[PDF]    https://doi.org/10.3952/physics.2023.63.1.4

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 25–34 (2023)

Li+ INTERCALATION CURRENT GENERATION IN AMORPHOUS AND CRYSTALLINE MoS2: EXPERIMENT AND THEORY
Oksana Balabana, Oleh Izhyka, Alexander Zaichenkoa,b, Natalia Mitinab, Ivan Grygorchaka, and Khrystyna Harhayb
a Department of Applied Physics and Nanomaterials Science, Lviv Polytechnic National University, 79013 Lviv, Ukraine
b Department of Organic Chemistry, Institute of Chemistry, Lviv Polytechnic National University, 79013 Lviv, Ukraine
Email: oksana.v.balaban@lpnu.ua

Received 1 September 2022; revised 11 February 2023; accepted 11 February 2023

In this work, crystalline and amorphous nano-MoS2 materials for effective Li+-intercalation current generation have been synthesized. The effect of disordering on the structural and electrochemical properties of nano-MoS2 has been systematically investigated by multiple characterizations: transmission electron microscopy (TEM), X-ray diffraction method and electrochemical measurements. Thermodynamic and kinetic peculiarities of intercalation processes have been studied. Dependences of the change in Gibbs’ free energy of the intercalation reaction on the extent of ‘guest’ lithium loading are analyzed. The distinctive feature of disordered structures is their ability to show colossal lithium ‘guest’ load, which ensures the specific capacity of the material in cathode processes up to ~2500 mAh·g–1 under the discharge not less than 2.6 V relative to lithium. The diffusion coefficient of lithium cations in the structure of disordered nano-MoS2 is two orders of magnitude higher than that in the crystalline MoS2. A quantum-mechanical model of the observed phenomena is suggested.
Keywords: MoS2 nanoparticles, intercalation, Gibbs’ energy, diffusion coefficient, resolvent Green’s function

ĮTERPTŲ Li+ JONŲ SROVĖS GENERAVIMAS AMORFINIAME IR KRISTALINIAME MoS2: EKSPERIMENTAS IR TEORIJA
Oksana Balabana, Oleh Izhyka, Alexander Zaichenkoa,b, Natalia Mitinab, Ivan Grygorchaka, Khrystyna Harhayb

a Lvivo nacionalinio politechnikos universiteto Taikomosios fizikos ir nanomedžiagų mokslo katedra, Lvivas, Ukraina
b Lvivo nacionalinio politechnikos universiteto Chemijos instituto Organinės chemijos katedra, Lvivas, Ukraina


