[PDF]    https://doi.org/10.3952/physics.2023.63.2.5

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 85–104 (2023)

NOVEL APPROACHES TO GENERIC NON-FERMI LIQUIDS: HIGHER-DIMENSIONAL BOSONIZATION VS GENERALIZED HOLOGRAPHY
Dmitri V. Khveshchenko
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, U. S. A.
Email: khvesh@physics.unc.edu

Received 3 December 2022; accepted 7 January 2023

This paper addresses the problem of computing fermion propagators in a broad variety of strongly correlated systems that can be mapped onto the theory of fermions coupled to an (over)damped bosonic mode. A number of the previously applied approaches and their results are reviewed, including the conventional diagrammatic resummation and eikonal technique, as well as the ‘experimental’ higher-dimensional bosonization and generalized (i.e. ‘bottom-up’ or ‘non-AdS/non-CFT’) holographic conjecture. It appears that, by and large, those results remain either in conflict or incomplete, thereby suggesting that the ultimate solution to this ubiquitous problem is yet to be found.
Keywords: strongly correlated systems, holographic correspondence, eikonal, bosonization, propagator, non-Fermi liquid

NAUJOVIŠKI METODAI NAGRINĖTI GENERINIUS NE FERMI SKYSČIUS: AUKŠTESNIŲJŲ DIMENSIJŲ BOZONIZACIJA LYGINANT SU APIBENDRINTĄJA HOLOGRAFIJA
Dmitri V. Khveshchenko

Šiaurės Karolinos universitetas, Čapel Hilas, JAV


References / Nuorodos

[1] T. Holstein, R.E. Norton, and P. Pincus, de Haas-van Alphen Effect and the Specific Heat of an Electron Gas, Phys. Rev. B 8, 2649 (1973),
https://doi.org/10.1103/PhysRevB.8.2649
[2] M.Y. Reizer, Effective electron-electron interaction in metals and superconductors, Phys. Rev. B 39, 1602 (1989),
https://doi.org/10.1103/PhysRevB.39.1602
[3] M.Y. Reizer, Relativistic effects in the electron density of states, specific heat, and the electron spectrum of normal metals, Phys. Rev. B 40, 11571 (1989),
https://doi.org/10.1103/PhysRevB.40.11571
[4] C.J. Pethick, G. Baym, and H. Monien, Kinetics of quark-gluon plasmas, Nucl. Phys. A 498, 313c (1989),
https://doi.org/10.1016/0375-9474(89)90608-8
[5] P.A. Lee, Gauge field, Aharonov-Bohm flux, and high-Tc superconductivity, Phys. Rev. Lett. 63, 680 (1989),
https://doi.org/10.1103/PhysRevLett.63.680
[6] L.B. Ioffe and A.I. Larkin, Gapless fermions and gauge fields in dielectrics, Phys. Rev. B 39, 8988 (1989),
https://doi.org/10.1103/PhysRevB.39.8988
[7] P.A. Lee and N. Nagaosa, Normal-state properties of the uniform resonating-valence-bond state, Phys. Rev. Lett. 64, 2450 (1990),
https://doi.org/10.1103/PhysRevLett.64.2450
[8] P.A. Lee and N. Nagaosa, Gauge theory of the normal state of high-Tc superconductors, Phys. Rev. B 46, 5621 (1992),
https://doi.org/10.1103/PhysRevB.46.5621
[9] J. Gan and E. Wong, Non-Fermi-liquid behavior in quantum critical systems, Phys. Rev. Lett. 71, 4226 (1993),
https://doi.org/10.1103/PhysRevLett.71.4226
[10] C. Nayak and F. Wilczek, Renormalization group approach to low temperature properties of a non-Fermi liquid metal, Nucl. Phys. B 430, 534 (1994),
https://doi.org/10.1016/0550-3213(94)90158-9
[11] S. Chakravarty, R.E. Norton, and O.F. Syljuasen, Transverse gauge interactions and the vanquished Fermi liquid, Phys. Rev. Lett. 74, 1423 (1995),
https://doi.org/10.1103/PhysRevLett.74.1423
[12] C. Castellani and C. Di Castro, Crossover from Luttinger to Fermi liquid by increasing dimension, Physica C 235-240, 99 (1994),
