Received 17 September 2022; revised 29 November 2022; accepted 6
December 2022
References /
Nuorodos
[1] L. Zhang, X.-L. Shi, Y.-L. Yang, and Z.-G. Chen, Flexible
thermoelectric materials and devices: From materials to
applications, Mater. Today
46, 62–108 (2021),
https://doi.org/10.1016/j.mattod.2021.02.016
[2] M. Kaddes and M. Zemzemi, Computational study of electronic
and thermoelectric properties of ZnO/graphene heterostructures,
Int. J. Thermophys.
42, 100 (2021),
https://doi.org/10.1007/s10765-021-02854-5
[3] N. Kouaydi and M. Zemzemi, Electronic, band offset, and
thermoelectric properties of ZnO/GaN heterostructure from
first-principles study, J. Electron. Mater.
49,
5773–5781 (2020),
https://doi.org/10.1007/s11664-020-08341-1
[4] X. Wang, T. Zhang, Y. Lou, and Y. Zhao, All-inorganic
lead-free perovskites for optoelectronic applications, Mater.
Chem. Front.
3, 365–375 (2019),
https://doi.org/10.1039/C8QM00611C
[5] P. Zhang, J. Yang, and S.-H. Wei, Manipulation of cation
combinations and configurations of halide double perovskites for
solar cell absorbers, J. Mater. Chem. A
6, 1809–1815
(2018),
https://doi.org/10.1039/C7TA09713A
[6] H. Hu, B. Dong, and W. Zhang, Low-toxic metal halide
perovskites: opportunities and future challenges, J. Mater.
Chem. A
5, 11436–11449 (2017),
https://doi.org/10.1039/C7TA00269F
[7] G. Grancini and M.K. Nazeeruddin, Dimensional tailoring of
hybrid perovskites for photovoltaics, Nat. Rev. Mater.
4,
4–22 (2019),
https://doi.org/10.1038/s41578-018-0065-0
[8] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P.
Gao, M.K. Nazeeruddin, and M. Grätzel, Sequential deposition as
a route to high-performance perovskite-sensitized solar cells,
Nature
499, 316–319 (2013),
https://doi.org/10.1038/nature12340
[9] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M.V.
Gustafsson, M.T. Trinh, S. Jin, and X.-Y. Zhu, Lead halide
perovskite nanowire lasers with low lasing thresholds and high
quality factors, Nat. Mater. 14, 636–642 (2015),
https://doi.org/10.1038/nmat4271
[10] Gurudayal, D. Sabba, M.H. Kumar, L.H. Wong, J. Barber, M.
Grätzel, and N. Mathews, Perovskite–hematite tandem cells for
efficient overall solar driven water splitting, Nano Lett.
15,
3833–3839 (2015),
https://doi.org/10.1021/acs.nanolett.5b00616
[11] J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K.
Nazeeruddin, N.-G. Park, S.D. Tilley, H.J. Fan, and M. Grätzel,
Water photolysis at 12.3% efficiency via perovskite
photovoltaics and earth-abundant catalysts, Science
345,
1593–1596 (2014),
https://doi.org/10.1126/science.1258307
[12] S.-T. Ha, C. Shen, J. Zhang, and Q. Xiong, Laser cooling of
organic–inorganic lead halide perovskites, Nat. Photonics
10,
115–121 (2016),
https://doi.org/10.1038/nphoton.2015.243
[13] M. Méndez-Galván, B. Alcántar-Vázquez, G. Diaz, I.A.
Ibarra, and H.A. Lara-García, Metal halide perovskites as an
emergent catalyst for CO
2 photoreduction: a
minireview, React. Chem. Eng.
6, 828–838 (2021),
https://doi.org/10.1039/D1RE00039J
[14] M. Li, R. Begum, J. Fu, Q. Xu, T.M. Koh, S.A. Veldhuis, M.
Grätzel, N. Mathews, S. Mhaisalkar, and T.C. Sum, Low threshold
and efficient multiple exciton generation in halide perovskite
nanocrystals, Nat. Commun.
9, 4197 (2018),
https://doi.org/10.1038/s41467-018-06596-1
[15] S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang, and D. Pan,
Room-temperature and gram-scale synthesis of CsPbX
3
(X = Cl, Br, I) perovskite nanocrystals with 50–85%
photoluminescence quantum yields, Chem. Commun.
52,
7265–7268 (2016),
https://doi.org/10.1039/C6CC01500J
[16] H. Xie, S. Hao, J. Bao, T.J. Slade, G.J. Snyder, C.
Wolverton, and M.G. Kanatzidis, All-inorganic halide perovskites
as potential thermoelectric materials: Dynamic cation
off-centering induces ultralow thermal conductivity, J. Am.
Chem. Soc.
