, M. Sadova, and M.
Cygnar, in:
Proceedings of the International
Multidisciplinary Scientific GeoConference SGEM, Vol. 2
(Curran Associates, Inc., USA, 2016) pp. 879–886
[3] B. Bakhmatyuk and I. Dupliak, Electrochemical performance
and the mechanism of process of an electrosorption of iodine by
means of the activated carbon material in system of the hybrid
supercapacitor, Nanosistemi Nanomater. Nanotehnologii
14(2),
271–283 (2016) [in Ukrainian],
[PDF]
[4] M.I.A. Abdel Maksoud, R.A. Fahim, A.E. Shalan, M. Abd
Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, A.H.
Al-Muhtaseb, A.S. Awed, A.H. Ashour, and D.W. Rooney, Advanced
materials and technologies for supercapacitors used in energy
conversion and storage: a review, Environ. Chem. Lett.
19(1),
375–439 (2021),
https://doi.org/10.1007/s10311-020-01075-w
[5] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang,
and J.-G. Zhang, Lithium metal anodes for rechargeable
batteries, Energy Environ. Sci.
7, 513–537 (2014),
https://doi.org/10.1039/C3EE40795K
[6] L. Zhang, D. Sun, J. Kang, J. Feng, H.A. Bechtel, L.-W.
Wang, E.J. Cairns, and J. Guo, Electrochemical reaction
mechanism of the MoS
2 electrode in a lithium-ion cell
revealed by in situ and operando X-ray absorption spectroscopy,
Nano Lett.
18(2), 1466–1475 (2018),
https://doi.org/10.1021/acs.nanolett.7b05246
[7] Y. Teng, H. Zhao, Z. Zhang, Z. Li, Q. Xia, Y. Zhang, L.
Zhao, X. Du, Z. Du, P. Lv, and K. Świerczek, MoS
2
nanosheets vertically grown on graphene sheets for lithium-ion
battery anodes, ACS Nano
10(9), 8526–8535 (2016),
https://doi.org/10.1021/acsnano.6b03683
[8] Y. Wang, L. Yu, and X.W.D. Lou, Synthesis of highly uniform
molybdenum–glycerate spheres and their conversion into
hierarchical MoS
2 hollow nanospheres for lithium-ion
batteries, Angew. Chem. Int. Ed.
55(26), 7423–7426
(2016),
https://doi.org/10.1002/anie.201601673
[9] Y. Zhang, Y. Li, X. Xia, X. Wang, C. Gu, and J. Tu,
High-energy cathode materials for Li-ion batteries: A review of
recent developments, Sci. China Technol. Sci.
58,
1809–1828 (2015),
https://doi.org/10.1007/s11431-015-5933-x
[10] Y.-K. Sun, Direction for development of next-generation
lithium-ion batteries, ACS Energy Lett.
2(12), 2694–2695
(2017),
https://doi.org/10.1021/acsenergylett.7b01027
[11] O.V. Balaban, I.I. Grygorchak, R.M. Peleshchak, O.V. Kuzyk,
and O.O. Dan’kiv, The ultrasonic modification of thermodynamic
and kinetic regularity of lithium intercalation in talc, Prog.
Nat. Sci. Mater. Int.
24(4), 397–404 (2014).
https://doi.org/10.1016/j.pnsc.2014.07.003
[12] B.A. Lukiyanets and D.V. Matulka, Peculiarities of
electron-electron interaction in quantum-dimensional objects, J.
Nano-Electron. Phys.
10(2), 02003-1–6 (2018),
https://doi.org/10.21272/jnep.10(2).02003
[13] S.H. Yang, S. Osmialowski, and Q.C. Horn, Nano-FeS
2
for commercial LiOFeS
2 primary batteries, J.
Electrochem. Soc.
149, A1499–A1502 (2002),
https://doi.org/10.1149/1.1513558
[14] M. Quintin, O. Devos, M. Delville, and G. Campet, Study of
the lithium insertion–deinsertion mechanism in nanocrystalline
γ-Fe2O
3 electrodes by means of electrochemical
impedance spectroscopy, Electrochim. Acta
51(28),
6426–6434 (2006),
https://doi.org/10.1016/j.electacta.2006.04.027
[15] C. Kwon, S. Hwang, A. Poquet, N. Treuil, G. Campet, J.
