[PDF]    https://doi.org/10.3952/physics.2023.63.2.4

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 73–84 (2023)

COMPUTATIONAL STUDY OF THE ELECTRONIC AND THERMOELECTRIC PROPERTIES OF METAL HALIDE CUBIC PEROVSKITES CsBX3 (B = Ge, Sn, Pb AND X = Cl, Br, I)
Mabrouk Zemzemi
Laboratory of Physics of Materials and Nanomaterials Applied to Environment, Faculty of Sciences of Gabès, University of Gabès, Erriadh City, Zrig, 6072 Gabès, Tunisia
Email: mzemzemi@gmail.com

Received 17 September 2022; revised 29 November 2022; accepted 6 December 2022

Metal halide perovskites have received a tremendous interest recently in new applications. Photovoltaic, diverse photonic and optoelectronic applications of these materials are in full expansion, but thermoelectricity also instigates a great interest. In this work, we will focus on the thermoelectric properties of a particular material family of metal halide cubic perovskites CsBX3 (B = Ge, Sn, Pb and X = Cl, Br, I). The structural and electronic properties of CsBX3 are computed using first-principles calculations based on the density functional theory which allows calculating equilibrium lattice parameters, band structures, the nature (direct/indirect) and value of the band gap. These studied compounds are semiconductors with direct band gap energy. We have also detected the effect of replacement of halogen and metal cation atoms with other halogen and metal cation atoms on electronic and thermoelectric properties. Boltzmann transport calculations are carried out to explore their thermoelectric properties like the Seebeck coefficient, electrical conductivity and power factor. Large values of the Seebeck coefficient and the power factor obtained for these compounds indicate that these compounds can be used for thermoelectric devices. Our theoretical analysis of the electronic and thermoelectric properties of these compounds suggests that CsSnBr3 and CsGeBr3 are the best Pb-free inorganic metal halide semiconductor for a high thermoelectric performance.
Keywords: metal halide cubic perovskites, thermoelectric properties, electronic properties, density functional theory, Boltzmann transport theory

METALO HALIDO KUBINIŲ PEROVSKITŲ CsBX3 (B = Ge, Sn, Pb IR X = Cl, Br, I) ELEKTRONINIŲ IR TERMOELEKTRINIŲ SAVYBIŲ SKAIČIAVIMAI
Mabrouk Zemzemi