142, 9553–9563 (2020),
https://doi.org/10.1021/jacs.0c03427
[17] M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee,
D.Z. Wang, Z.F. Ren, J.-P. Fleurial, and P. Gogna, New
directions for low-dimensional thermoelectric materials, Adv.
Mater.
19, 1043–1053 (2007),
https://doi.org/10.1002/adma.200600527
[18] S. Hu, Z. Ren, A.B. Djurišić, and A.L. Rogach, Metal halide
perovskites as emerging thermoelectric materials, ACS Energy
Lett.
6, 3882–3905 (2021),
https://doi.org/10.1021/acsenergylett.1c02015
[19] L.K. Ono, E.J. Juarez-Perez, and Y. Qi, Progress on
perovskite materials and solar cells with mixed cations and
halide anions, ACS Appl. Mater. Interfaces
9,
30197–30246 (2017),
https://doi.org/10.1021/acsami.7b06001
[20] G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial,
and T. Caillat, Recent developments in thermoelectric materials,
Int. Mater. Rev.
48, 45–66 (2003),
https://doi.org/10.1179/095066003225010182
[21] J.-L. Calais, Book review: Density-functional theory of
atoms and molecules. R.G. Parr and W. Yang, Oxford University
Press, New York, Oxford, 1989. IX + 333 pp. Price £45.00, Int.
J. Quantum Chem.
47, 101–101 (1993),
https://doi.org/10.1002/qua.560470107
[22] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F.
Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M.
Côté, et al., ABINIT: First-principles approach to material and
nanosystem properties, Comput. Phys. Commun.
180,
2582–2615 (2009),
https://doi.org/10.1016/j.cpc.2009.07.007
[23] K.F. Garrity, J.W. Bennett, K.M. Rabe, and D. Vanderbilt,
Pseudopotentials for highthroughput DFT calculations, Comput.
Mater. Sci.
81, 446–452 (2014),
https://doi.org/10.1016/j.commatsci.2013.08.053
[24] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B
50, 17953–17979 (1994),
https://doi.org/10.1103/PhysRevB.50.17953
[25] H.J. Monkhorst and J.D. Pack, Special points for
Brillouin-zone integrations, Phys. Rev. B
13, 5188–5192
(1976),
https://doi.org/10.1103/PhysRevB.13.5188
[26] M. Hebbache and M. Zemzemi,
Ab initio study of
high-pressure behavior of a low compressibility metal and a hard
material: Osmium and diamond, Phys. Rev. B
70, 224107
(2004),
https://doi.org/10.1103/PhysRevB.70.224107
[27] G.K.H. Madsen and D.J. Singh, BoltzTraP. A code for
calculating band-structure dependent quantities, Comput. Phys.
Commun.
175, 67–71 (2006),
https://doi.org/10.1016/j.cpc.2006.03.007
[28] T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V.
Badding, and J.O. Sofo, Transport coefficients from
first-principles calculations, Phys. Rev. B
68, 125210
(2003),
https://doi.org/10.1103/PhysRevB.68.125210
[29] R.X. Yang, J.M. Skelton, E.L. da Silva, J.M. Frost, and A.
Walsh, Assessment of dynamic structural instabilities across 24
cubic inorganic halide perovskites, J. Chem. Phys.
152, 024703 (2020),
https://doi.org/10.1063/1.5131575
[30] R.W.G. Wyckoff,
The Structure of Crystals (Chemical
Catalog Company, 1931),
https://archive.org/details/structureofcryst030914mbp
[31] M.G. Brik, Comparative first-principles calculations of
electronic, optical and elastic anisotropy properties of CsXBr
3
(X = Ca, Ge, Sn) crystals, Solid State Commun.
151,
1733–1738 (2011),
https://doi.org/10.1016/j.ssc.2011.08.039
[32] G. Thiele, H.W. Rotter, and K.D. Schmidt,
Kristallstrukturen und Phasentransformationen von
Caesiumtrihalogenogermanaten(II) CsGeX
3 (X = Cl, Br,
I), Z. Anorg. Allg. Chem. 545, 148–156 (1987),
https://doi.org/10.1002/zaac.19875450217
[33] J. Barrett, S.R.A. Bird, J.D. Donaldson, and J. Silver, The
Mössbauer effect in tin(II) compounds. Part XI. The spectra of
cubic trihalogenostannates(II), J. Chem. Soc. A
0,
3105–3108 (1971),
https://doi.org/10.1039/J19710003105
[34] A.K. Deb and V. Kumar,
Ab initio design of CsSn(X
xY
1–x)
3
(X and Y = Cl, Br, and I) perovskites for photovoltaics, AIP
Adv.
5, 077158 (2015),
https://doi.org/10.1063/1.4927503
[35] S. Hébert, D. Flahaut, C. Martin, S. Lemonnier, J. Noudem,
C. Goupil, A. Maignan, and J. Hejtmanek, Thermoelectric
properties of perovskites: Sign change of the Seebeck
coefficient and high temperature properties, Prog. Solid State
Chem.