https://doi.org/10.1016/0921-4534(94)91324-2
[13] C. Castellani, C. Di Castro, and W. Metzner, Dimensional crossover from Fermi to Luttinger liquid, Phys. Rev. Lett. 72, 316 (1994),
https://doi.org/10.1103/PhysRevLett.72.316
[14] W. Metzner, D. Rohe, and S. Andergassen, Soft Fermi surfaces and breakdown of Fermi-liquid behavior, Phys. Rev. Lett. 91, 066402 (2003),
https://doi.org/10.1103/PhysRevLett.91.066402
[15] L. Dell'Anna and W. Metzner, Fermi surfacefluctuations and single electron excitations near Pomeranchuk instability in two dimensions, Phys. Rev. B 73, 045127 (2006),
https://doi.org/10.1103/PhysRevB.73.045127
[16] L. Dell'Anna and W. Metzner, Electrical resistivity near Pomeranchuk instability in two dimensions, Phys. Rev. Lett. 98, 136402 (2007),
https://doi.org/10.1103/PhysRevLett.98.136402
[17] B.I. Halperin, P.A. Lee, and N. Read, Theory of the half-filled Landau level, Phys. Rev. B 47, 7312 (1993),
https://doi.org/10.1103/PhysRevB.47.7312
[18] A. Chubukov, C. Pepin, and J. Rech, Instability of the quantum-critical point of itinerant ferromagnets, Phys. Rev. Lett. 92, 147003 (2004),
https://doi.org/10.1103/PhysRevLett.92.147003
[19] J. Rech, C. Pepin, and A. Chubukov, Quantumcritical behavior in itinerant electron systems: Eliashberg theory and instability of a ferromagnetic quantum critical point, Phys. Rev. B 74, 195126 (2006),
https://doi.org/10.1103/PhysRevB.74.195126
[20] A.V. Chubukov, Self-generated locality near a ferromagnetic quantum critical point, Phys. Rev. B 71, 245123 (2005),
https://doi.org/10.1103/PhysRevB.71.245123
[21] A.V. Chubukov and D.V. Khveshchenko, Effect of Fermi surface curvature on low-energy properties of fermions with singular interactions, Phys. Rev. Lett. 97, 226403 (2006), arXiv:condmat/0604376,
https://doi.org/10.1103/PhysRevLett.97.226403
[22] T.A. Sedrakyan and A.V. Chubukov, Fermionic propagators for two-dimensional systems with singular interactions, Phys. Rev. B 79, 115129 (2009), arXiv:0901.1459,
https://doi.org/10.1103/PhysRevB.79.115129
[23] S.-S. Lee, Stability of the U(1) spin liquid with a spinon Fermi surface in 2 + 1 dimensions, Phys. Rev. B 78, 085129 (2008),
https://doi.org/10.1103/PhysRevB.78.085129
[24] S.-S. Lee, Non-Fermi liquid from a charged black hole: A critical Fermi ball, Phys. Rev. D 79, 086006 (2009),
https://doi.org/10.1103/PhysRevD.79.086006
[25] S.-S. Lee, Low-energy effective theory of Fermi surface coupled with U(1) gauge field in 2 + 1 dimensions, Phys. Rev. B 80, 165102 (2009),
https://doi.org/10.1103/PhysRevB.80.165102
[26] M. Metlitski and S. Sachdev, Quantum phase transitions of metals in two spatial dimensions. I. Ising-nematic order, Phys. Rev. B 82, 075127 (2010),
https://doi.org/10.1103/PhysRevB.82.075127
[27] M. Metlitski and A. Sachdev, Quantum phase transitions of metals in two spatial dimensions. II. Spin density wave order, Phys. Rev. B 82, 075128 (2010),
https://doi.org/10.1103/PhysRevB.82.075128
[28] D.F. Mross, J. McGreevy, H. Liu, and T. Senthil, Controlled expansion for certain non-Fermi-liquid metals, Phys. Rev. B 82, 045121 (2010), arXiv:1003.0894,
https://doi.org/10.1103/PhysRevB.82.045121
[29] S. Raghu, G. Torroba, and H. Wang, Metallic quantum critical points with finite BCS couplings, Phys. Rev. B 92, 205104 (2015),
https://doi.org/10.1103/PhysRevB.92.205104
