Received 23 March 2023; revised 15 April 2023; accepted 17 April
2023
References /
Nuorodos
[1] A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou,
Self-channeling of high-peak-power femtosecond laser pulses in
air, Opt. Lett.
20, 73–75 (1995),
https://doi.org/10.1364/OL.20.000073
[2] E.T.J. Nibbering, P.F. Curley, G. Grillon, B.S. Prade, M.A.
Franco, F. Salin, and A. Mysyrowicz, Conical emission from
self-guided femtosecond pulses in air, Opt. Lett.
21,
62–64 (1996),
https://doi.org/10.1364/OL.21.000062
[3] B. La Fontaine, F. Vidal, Z. Jiang, C.Y. Chien, D. Comtois,
A. Desparois, T.W. Johnston, J.-C. Kieffer, and H. Pépin,
Filamentation of ultrashort pulse laser beams resulting from
their propagation over long distances in air, Phys. Plasmas
6,
1615–1621 (1999),
https://doi.org/10.1063/1.873715
[4] A. Couairon and L. Bergé, Modeling the filamentation of
ultra-short pulses in ionizing media, Phys. Plasmas
7,
193–209 (2000),
https://doi.org/10.1063/1.873794
[5] A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade,
and A. Mysyrowicz, Infrared femtosecond light filaments in air:
simulations and experiments, J. Opt. Soc. Am. B
19,
1117–1131 (2002),
https://doi.org/10.1364/JOSAB.19.001117
[6] V.P. Kandidov, O.G. Kosareva, I.S. Golubtsov, A. Liu, N.
Akozbek, C.M. Bowden, and S.L. Chin, Self-transformation of a
powerful femtosecond laser pulse into a white-light laser pulse
in bulk optical media, Appl. Phys. B
77, 149–165 (2003),
https://doi.org/10.1007/s00340-003-1214-7
[7] S. Skupin, L. Bergé, U. Peschel, F. Lederer, and R.
Sauerbrey, Filamentation of femtosecond light pulses in the air:
turbulent cells versus long-range clusters, Phys. Rev. E
70,
046602 (2004),
https://doi.org/10.1103/PhysRevE.70.046602
[8] T. Francis, L. Weiwei, T.S. Patrick, B. Andreas, and C.
Seeleang, Plasma density inside a femtosecond laser filament in
air: Strong dependence on external focusing, Phys. Rev. E
74,
036406 (2006),
https://doi.org/10.1103/PhysRevE.74.036406
[9] V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Measurement
of high order Kerr refractive index of major air components,
Opt. Express
17, 13429–13434 (2009),
https://doi.org/10.1364/OE.17.013429
[10] V. Loriot, E. Hertz, O. Faucher, and B. Lavorel,
Measurement of high order Kerr refractive index of major air
components: erratum, Opt. Express
18, 3011–3012 (2010),
https://doi.org/10.1364/OE.18.003011
[11] P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard,
E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Higher-order
Kerr terms allow ionization-free filamentation in gases, Phys.
Rev. Lett.
104, 103903 (2010),
https://doi.org/10.1103/PhysRevLett.104.103903
[12] W. Haitao, F. Chengyu, Z. Pengfei, Q. Chunhong, Z. Jinghui,
and M. Huimin, Light filaments with higher-order Kerr effect,
Opt. Express
18, 24301–24306 (2010),
https://doi.org/10.1364/OE.18.024301
[13] V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S.
Heninc, E. Hertz, B. Lavorel, O. Faucher, and J.P. Wolf, On
negative higher-order Kerr effect and filamentation, Laser Phys.
21, 1319–1328 (2010),
https://doi.org/10.1134/S1054660X11130196
[14] H. Wang, C. Fan, P. Zhang, C. Qiao, and H. Ma, Dynamics of
femtosecond filamentation with higher-order Kerr response, J.
Opt. Soc. Am. B
28, 2081–2086 (2011),
https://doi.org/10.1364/JOSAB.28.002081
[15] P. Béjot, E. Hertz, J. Kasparian, B. Lavorel, J.P. Wolf,
and O. Faucher, Transition from plasma-driven to Kerr-driven
laser filamentation, Phys. Rev. Lett.
106, 243902
(2011),
https://doi.org/10.1103/PhysRevLett.106.243902
[16] Z.X. Wang, C. Zhang, J.S. Liu, R. Li, and Z. Xu,
Femtosecond filamentation in argon and higher order
nonlinearities, Opt. Lett.
36, 2336–2338 (2011),
https://doi.org/10.1364/OL.36.002336
[17] M. Petrarca, Y. Petit, S. Henin, R. Delagrange, P. Béjot,
and J. Kasparian, Higher-order Kerr improve quantitative
modeling of laser filamentation, Opt. Lett.