35, 457–467 (2007),
https://doi.org/10.1016/j.progsolidstchem.2007.01.027
[36] K. Yamada, S. Funabiki, H. Horimoto, T. Matsui, T. Okuda,
and S. Ichiba, Structural phase transitions of the polymorphs of
CsSnI
3 by means of Rietveld analysis of the X-ray
diffraction, Chem. Lett.
20, 801–804 (1991),
https://doi.org/10.1246/cl.1991.801
[37] L. Lang, J.-H. Yang, H.-R. Liu, H.J. Xiang, and X.G. Gong,
First-principles study on the electronic and optical properties
of cubic ABX
3 halide perovskites, Phys. Lett. A
378,
290–293 (2014),
https://doi.org/10.1016/j.physleta.2013.11.018
[38] M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad,
T. Khan, S. Jalali-Asadabadi, M. Maqbool, and I. Ahmad,
Structural, electronic and optical properties of CsPbX
3
(X = Cl, Br, I) for energy storage and hybrid solar cell
applications, J. Alloys Compd.
705, 828–839 (2017),
https://doi.org/10.1016/j.jallcom.2017.02.147
[39] H.M. Ghaithan, Z.A. Alahmed, A. Lyras, S.M.H. Qaid, and
A.S. Aldwayyan, Computational investigation of the folded and
unfolded band structure and structural and optical properties of
CsPb(I
1–xBr
x)
3 perovskites,
Crystals
10, 342 (2020),
https://doi.org/10.3390/cryst10050342
[40] R.E. Beal, D.J. Slotcavage, T. Leijtens, A.R. Bowring, R.A.
Belisle, W.H. Nguyen, G.F. Burkhard, E.T. Hoke, and M.D.
McGehee, Cesium lead halide perovskites with improved stability
for tandem solar cells, J. Phys. Chem. Lett.
7, 746–751
(2016),
https://doi.org/10.1021/acs.jpclett.6b00002
[41] L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R.
Caputo, C.H. Hendon, R.X. Yang, A. Walsh, and M.V. Kovalenko,
Nanocrystals of cesium lead halide perovskites (CsPbX
3,
X = Cl, Br, and I): Novel optoelectronic materials showing
bright emission with wide color gamut, Nano Lett.
15,
3692–3696 (2015),
https://doi.org/10.1021/nl5048779
[42] S. Körbel, M.A.L. Marques, and S. Botti, Stability and
electronic properties of new inorganic perovskites from
high-throughput
ab initio calculations, J. Mater. Chem.
C
4, 3157–3167 (2016),
https://doi.org/10.1039/C5TC04172D
[43] M. Roknuzzaman, K. Ostrikov, H. Wang, A. Du, and T.
Tesfamichael, Towards lead-free perovskite photovoltaics and
optoelectronics by
ab-initio simulations, Sci. Rep.
7,
14025 (2017),
https://doi.org/10.1038/s41598-017-13172-y
[44] Z.-G. Lin, L.-C. Tang, and C.-P. Chou, Study on mid-IR NLO
crystals CsGe(Br
xCl
1–x)
3,
Opt. Mater.
31, 28–34 (2008),
https://doi.org/10.1016/j.optmat.2008.01.004
[45] T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie,
Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, and S.G.
Mhaisalkar, Lead-free germanium iodide perovskite materials for
photovoltaic applications, J. Mater. Chem. A
3,
23829–23832 (2015),
https://doi.org/10.1039/C5TA05741H
[46] A.S. Voloshinovskii, S.V. Myagkota, N.S. Pidzyrailo, and
M.V. Tokarivskii, Luminescence and structural transformations of
CsSnCl
3 crystals, J. Appl. Spectrosc.
60,
226–228 (1994),
https://doi.org/10.1007/BF02606360
[47] C. Yu, Z. Chen, J.J. Wang, W. Pfenninger, N. Vockic, J.T.
Kenney, and K. Shum, Temperature dependence of the band gap of
perovskite semiconductor compound CsSnI
3, J. Appl.
Phys.
110, 063526 (2011),
https://doi.org/10.1063/1.3638699
[48] A. Filippetti, C. Caddeo, P. Delugas, and A. Mattoni,
Appealing perspectives of hybrid lead–iodide perovskites as
thermoelectric materials, J. Phys. Chem. C
120,
28472–28479 (2016),
https://doi.org/10.1021/acs.jpcc.6b10278
[49] Y. Liu, D. Cadavid, M. Ibáñez, S. Ortega, S. Martí-Sánchez,
O. Dobrozhan, M.V. Kovalenko, J. Arbiol, and A. Cabot,
Thermoelectric properties of semiconductor-metal composites
produced by particle blending, APL Mater.
4, 104813
(2016),
https://doi.org/10.1063/1.4961679