[30] A.L. Fitzpatrick, S. Kachru, J. Kaplan, S. Raghu, and G. Torroba, Enhanced pairing of quantum critical metals near d = 3 + 1, Phys. Rev. B 92, 045118 (2015),
https://doi.org/10.1103/PhysRevB.92.045118
[31] A. Eberlein, I. Mandal, and S. Sachdev, Hyperscaling violation at the Ising-nematic quantum critical point in two-dimensional metals, Phys. Rev. B 94, 045133 (2016), arXiv:1605.00657,
https://doi.org/10.1103/PhysRevB.94.045133
[32] B.L. Altshuler and L.B. Ioffe, Motion of fast particles in strongly fluctuating magnetic fields, Phys. Rev. Lett. 69, 2979 (1992),
https://doi.org/10.1103/PhysRevLett.69.2979
[33] A.G. Aronov, E. Altshuler, A.D. Mirlin, and P. Wölfle, Single particle relaxation in a random magnetic field, EPL 29, 239 (1995), arXiv:condmat/9404071,
https://doi.org/10.1209/0295-5075/29/3/009
[34] A. Mirlin, E. Altshuler, and P. Wölfle, Quasiclassical approach to impurity effect on magnetooscillations in 2D metals, Ann. Physik 5, 281 (1996),
https://doi.org/10.1002/andp.2065080306
[35] I.V. Gornyi and A. Mirlin, Wave function correlations on the ballistic scale: Exploring quantum chaos by quantum disorder, Phys. Rev. E 65, 025202 (2002),
https://doi.org/10.1103/PhysRevE.65.025202
[36] D. Taras-Semchuk and K.B. Efetov, Influence of long-range disorder on electron motion in two dimensions, Phys. Rev. B 64, 115301 (2001),
https://doi.org/10.1103/PhysRevB.64.115301
[37] D.V. Khveshchenko and S.V. Meshkov, Particle in a random magnetic field on a plane, Phys. Rev. B 47, 12051 (1993),
https://doi.org/10.1103/PhysRevB.47.12051
[38] D.V. Khveshchenko, Magnetoresistance of two-dimensional fermions in a random magnetic field, Phys. Rev. Lett. 77, 1817 (1996),
https://doi.org/10.1103/PhysRevLett.77.1817
[39] P.C.E. Stamp, Effect of singular interaction terms on two-dimensional Fermi liquids, Phys. Rev. Lett. 68, 2180 (1992),
https://doi.org/10.1103/PhysRevLett.68.2180
[40] P.C.E. Stamp, Some aspects of singular interactions in condensed Fermi systems, J. Phys. (France) 3, 625 (1993),
https://doi.org/10.1051/jp1:1993153
[41] D.V. Khveshchenko and P.C.E. Stamp, Low-energy properties of two-dimensional fermions with long-range current-current interactions, Phys. Rev. Lett. 71, 2118 (1993),
https://doi.org/10.1103/PhysRevLett.71.2118
[42] D.V. Khveshchenko and P.C.E. Stamp, Eikonal approximation in the theory of two-dimensional fermions with long-range current-current interactions, Phys. Rev. B 49, 5227 (1994),
https://doi.org/10.1103/PhysRevB.49.5227
[43] M.J. Lawler, D.G. Barci, V. Fernández, E. Fradkin, and L. Oxman, Nonperturbative behavior of the quantum phase transition to a nematic Fermi fluid, Phys. Rev. B 73, 085101 (2006), arXiv:condmat/0508747,
https://doi.org/10.1103/PhysRevB.73.085101
[44] M.J. Lawler and E. Fradkin, Local quantum criticality at the nematic quantum phase transition, Phys. Rev. B 75, 033304 (2007), arXiv:condmat/0605203,
https://doi.org/10.1103/PhysRevB.75.033304
[45] P. Säterskog, B. Meszena, and K. Schalm, Two-point function of a d = 2 quantum critical metal in the limit kF → ∞, Nf → 0, with NfkF fixed, Phys. Rev. B 96, 155125 (2017), arXiv:1612.05326,
https://doi.org/10.1103/PhysRevB.96.155125
[46] P. Saterskog, A framework for studying a quantum critical metal in the limit Nf → 0, SciPost Phys. 4, 015 (2018), arXiv:1711.04338,
https://doi.org/10.21468/SciPostPhys.4.3.015