Portier, and J.H. Choy, in:
New Trends in Intercalation
Compounds for Energy Storage, Vol. 61, eds. C. Julien,
J.P. Pereira-Ramos, and A. Momchilov (Springer, The Netherlands,
2002) pp. 439–44.
https://doi.org/10.1007/978-94-010-0389-6_28
[16] S. Goriparti, E. Miele, F. Angelisa, E. Fabrizioc, R.
Zaccaria, and C. Capiglia, Review on recent progress of
nanostructured anode materials for Li-ion batteries, J. Power
Sources
257, 421–443 (2014),
https://doi.org/10.1016/j.jpowsour.2013.11.103
[17] F. Wu, N. Li, Y. Su, L. Zhang, L. Bao, J. Wang, L. Chen, Y.
Zheng, L. Dai, J. Peng, and S. Chen, Ultrathin spinel
membrane-encapsulated layered lithium-rich cathode material for
advanced Li-ion batteries, Nano Lett.
14, 3550–3555
(2014),
https://doi.org/10.1021/nl501164y
[18] S.-T. Myung, F. Maglia, K.-J. Park, C. Yoon, P. Lamp, S.-J.
Kim, and Y.-K. Sun, Nickel-rich layered cathode materials for
automotive lithium-ion batteries: achievements and perspectives,
ACS Energy Lett.
2, 196–223 (2017),
https://doi.org/10.1021/acsenergylett.6b00594
[19] I. Grygorchak, I. Myronyuk, M. Micov, A. Pidluzhna, and O.
Ostapuk, Gigantic capacito-energetic parameters of
lithium-intercalation current generation reaction in
nanodispersed TiO
2 with defective structure, Acta
Phys. Pol. A
117, 189–194 (2010),
https://doi.org/10.12693/APhysPolA.117.189
[20] K. Yanagida, A. Yanai, Y. Kida, A. Funahashi, T. Nohma, and
I. Yonezu, Carbon hybrids graphite-hard carbon and graphite-coke
as negative electrode materials for lithium secondary batteries
charge/discharge characteristics, J. Electrochem. Soc.
149,
A804–A807 (2002),
https://doi.org/10.1149/1.1479155
[21] A. Nagelberg and W. Worrell, Alkali metal intercalated
transition metal disulfides: a thermodynamic model, J. Sol.
State Chem.
38, 321–334 (1981),
https://doi.org/10.1016/0022-4596(81)90063-3
[22] G. Schimmel,
Elektronen mikroskopische Methodik
(Springer-Verlag, Berlin‐Heidelberg‐New York, 1969)
[23] G. Brindley and G. Brown,
Crystal Structures of Clay
Minerals and Their X-ray Identification (Mineralogical
Society, London, 1980),
https://doi.org/10.1180/mono-5
[24] J.E.B. Randles, Kinetics of rapid electrode reactions,
Discuss. Faraday Soc.
1, 11–19 (1947),
https://doi.org/10.1039/df9470100011
[25] B. Ershler, Investigation of electrode reactions by the
method of charging-curves and with the aid of alternating
currents, Discuss. Faraday Soc.
1, 269–277 (1947),
https://doi.org/10.1039/df9470100269
[26] S. Dhillon and R. Kant, Theory for electrochemical
impedance spectroscopy of heterogeneous electrode with
distributed capacitance and charge transfer resistance, J. Chem.
Sci.
129, 1277–1292 (2017),
https://doi.org/10.1007/s12039-017-1335-x
[27] A.H. Thompson, Electrochemical studies of lithium
intercalation in titanium and tantalum dichalcogenides, Physica
B+C
99, 100–106 (1980),
https://doi.org/10.1016/0378-4363(80)90216-8
[28] A.M. Gusak and N. Storozhuk, Two remarks on Wagner
integrated diffusion coefficient, Metallophys. Adv. Technol.
41(5),
583–593 (2019),
https://doi.org/10.15407/mfint.41.05.0583
[29] B. Bakhmatyuk, B. Venhryn, I. Grygorchak, M. Micov, and Yu.
Kulyk, On the hierarchy of the influences of porous and
electronic structures of carbonaceous materials on parameters of
molecular storage devices, Electrochim. Acta
52,
6604–6610 (2007),
https://doi.org/10.1016/j.electacta.2007.04.053
[30] I. Stasyuk and V. Krasnov, Phase transitions in
Bose-Fermi-Hubbard model in the heavy fermion limit: Hard-core
boson approach, Condens. Matter Phys.
18(4), 43702: 1–20
(2015),
https://doi.org/10.5488/CMP.18.43702