Gabeso universiteto Mokslų fakultetas, Gabesas, Tunisas


References / Nuorodos

[1] L. Zhang, X.-L. Shi, Y.-L. Yang, and Z.-G. Chen, Flexible thermoelectric materials and devices: From materials to applications, Mater. Today 46, 62–108 (2021),
https://doi.org/10.1016/j.mattod.2021.02.016
[2] M. Kaddes and M. Zemzemi, Computational study of electronic and thermoelectric properties of ZnO/graphene heterostructures, Int. J. Thermophys. 42, 100 (2021),
https://doi.org/10.1007/s10765-021-02854-5
[3] N. Kouaydi and M. Zemzemi, Electronic, band offset, and thermoelectric properties of ZnO/GaN heterostructure from first-principles study, J. Electron. Mater. 49, 5773–5781 (2020),
https://doi.org/10.1007/s11664-020-08341-1
[4] X. Wang, T. Zhang, Y. Lou, and Y. Zhao, All-inorganic lead-free perovskites for optoelectronic applications, Mater. Chem. Front. 3, 365–375 (2019),
https://doi.org/10.1039/C8QM00611C
[5] P. Zhang, J. Yang, and S.-H. Wei, Manipulation of cation combinations and configurations of halide double perovskites for solar cell absorbers, J. Mater. Chem. A 6, 1809–1815 (2018),
https://doi.org/10.1039/C7TA09713A
[6] H. Hu, B. Dong, and W. Zhang, Low-toxic metal halide perovskites: opportunities and future challenges, J. Mater. Chem. A 5, 11436–11449 (2017),
https://doi.org/10.1039/C7TA00269F
[7] G. Grancini and M.K. Nazeeruddin, Dimensional tailoring of hybrid perovskites for photovoltaics, Nat. Rev. Mater. 4, 4–22 (2019),
https://doi.org/10.1038/s41578-018-0065-0
[8] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature 499, 316–319 (2013),
https://doi.org/10.1038/nature12340
[9] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M.V. Gustafsson, M.T. Trinh, S. Jin, and X.-Y. Zhu, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors, Nat. Mater. 14, 636–642 (2015),
https://doi.org/10.1038/nmat4271
[10] Gurudayal, D. Sabba, M.H. Kumar, L.H. Wong, J. Barber, M. Grätzel, and N. Mathews, Perovskite–hematite tandem cells for efficient overall solar driven water splitting, Nano Lett. 15, 3833–3839 (2015),
https://doi.org/10.1021/acs.nanolett.5b00616
[11] J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.-G. Park, S.D. Tilley, H.J. Fan, and M. Grätzel, Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts, Science 345, 1593–1596 (2014),
https://doi.org/10.1126/science.1258307
[12] S.-T. Ha, C. Shen, J. Zhang, and Q. Xiong, Laser cooling of organic–inorganic lead halide perovskites, Nat. Photonics 10, 115–121 (2016),
https://doi.org/10.1038/nphoton.2015.243
[13] M. Méndez-Galván, B. Alcántar-Vázquez, G. Diaz, I.A. Ibarra, and H.A. Lara-García, Metal halide perovskites as an emergent catalyst for CO2 photoreduction: a minireview, React. Chem. Eng. 6, 828–838 (2021),
https://doi.org/10.1039/D1RE00039J
[14] M. Li, R. Begum, J. Fu, Q. Xu, T.M. Koh, S.A. Veldhuis, M. Grätzel, N. Mathews, S. Mhaisalkar, and T.C. Sum, Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals, Nat. Commun. 9, 4197 (2018),
https://doi.org/10.1038/s41467-018-06596-1
[15] S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang, and D. Pan, Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50–85% photoluminescence quantum yields, Chem. Commun. 52, 7265–7268 (2016),
https://doi.org/10.1039/C6CC01500J
[16] H. Xie, S. Hao, J. Bao, T.J. Slade, G.J. Snyder, C. Wolverton, and M.G. Kanatzidis, All-inorganic halide perovskites as potential thermoelectric materials: Dynamic cation off-centering induces ultralow thermal conductivity, J. Am. Chem. Soc. 142, 9553–9563 (2020),
https://doi.org/10.1021/jacs.0c03427
[17] M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, and P. Gogna, New directions for low-dimensional thermoelectric materials, Adv. Mater. 19, 1043–1053 (2007),
https://doi.org/10.1002/adma.200600527
[18] S. Hu, Z. Ren, A.B. Djurišić, and A.L. Rogach, Metal halide perovskites as emerging thermoelectric materials, ACS Energy Lett. 6, 3882–3905 (2021),
https://doi.org/10.1021/acsenergylett.1c02015
[19] L.K. Ono, E.J. Juarez-Perez, and Y. Qi, Progress on perovskite materials and solar cells with mixed cations and halide anions, ACS Appl. Mater. Interfaces 9, 30197–30246 (2017),
https://doi.org/10.1021/acsami.7b06001
[20] G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, and T. Caillat, Recent developments in thermoelectric materials, Int. Mater. Rev. 48, 45–66 (2003),
https://doi.org/10.1179/095066003225010182
[21] J.-L. Calais, Book review: Density-functional theory of atoms and molecules. R.G. Parr and W. Yang, Oxford University Press, New York, Oxford, 1989. IX + 333 pp. Price £45.00, Int. J. Quantum Chem. 47, 101–101 (1993),
https://doi.org/10.1002/qua.560470107
[22] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, et al., ABINIT: First-principles approach to material and nanosystem properties, Comput. Phys. Commun. 180, 2582–2615 (2009),
https://doi.org/10.1016/j.cpc.2009.07.007
[23] K.F. Garrity, J.W. Bennett, K.M. Rabe, and D. Vanderbilt, Pseudopotentials for highthroughput DFT calculations, Comput. Mater. Sci. 81, 446–452 (2014),
https://doi.org/10.1016/j.commatsci.2013.08.053
[24] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953–17979 (1994),
https://doi.org/10.1103/PhysRevB.50.17953
[25] H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188–5192 (1976),
https://doi.org/10.1103/PhysRevB.13.5188