[47] T. Ravid and T. Banks, Exact low-energy solution for critical Fermi surfaces, arxiv.org/abs/2208.01183,
https://doi.org/10.48550/arXiv.2208.01183
[48] L.B. Ioffe, D. Lidsky, and B.L. Altshuler, Effective lowering of dimensionality in the strongly correlated two dimensional electron gas, Phys. Rev. Lett. 73, 472 (1994),
https://doi.org/10.1103/PhysRevLett.73.472
[49] B.L. Altshuler, L.B. Ioffe, and A.J. Millis, Low-energy properties of fermions with singular interactions, Phys. Rev. B 50, 14048 (1994),
https://doi.org/10.1103/PhysRevB.50.14048
[50] B.L. Altshuler, L.B. Ioffe, and A.J. Millis, Critical behavior of the T = 0 2kF density-wave phase transition in a two-dimensional Fermi liquid, Phys. Rev. B 52, 5563 (1995),
https://doi.org/10.1103/PhysRevB.52.5563
[51] B.L. Altshuler, L.B. Ioffe, and A.J. Millis, Theory of the spin gap in high-temperature superconductors, Phys. Rev. B 53, 415 (1996),
https://doi.org/10.1103/PhysRevB.53.415
[52] B.L. Altshuler, L.B. Ioffe, A.I. Larkin, and A.J. Millis, Spin-density-wave transition in a two-dimensional spin liquid, Phys. Rev. B 52, 4607 (1995),
https://doi.org/10.1103/PhysRevB.52.4607
[53] A. Luther, Tomonaga fermions and the Dirac equation in three dimensions, Phys. Rev. B 19, 320 (1979),
https://doi.org/10.1103/PhysRevB.19.320
[54] F.D.M. Haldane, Luttinger's theorem and bosonization of the Fermi surface, in: Proceedings of the International School of Physics "Enrico Fermi", Course CXXI (North-Holland, Amsterdam, 1994), arXiv:cond-mat/0505529,
https://doi.org/10.48550/arXiv.cond-mat/0505529
[55] A. Houghton and J.B. Marston, Bosonization and fermion liquids in dimensions greater than one, Phys. Rev. B 48, 7790 (1993),
https://doi.org/10.1103/PhysRevB.48.7790
[56] A. Houghton, H.J. Kwon, and J.B. Marston, Stability and single-particle properties of bosonized Fermi liquids, Phys. Rev. 50, 1351 (1994),
https://doi.org/10.1103/PhysRevB.50.1351
[57] A. Houghton, H.J. Kwon, and J.B. Marston, Coulomb interaction and the Fermi liquid state: solution by bosonization, J. Phys. 6, 4909 (1994),
https://doi.org/10.1088/0953-8984/6/26/012
[58] H.-J. Kwon, A. Houghton, and J.B. Marston, Gauge interactions and bosonized fermion liquids, Phys. Rev. Lett. 73, 284 (1994),
https://doi.org/10.1103/PhysRevLett.73.284
[59] H.-J. Kwon, A. Houghton, and J.B. Marston, Theory of fermion liquids, Phys. Rev. B 52, 8002 (1995),
https://doi.org/10.1103/PhysRevB.52.8002
[60] A.H. Castro Neto and E. Fradkin, Bosonization of the low energy excitations of Fermi liquids, Phys. Rev. Lett. 72, 1393 (1994),
https://doi.org/10.1103/PhysRevLett.72.1393
[61] A.H. Castro Neto and E. Fradkin, Bosonization of Fermi liquids, Phys. Rev. B 49, 10877 (1994),
https://doi.org/10.1103/PhysRevB.49.10877
[62] P. Kopietz, J. Hermisson, and K. Schönhammer, Bosonization of interacting fermions in arbitrary dimension beyond the Gaussian approximation, Phys. Rev. B 52, 10877 (1995),
https://doi.org/10.1103/PhysRevB.52.10877
[63] A. Houghton, H.J. Kwon, and J.B. Marston, Multidimensional bosonization, Adv. Phys. 49, 141 (2000),
https://doi.org/10.1080/000187300243363
[64] D.V. Khveshchenko, R. Hlubina, and T.M. Rice, Non-Fermi-liquid behavior in two dimensions due to long-ranged current-current interactions, Phys. Rev. B 48, 10766 (1993),
https://doi.org/10.1103/PhysRevB.48.10766
[65] D.V. Khveshchenko, Bosonization of current-current interactions, Phys. Rev. B 49, 16893 (1994),