37,
4347–4349 (2012),
https://doi.org/10.1364/OL.37.004347
[18] L. Wang and W. Lin, The impact of the varied nonlinear
refractive index of higher-order Kerr effect on the laser
pulse's propagation, Optik
126, 5387–5391 (2015),
https://doi.org/10.1016/j.ijleo.2015.08.272
[19] L. Wang, C. Ma, X. Qi, and W. Lin, The impact of the
retarded Kerr effect on the laser pulses' propagation in air,
Eur. Phys. J. D
69, 72 (2015),
https://doi.org/10.1140/epjd/e2015-50874-4
[20] L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.P.
Wolfet, Ultrashort filaments of light in weakly ionized,
optically transparent media, Rep. Prog. Phys.
70,
1633–1713 (2007),
https://doi.org/10.1088/0034-4885/70/10/R03
[21] S. Minardi, A. Gopal, A. Couairon, G. Tamošauskas, R.
Piskarskas, A. Dubietis, and P.D. Trapani, Accurate retrieval of
pulse-splitting dynamics of a femtosecond filament in water by
time-resolved shadowgraph, Opt. Lett.
34, 3020–3022
(2009),
https://doi.org/10.1364/OL.34.003020
[22] A. Couairon and A. Mysyrowicz, Femtosecond filamentation in
transparent media, Phys. Reports
441, 47–189 (2007),
https://doi.org/10.1016/j.physrep.2006.12.005
[23] S. Champeaux and L. Bergé, Long-range multifilamentation of
femtosecond laser pulses versus air pressure, Opt. Lett.
31,
1301–1303 (2006),
https://doi.org/10.1364/OL.31.001301
[24] H. Wang, W. Jia, and C. Fan, Effect of geometrical focusing
on femtosecond laser filamentation with low pressure, Eur. Phys.
J. D
70, 50 (2016),
https://doi.org/10.1140/epjd/e2016-60564-4
[25] X. Qi, C. Ma, and W. Lin, Pressure effects on the
femtosecond laser filamentation, Opt. Commun.
358,
126–131 (2016),
https://doi.org/10.1016/j.optcom.2015.09.011
[26] L. Wang, Q. Zhao, W.Y. Sun, and L. Wang, Influence of the
retarded Kerr effect on an intense femtosecond laser propagating
in the atmosphere at different pressures, J. Opt. Technol.
88,
364–367 (2021),
https://doi.org/10.1364/JOT.88.000364
[27] H. Zhang, Y. Zhang, S. Lin, Y.F. Zhang, A.M. Chen, Y.F.
Jiang, and S.Y. Li, Influence of pressure on spectral broadening
of femtosecond laser pulses in air, Phys. Plasmas
28,
043302 (2021),
https://doi.org/10.1063/5.0042998
[28] S.Y. Li, F.M. Guo, Y. Song, A.M. Chen, Y.J. Yang, and M.X.
Jin, Influence of group-velocity-dispersion effects on the
propagation of femtosecond laser pulses in air at different
pressures, Phys. Rev. A
89, 023809 (2014),
https://doi.org/10.1103/PhysRevA.89.023809
[29] T.T. Xi, X. Lu, and Z. Zhang, Interaction of light
filaments generated by femtosecond laser pulses in air, Phys.
Rev. Lett.
96, 025003 (2006),
https://doi.org/10.1103/PhysRevLett.96.025003
[30] T.T. Xi, X. Lu, and Z. Zhang, Spatiotemporal moving focus
of long femtosecond-laser filaments in air, Phys. Rev. E
78,
055401 (2008),
https://doi.org/10.1103/PhysRevE.78.055401
[31] S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade,
and A. Mysyrowicz, Breakup and fusion of self-guided femtosecond
light pulses in air, Phys. Rev. Lett.
86, 5470 (2001),
https://doi.org/10.1103/PhysRevLett.86.5470
[32] E.E. Fill, Focusing limits of ultrashort laser pulses:
analytical theory, J. Opt. Soc. Am. B
11, 2241–2245
(1994),
https://doi.org/10.1364/JOSAB.11.002241
[33] A. Chiron, B. Lamouroux, R. Lange, J.F. Ripoche, M. Franco,
B. Prade, G. Bonnaud, G. Riazuelo, and A. Mysyrowicz, Numerical
simulations of the nonlinear propagation of femtosecond optical
pulses in gases, Eur. Phys. J. D
6, 383–396 (1999),
https://doi.org/10.1007/s100530050322
[34] A. Couairon, M. Franco, G. Méchain, T. Olivier, B. Prade,
and A. Mysyrowicz, Femtosecond filamentation in air at low
pressures: Part I: Theory and numerical simulations, Opt.
Commun.
259, 265–273 (2006),
https://doi.org/10.1016/j.optcom.2005.08.064
[35] M. Mlejnek, E.M. Wright, and J.V. Moloney, Dynamic spatial
replenishment of femtosecond pulses propagating in air, Opt.
Lett.
23, 382–384 (1998),
https://doi.org/10.1364/OL.23.000382
[36] S.Y. Li, F.M. Guo, Y.J. Yang, and M.X. Jin, Defocusing role
in femtosecond filamentation: Higher-order Kerr effect or plasma
effect?, Chin. Phys. B
11, 54–58 (2015),
https://cpb.iphy.ac.cn/article/2015/cpb_24_11_114207.html