References / Nuorodos

[1] J. Zhao and A.F. Burke, Review on supercapacitors: Technologies and performance evaluation, J. Energy Chem. 59, 276–291 (2021),
https://doi.org/10.1016/j.jechem.2020.11.013
[2] I. Bordun, V. Pohrebennyk, V. Ptashnyk, M. Sadova, and M. Cygnar, in: Proceedings of the International Multidisciplinary Scientific GeoConference SGEM, Vol. 2 (Curran Associates, Inc., USA, 2016) pp. 879–886
[3] B. Bakhmatyuk and I. Dupliak, Electrochemical performance and the mechanism of process of an electrosorption of iodine by means of the activated carbon material in system of the hybrid supercapacitor, Nanosistemi Nanomater. Nanotehnologii 14(2), 271–283 (2016) [in Ukrainian],
[PDF]
[4] M.I.A. Abdel Maksoud, R.A. Fahim, A.E. Shalan, M. Abd Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, A.H. Al-Muhtaseb, A.S. Awed, A.H. Ashour, and D.W. Rooney, Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review, Environ. Chem. Lett. 19(1), 375–439 (2021),
https://doi.org/10.1007/s10311-020-01075-w
[5] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci. 7, 513–537 (2014),
https://doi.org/10.1039/C3EE40795K
[6] L. Zhang, D. Sun, J. Kang, J. Feng, H.A. Bechtel, L.-W. Wang, E.J. Cairns, and J. Guo, Electrochemical reaction mechanism of the MoS2 electrode in a lithium-ion cell revealed by in situ and operando X-ray absorption spectroscopy, Nano Lett. 18(2), 1466–1475 (2018),
https://doi.org/10.1021/acs.nanolett.7b05246
[7] Y. Teng, H. Zhao, Z. Zhang, Z. Li, Q. Xia, Y. Zhang, L. Zhao, X. Du, Z. Du, P. Lv, and K. Świerczek, MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes, ACS Nano 10(9), 8526–8535 (2016),
https://doi.org/10.1021/acsnano.6b03683
[8] Y. Wang, L. Yu, and X.W.D. Lou, Synthesis of highly uniform molybdenum–glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries, Angew. Chem. Int. Ed. 55(26), 7423–7426 (2016),
https://doi.org/10.1002/anie.201601673
[9] Y. Zhang, Y. Li, X. Xia, X. Wang, C. Gu, and J. Tu, High-energy cathode materials for Li-ion batteries: A review of recent developments, Sci. China Technol. Sci. 58, 1809–1828 (2015),
https://doi.org/10.1007/s11431-015-5933-x
[10] Y.-K. Sun, Direction for development of next-generation lithium-ion batteries, ACS Energy Lett. 2(12), 2694–2695 (2017),
https://doi.org/10.1021/acsenergylett.7b01027
[11] O.V. Balaban, I.I. Grygorchak, R.M. Peleshchak, O.V. Kuzyk, and O.O. Dan’kiv, The ultrasonic modification of thermodynamic and kinetic regularity of lithium intercalation in talc, Prog. Nat. Sci. Mater. Int. 24(4), 397–404 (2014).
https://doi.org/10.1016/j.pnsc.2014.07.003
[12] B.A. Lukiyanets and D.V. Matulka, Peculiarities of electron-electron interaction in quantum-dimensional objects, J. Nano-Electron. Phys. 10(2), 02003-1–6 (2018),
https://doi.org/10.21272/jnep.10(2).02003
[13] S.H. Yang, S. Osmialowski, and Q.C. Horn, Nano-FeS2 for commercial LiOFeS2 primary batteries, J. Electrochem. Soc. 149, A1499–A1502 (2002),
https://doi.org/10.1149/1.1513558
[14] M. Quintin, O. Devos, M. Delville, and G. Campet, Study of the lithium insertion–deinsertion mechanism in nanocrystalline γ-Fe2O3 electrodes by means of electrochemical impedance spectroscopy, Electrochim. Acta 51(28), 6426–6434 (2006),
https://doi.org/10.1016/j.electacta.2006.04.027
[15] C. Kwon, S. Hwang, A. Poquet, N. Treuil, G. Campet, J. Portier, and J.H. Choy, in: New Trends in Intercalation Compounds for Energy Storage, Vol. 61, eds. C. Julien, J.P. Pereira-Ramos, and A. Momchilov (Springer, The Netherlands, 2002) pp. 439–44.
https://doi.org/10.1007/978-94-010-0389-6_28
[16] S. Goriparti, E. Miele, F. Angelisa, E. Fabrizioc, R. Zaccaria, and C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources 257, 421–443 (2014),
https://doi.org/10.1016/j.jpowsour.2013.11.103
[17] F. Wu, N. Li, Y. Su, L. Zhang, L. Bao, J. Wang, L. Chen, Y. Zheng, L. Dai, J. Peng, and S. Chen, Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries, Nano Lett. 14, 3550–3555 (2014),
https://doi.org/10.1021/nl501164y
[18] S.-T. Myung, F. Maglia, K.-J. Park, C. Yoon, P. Lamp, S.-J. Kim, and Y.-K. Sun, Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives, ACS Energy Lett. 2, 196–223 (2017),
https://doi.org/10.1021/acsenergylett.6b00594
[19] I. Grygorchak, I. Myronyuk, M. Micov, A. Pidluzhna, and O. Ostapuk, Gigantic capacito-energetic parameters of lithium-intercalation current generation reaction in nanodispersed TiO2 with defective structure, Acta Phys. Pol. A 117, 189–194 (2010),
https://doi.org/10.12693/APhysPolA.117.189
[20] K. Yanagida, A. Yanai, Y. Kida, A. Funahashi, T. Nohma, and I. Yonezu, Carbon hybrids graphite-hard carbon and graphite-coke as negative electrode materials for lithium secondary batteries charge/discharge characteristics, J. Electrochem. Soc. 149, A804–A807 (2002),
https://doi.org/10.1149/1.1479155
[21] A. Nagelberg and W. Worrell, Alkali metal intercalated transition metal disulfides: a thermodynamic model, J. Sol. State Chem. 38, 321–334 (1981),
https://doi.org/10.1016/0022-4596(81)90063-3
[22] G. Schimmel, Elektronen mikroskopische Methodik (Springer-Verlag, Berlin‐Heidelberg‐New York, 1969)
[23] G. Brindley and G. Brown, Crystal Structures of Clay Minerals and Their X-ray Identification (Mineralogical Society, London, 1980),
https://doi.org/10.1180/mono-5
[24] J.E.B. Randles, Kinetics of rapid electrode reactions, Discuss. Faraday Soc. 1, 11–19 (1947),
https://doi.org/10.1039/df9470100011
[25] B. Ershler, Investigation of electrode reactions by the method of charging-curves and with the aid of alternating currents, Discuss. Faraday Soc. 1, 269–277 (1947),
https://doi.org/10.1039/df9470100269
[26] S. Dhillon and R. Kant, Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance, J. Chem. Sci. 129, 1277–1292 (2017),
https://doi.org/10.1007/s12039-017-1335-x
[27] A.H. Thompson, Electrochemical studies of lithium intercalation in titanium and tantalum dichalcogenides, Physica B+C 99, 100–106 (1980),
https://doi.org/10.1016/0378-4363(80)90216-8
[28] A.M. Gusak and N. Storozhuk, Two remarks on Wagner integrated diffusion coefficient, Metallophys. Adv. Technol. 41(5), 583–593 (2019),
https://doi.org/10.15407/mfint.41.05.0583
[29] B. Bakhmatyuk, B. Venhryn, I. Grygorchak, M. Micov, and Yu. Kulyk, On the hierarchy of the influences of porous and electronic structures of carbonaceous materials on parameters of molecular storage devices, Electrochim. Acta 52, 6604–6610 (2007),
https://doi.org/10.1016/j.electacta.2007.04.053
[30] I. Stasyuk and V. Krasnov, Phase transitions in Bose-Fermi-Hubbard model in the heavy fermion limit: Hard-core boson approach, Condens. Matter Phys. 18(4), 43702: 1–20 (2015),
https://doi.org/10.5488/CMP.18.43702