https://doi.org/10.1103/PhysRevB.49.16893
[66] D.V. Khveshchenko, Geometrical approach to bosonization of D > 1 dimensional (non)-Fermi liquids, Phys. Rev. B 52, 4833 (1995),
https://doi.org/10.1103/PhysRevB.52.4833
[67] L.V. Delacretaz, Y.-H. Du, U. Mehta, and D.T. Son, Nonlinear bosonization of Fermi surfaces: The method of coadjoint orbits, Phys. Rev. Research 4, 033131 (2022), arXiv:2203.05004,
https://doi.org/10.1103/PhysRevResearch.4.033131
[68] W. Metzner, C. Castellani, and C. Di Castro, Fermi systems with strong forward scattering, Adv. Phys. 47, 317 (1998),
https://doi.org/10.1080/000187398243528
[69] P. Kopietz and G.E. Castilla, Higher-dimensional bosonization with nonlinear energy dispersion, Phys. Rev. Lett. 76, 4777 (1996),
https://doi.org/10.1103/PhysRevLett.76.4777
[70] P. Kopietz and G.E. Castilla, Quasiparticle behavior of composite fermions in the half-filled Landau level, Phys. Rev. Lett. 78, 314 (1997),
https://doi.org/10.1103/PhysRevLett.78.314
[71] K.B. Efetov, C. Pepin, and H. Meier, Exact bosonization for an interacting Fermi gas in arbitrary dimensions, Phys. Rev. Lett. 103, 186403 (2009),
https://doi.org/10.1103/PhysRevLett.103.186403
[72] K.B. Efetov, C. Pepin, and H. Meier, Describing systems of interacting fermions by boson models: Mapping in arbitrary dimension and applications, Phys. Rev. B 82, 235120 (2010),
https://doi.org/10.1103/PhysRevB.82.235120
[73] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26, 224002 (2009),
https://doi.org/10.1088/0264-9381/26/22/224002
[74] C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42, 343001 (2009),
https://doi.org/10.1088/1751-8113/42/34/343001
[75] J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010, 723105 (2010),
https://doi.org/10.1155/2010/723105
[76] S. Sachdev, What can gauge-gravity duality teach us about condensed matter physics?, Annu. Rev. Cond. Matt. Phys. 3, 9 (2012),
https://doi.org/10.1146/annurev-conmatphys-020911-125141
[77] J. Zaanen, Y. Liu, Y.-W. Sun, and K. Schalm, Holographic Duality in Condensed Matter Physics (Cambridge University Press, 2015),
https://doi.org/10.1017/CBO9781139942492
[78] M. Ammon and J. Erdmenger, Gauge/Gravity Duality (Cambridge University Press, 2015),
https://doi.org/10.1017/CBO9780511846373
[79] S.A. Hartnoll, A. Lucas, and S. Sachdev, Holographic Quantum Matter (MIT Press, 2018), arXiv:1612.07324,
https://doi.org/10.48550/arXiv.1612.07324
https://mitpress.mit.edu/9780262038430/holographic-quantum-matter/
[80] J. Zaanen, Lectures on quantum supreme matter, arXiv:2110.00961,
https://doi.org/10.48550/arXiv.2110.00961
[81] S. Kachru, X. Liu, and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78, 106005 (2008),
https://doi.org/10.1103/PhysRevD.78.106005
[82] S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83, 046003 (2011),
https://doi.org/10.1103/PhysRevD.83.046003
[83] S.A. Hartnoll, D.M. Hofman, and D. Vegh, Stellar spectroscopy: Fermions and holographic Lifshitz criticality, JHEP 1108, 96 (2011), arXiv:1105.3197,
https://doi.org/10.1007/JHEP08(2011)096
[84] S.A. Hartnoll, J. Polchinski, E. Silverstein, and D. Tong, Towards strange metallic holography, JHEP 2010(04), 120 (2010),
https://doi.org/10.1007/JHEP04(2010)120
[85] V.G.M. Puletti, S. Nowling, L. Thorlacius, and T. Zingg, Holographic metals at finite temperature, JHEP 2011(01), 117 (2011),
https://doi.org/10.1007/JHEP01(2011)117
