Received 16 January 2023; revised 13 April 2023; accepted 13 April
2023
References /
Nuorodos
[1] J.V. Vaitkus, M. Moll, V. Kažukauskas, and V. Vertelis,
Increase of the photoconductivity quantum yield in silicon
irradiated by neutrons to extremely high fluences, J. Phys. D
55,
395104 (2022),
https://doi.org/10.1088/1361-6463/ac7f65
[2] W. Adam, T. Bergauer, E. Brondolin, M. Dragicevic, M.
Friedl, R. Frühwirth, M. Hoch, J. Hrubec, A. König, H.
Steininger, et al., Characterization of irradiated thin silicon
sensors for the CMS phase II pixel upgrade, Eur. Phys. J. C
77,
567 (2017),
https://doi.org/10.1140/epjc/s10052-017-5115-z
[3] G. Pellegrini, M. Baselga, M. Carulla, V. Fadeyev, P.
Fernandez-Martinez, M. Fernandez-Garcia, D. Flores, Z. Galloway,
C. Gallrapp, S. Hidalgo, et al., Recent technological
developments on LGAD and iLGAD detectors for tracking and timing
applications, Nucl. Instrum. Methods Phys. Res. A
831,
24–28 (2016),
https://doi.org/10.1016/j.nima.2016.05.066
[4] N. Moffat and R. Bates, Simulation of the small pixel effect
contributing to a low fill factor for pixellated Low Gain
Avalanche Detectors (LGAD), Nucl. Instrum. Methods Phys. Res. A
1018, 165746 (2021),
https://doi.org/10.1016/j.nima.2021.165746
[5] M.C.N. Cartiglia, R. Arcidiacono, G. Borghi, M. Boscardin,
M. Costa, Z. Galloway, F. Fausti, M. Ferrero, F. Ficorella, M.
Mandurrino, et al., LGAD designs for Future Particle Trackers,
Nucl. Instrum. Methods Phys. Res. A
979, 164383 (2020),
https://doi.org/10.1016/j.nima.2020.164383
[6] B. Nachman, in:
Proceedings of 33rd RD50 Workshop
(CERN, 2018),
https://indico.cern.ch/event/754063/contributions/3222832/
[7] A. Rose,
Concepts in Photoconductivity and Allied
Problems (Interscience Publishers, 1963) p. 168
[8] R.A. Smith,
Semiconductors (Cambridge University
Press, N.Y., 1978) p. 504
[9] K. Nagai, Y. Hayashi, and Y. Tarui, Carrier injection into
SiO
2 from Si surface driven to avalanche breakdown by
a linear ramp pulse, and trapping, distribution and thermal
annealing of injected holes in SiO
2, Jpn. J. Appl.
Phys. 14, 1539–1545 (1975),
https://doi.org/10.1143/JJAP.14.1539
[10] G.G. Macfarlane, T.P. McLean, J.E. Quarrington, and V.
Roberts, Fine structure in the absorption-edge specrum of Si,
Phys. Rev.
111(5), 1245–1254 (1958),
https://doi.org/10.1103/PhysRev.111.1245
[11] C. Jacoboni, C. Canali, G. Ottaviani, A. Albrigi, and A.A.
Quaranta, A review of some charge transport properties of
silicon, Solid State Electron.
20(2), 77–89 (1977),
https://doi.org/10.1016/0038-1101(77)90054-5
[12] P.T. Landsberg, On detailed balance between Auger
recombination and impact ionization in semiconductors, Proc. R.
Soc. A
331, 1584 (1972),
https://doi.org/10.1098/rspa.1972.0166
[13] L. Reggiani and V. Mitin, Recombination and ionization
processes at impurity centres in hot-electron semiconductor
transport, Riv. Nuovo Cim.
12, 1–90 (1989),
https://doi.org/10.1007/BF02740011
[14] M. Huhtinen, Simulation of non-ionising energy loss and
defect formation in silicon, Nucl. Instrum. Methods Phys. Res. A
491, 194–215 (2002),
https://doi.org/10.1016/S0168-9002(02)01227-5
[15] R.E. Beddoe, S. Messoloras, R.J. Stewart, G. Kostorz, and
E.W.J. Mitchell, Temperature-dependent neutron scattering from
silicon single crystals, Philos. Mag. A,
48, 935–952
(1983),
https://doi.org/10.1080/01418618308244328
[16] M. Moll, E. Gaubas, A. Uleckas, J. Vaitkus, J. Raisanen,
and P. Tikkanen, Instrumentation for the in situ control of
carrier recombination characteristics during irradiation by
protons, Rev. Sci. Instrum.
81, 053303 (2010),
https://doi.org/10.1063/1.3429944
[17] E. Gaubas, T. Ceponis, L. Deveikis, D. Meskauskaite, J.
Pavlov, V. Rumbauskas, J. Vaitkus, M. Moll, and F. Ravotti,
Anneal induced transformations of defects in hadron irradiated
Si wafers and Schottky diodes, Mater. Sci. Semicond. Process.
75,
157–165 (2018),
https://doi.org/10.1016/j.mssp.2017.11.035
[18] L. Deveikis, J.V. Vaitkus, T. Čeponis, M. Gaspariūnas, V.
Kovalevskij, V. Rumbauskas, and E. Gaubas, Profiling of proton
beams by fluence scanners, Lith. J. Phys.
61, 75–83
(2021),
https://doi.org/10.3952/physics.v61i2.4436
[19] R.N. Hall, Electron-hole recombination in germanium, Phys.
Rev.
87, 387 (1952),
https://doi.org/10.1103/PhysRev.87.387
[20] W. Shockley and W.T. Read, Statistics of the recombinations
of holes and electrons, Phys. Rev.
87, 835–842 (1952),
https://doi.org/10.1103/PhysRev.87.835
[21] V. Eremin, E. Verbitskaya, A. Zabrodskii, Z. Li, and J.
Harkonen, Avalanche effect in Si heavily irradiated detectors:
Physical model and perspectives for application, Nucl. Instrum.
Methods Phys. Res. A
658, 145–151 (2011),
https://doi.org/10.1016/j.nima.2011.05.002
[22] J.S. Blakemore,
Semiconductor Statistics (Pergamon
Press, Oxford, 1962)
[23] E. Gaubas, J. Bučinskas, J. Kaladė, V. Šugurov, and J.
Vaitkus, in:
Proceedings of 19th RD50 Workshop (CERN,
2011),
[PDF]
[24] J.V. Vaitkus, A. Mekys, V. Rumbauskas, and J. Storasta,
Neutron irradiation influence on mobility and compensation on
dark conductivity in silicon, Lith. J. Phys.
56, 102–110
(2016),
https://doi.org/10.3952/physics.v56i2.3306
[25] J.V. Vaitkus, A. Mekys, and Š. Vaitekonis, Electron
mobility dependence on neutron irradiation fluence in heavily
irradiated silicon, Lith. J. Phys.
61, 91–96 (2021),
https://doi.org/10.3952/physics.v61i2.4438
[26] P.O. Hahn, The Si–SiO
2 interface: Correlation of
atomic structure and electrical properties, J. Vac. Sci.
Technol. A
2, 574 (1984),
https://doi.org/10.1116/1.572449