[26] M. Hebbache and M. Zemzemi, Ab initio study of high-pressure behavior of a low compressibility metal and a hard material: Osmium and diamond, Phys. Rev. B 70, 224107 (2004),
https://doi.org/10.1103/PhysRevB.70.224107
[27] G.K.H. Madsen and D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun. 175, 67–71 (2006),
https://doi.org/10.1016/j.cpc.2006.03.007
[28] T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofo, Transport coefficients from first-principles calculations, Phys. Rev. B 68, 125210 (2003),
https://doi.org/10.1103/PhysRevB.68.125210
[29] R.X. Yang, J.M. Skelton, E.L. da Silva, J.M. Frost, and A. Walsh, Assessment of dynamic structural instabilities across 24 cubic inorganic halide perovskites, J. Chem. Phys. 152, 024703 (2020),
https://doi.org/10.1063/1.5131575
[30] R.W.G. Wyckoff, The Structure of Crystals (Chemical Catalog Company, 1931),
https://archive.org/details/structureofcryst030914mbp
[31] M.G. Brik, Comparative first-principles calculations of electronic, optical and elastic anisotropy properties of CsXBr3 (X = Ca, Ge, Sn) crystals, Solid State Commun. 151, 1733–1738 (2011),
https://doi.org/10.1016/j.ssc.2011.08.039
[32] G. Thiele, H.W. Rotter, and K.D. Schmidt, Kristallstrukturen und Phasentransformationen von Caesiumtrihalogenogermanaten(II) CsGeX3 (X = Cl, Br, I), Z. Anorg. Allg. Chem. 545, 148–156 (1987),
https://doi.org/10.1002/zaac.19875450217
[33] J. Barrett, S.R.A. Bird, J.D. Donaldson, and J. Silver, The Mössbauer effect in tin(II) compounds. Part XI. The spectra of cubic trihalogenostannates(II), J. Chem. Soc. A 0, 3105–3108 (1971),
https://doi.org/10.1039/J19710003105
[34] A.K. Deb and V. Kumar, Ab initio design of CsSn(XxY1–x)3 (X and Y = Cl, Br, and I) perovskites for photovoltaics, AIP Adv. 5, 077158 (2015),
https://doi.org/10.1063/1.4927503
[35] S. Hébert, D. Flahaut, C. Martin, S. Lemonnier, J. Noudem, C. Goupil, A. Maignan, and J. Hejtmanek, Thermoelectric properties of perovskites: Sign change of the Seebeck coefficient and high temperature properties, Prog. Solid State Chem. 35, 457–467 (2007),
https://doi.org/10.1016/j.progsolidstchem.2007.01.027
[36] K. Yamada, S. Funabiki, H. Horimoto, T. Matsui, T. Okuda, and S. Ichiba, Structural phase transitions of the polymorphs of CsSnI3 by means of Rietveld analysis of the X-ray diffraction, Chem. Lett. 20, 801–804 (1991),
https://doi.org/10.1246/cl.1991.801
[37] L. Lang, J.-H. Yang, H.-R. Liu, H.J. Xiang, and X.G. Gong, First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites, Phys. Lett. A 378, 290–293 (2014),
https://doi.org/10.1016/j.physleta.2013.11.018
[38] M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, and I. Ahmad, Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications, J. Alloys Compd. 705, 828–839 (2017),
https://doi.org/10.1016/j.jallcom.2017.02.147
[39] H.M. Ghaithan, Z.A. Alahmed, A. Lyras, S.M.H. Qaid, and A.S. Aldwayyan, Computational investigation of the folded and unfolded band structure and structural and optical properties of CsPb(I1–xBrx)3 perovskites, Crystals 10, 342 (2020),
https://doi.org/10.3390/cryst10050342
[40] R.E. Beal, D.J. Slotcavage, T. Leijtens, A.R. Bowring, R.A. Belisle, W.H. Nguyen, G.F. Burkhard, E.T. Hoke, and M.D. McGehee, Cesium lead halide perovskites with improved stability for tandem solar cells, J. Phys. Chem. Lett. 7, 746–751 (2016),
https://doi.org/10.1021/acs.jpclett.6b00002
[41] L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, and M.V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett. 15, 3692–3696 (2015),
https://doi.org/10.1021/nl5048779
[42] S. Körbel, M.A.L. Marques, and S. Botti, Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations, J. Mater. Chem. C 4, 3157–3167 (2016),
https://doi.org/10.1039/C5TC04172D
[43] M. Roknuzzaman, K. Ostrikov, H. Wang, A. Du, and T. Tesfamichael, Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations, Sci. Rep. 7, 14025 (2017),
https://doi.org/10.1038/s41598-017-13172-y
[44] Z.-G. Lin, L.-C. Tang, and C.-P. Chou, Study on mid-IR NLO crystals CsGe(BrxCl1–x)3, Opt. Mater. 31, 28–34 (2008),
https://doi.org/10.1016/j.optmat.2008.01.004
[45] T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, and S.G. Mhaisalkar, Lead-free germanium iodide perovskite materials for photovoltaic applications, J. Mater. Chem. A 3, 23829–23832 (2015),
https://doi.org/10.1039/C5TA05741H
[46] A.S. Voloshinovskii, S.V. Myagkota, N.S. Pidzyrailo, and M.V. Tokarivskii, Luminescence and structural transformations of CsSnCl3 crystals, J. Appl. Spectrosc. 60, 226–228 (1994),
https://doi.org/10.1007/BF02606360
[47] C. Yu, Z. Chen, J.J. Wang, W. Pfenninger, N. Vockic, J.T. Kenney, and K. Shum, Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3, J. Appl. Phys. 110, 063526 (2011),
https://doi.org/10.1063/1.3638699
[48] A. Filippetti, C. Caddeo, P. Delugas, and A. Mattoni, Appealing perspectives of hybrid lead–iodide perovskites as thermoelectric materials, J. Phys. Chem. C 120, 28472–28479 (2016),
https://doi.org/10.1021/acs.jpcc.6b10278
[49] Y. Liu, D. Cadavid, M. Ibáñez, S. Ortega, S. Martí-Sánchez, O. Dobrozhan, M.V. Kovalenko, J. Arbiol, and A. Cabot, Thermoelectric properties of semiconductor-metal composites produced by particle blending, APL Mater. 4, 104813 (2016),
https://doi.org/10.1063/1.4961679