[86] M. Edalati, R.G. Leigh, and P.W. Phillips, Dynamically generated Mott gap from holography, Phys. Rev. Lett. 106, 091602 (2011),
https://doi.org/10.1103/PhysRevLett.106.091602
[87] M. Edalati, R.G. Leigh, K.W. Lo, and P.W. Phillips, Dynamical gap and cupratelike physics from holography, Phys. Rev. D 83, 046012 (2011),
https://doi.org/10.1103/PhysRevD.83.046012
[88] H. Liu, J. McGreevy, and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83, 065029 (2011),
https://doi.org/10.1103/PhysRevD.83.065029
[89] M. Cubrovic, J. Zaanen, and K. Schalm, String theory, quantum phase transitions, and the emergent Fermi liquid, Science 325, 439 (2009),
https://doi.org/10.1126/science.1174962
[90] M. Cubrovic, J. Zaanen, and K. Schalm, Constructing the AdS dual of a Fermi liquid: AdS black holes with Dirac hair, JHEP 10, 017 (2011),
https://doi.org/10.1007/JHEP10(2011)017
[91] T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, Emergent quantum criticality, Fermi surfaces, and AdS2, Phys. Rev. D 83, 125002 (2011),
https://doi.org/10.1103/PhysRevD.83.125002
[92] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, and D. Vegh, From black holes to strange metals, arXiv:1003.1728,
https://doi.org/10.48550/arXiv.1003.1728
[93] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, and D. Vegh, Holographic non-Fermi liquid fixed points, arXiv:1101.0597,
https://doi.org/10.1098/rsta.2010.0354
[94] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, and D. Vegh, Charge transport by holographic Fermi surfaces, Phys. Rev. D 88, 045016 (2013),
https://doi.org/10.1103/PhysRevD.88.045016
[95] N. Iizuka, N. Kundu, P. Narayan, and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity, JHEP 01, 94 (2012),
https://doi.org/10.1007/JHEP01(2012)094
[96] D. Guarrera and J. McGreevy, Holographic Fermi surfaces and bulk dipole couplings, arXiv:1102.3908,
https://doi.org/10.48550/arXiv.1102.3908
[97] K. Jensen, S. Kachru, A. Karch, J. Polchinski, and E. Silverstein, Towards a holographic marginal Fermi liquid, Phys. Rev. D 84, 126002 (2011),
https://doi.org/10.1103/PhysRevD.84.126002
[98] L. Huijse and S. Sachdev, Fermi surfaces and gauge-gravity duality, Phys. Rev. D 84, 026001 (2011),
https://doi.org/10.1103/PhysRevD.84.026001
[99] L. Huijse, S. Sachdev, and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85, 035121 (2012),
https://doi.org/10.1103/PhysRevB.85.035121
[100] F. Hercek, V. Gecin, and M. Cubrovic, Photoemission "experiments" on holographic lattices, arXiv:2208.05920,
https://doi.org/10.21468/SciPostPhysCore.6.2.027
[101] C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis, and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 2010(11), 151 (2010),
https://doi.org/10.1007/JHEP11(2010)151
[102] E. Perlmutter, Hyperscaling violation from supergravity, JHEP 2012(06), 165 (2012),
https://doi.org/10.1007/JHEP06(2012)165
[103] Xi Dong, S. Harrison, S. Kachru, G. Torroba, and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 2012(06), 041 (2012),
https://doi.org/10.1007/JHEP06(2012)041
[104] B.S. Kim, Schrödinger holography with and without hyperscaling violation, JHEP 2012(06), 116 (2012),
https://doi.org/10.1007/JHEP06(2012)116
[105] D.V. Khveshchenko, Searching for non-Fermi liquids under holographic light, Phys. Rev. B 86, 115115 (2012),
https://doi.org/10.1103/PhysRevB.86.115115
[106] S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993),
https://doi.org/10.1103/PhysRevLett.70.3339
[107] S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105, 151602 (2010),
https://doi.org/10.1103/PhysRevLett.105.151602
[108] S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev. X 5, 041025 (2015),
https://doi.org/10.1103/PhysRevX.5.041025
[109] A. Kitaev, KITP Seminars (2015),
https://online.kitp.ucsb.edu/
[110] A. Kitaev, Notes on SL˜(2,)\widetilde{\mathrm{SL}}(2,\mathbb{R}) representations, arXiv:1711.08169,
https://doi.org/10.48550/arXiv.1711.08169
[111] A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 2018, 183 (2018), arXiv:1711.08467,
https://doi.org/10.1007/JHEP05(2018)183
[112] A. Kitaev and S.J. Suh, Statistical mechanics of a two-dimensional black hole, JHEP 2019, 198 (2019),
https://doi.org/10.1007/JHEP05(2019)198
[113] S. Sachdev, Statistical mechanics of strange metals and black holes, arXiv:2205.02285,
https://doi.org/10.48550/arXiv.2205.02285
[114] D.V. Khveshchenko, Thickening and sickening the SYK model, SciPost Phys. 5, 012 (2018), arXiv:1705.03956,
https://doi.org/10.21468/SciPostPhys.5.1.012
[115] D.V. Khveshchenko, Seeking to develop global SYK-ness, Condens. Matter 3(4), 40 (2018), arXiv:1805.00870,
https://doi.org/10.3390/condmat3040040
[116] D.V. Khveshchenko, Connecting the SYK dots, Condens. Matter 5, 37 (2020), arXiv:2004.06646,
https://doi.org/10.3390/condmat5020037
[117] E. Berg, S. Lederer, Y. Schattner, and S. Trebst, Monte Carlo studies of quantum critical metals, Annu. Rev. Condens. Matter Phys. 10, 63 (2019),
https://doi.org/10.1146/annurev-conmatphys-031218-013339
[118] Y. Schattner, S. Lederer, S.A. Kivelson, and E. Berg, Ising nematic quantum critical point in a metal: A Monte Carlo study, Phys. Rev. X 6, 031028 (2016),
https://doi.org/10.1103/PhysRevX.6.031028
[119] S. Lederer, Y. Schattner, E. Berg, and S.A. Kivelson, Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point, PNAS 114(19), 4905 (2017),
https://doi.org/10.1073/pnas.1620651114
[120] X.Y. Xu, K. Sun, Y. Schattner, E. Berg, and Z.Y. Meng, Non-Fermi Liquid at (2+1)D Ferromagnetic Quantum Critical Point, Phys. Rev. X 7, 031058 (2017), arXiv:1612.06075,
https://doi.org/10.1103/PhysRevX.7.031058
[121] X.Y. Xu, A. Klein, K. Sun, A.V. Chubukov, and Z.Y. Meng, Identification of non-Fermi liquid fermionic self-energy from quantum Monte Carlo data, npj Quantum Mater. 5, 65 (2020),
https://doi.org/10.1038/s41535-020-00266-6
[122] A. Klein, Y. Schattner, E. Berg, and A.V. Chubukov, Normal state properties of quantum critical metals at finite temperature, Phys. Rev. X 10, 031053 (2020),
https://doi.org/10.1103/PhysRevX.10.031053
[123] D.V. Khveshchenko, Taking a critical look at holographic critical matter, Lith. J. Phys. 55, 208 (2015), arXiv:1404.7000,
https://doi.org/10.3952/physics.v55i3.3150
[124] D.V. Khveshchenko, Demystifying the holographic mystique: A critical review, Lith. J. Phys. 56, 125 (2016), arXiv:1603.09741,
https://doi.org/10.3952/physics.v56i3.3363
[125] D.V. Khveshchenko, On a (pseudo)holographic nature of the SYK-like models, Lith. J. Phys. 59, 104 (2019), arXiv:1905.04381,
https://doi.org/10.3952/physics.v59i2.4013
[126] D.V. Khveshchenko, One SYK single electron transistor, Lith. J. Phys. 60, 185 (2020), arXiv:1912.05691,
https://doi.org/10.3952/physics.v60i3.4305
[127] D.V. Khveshchenko, The gloria mundi of SYK does not transit yet, Lith. J. Phys. 62, 2 (2022), arXiv:2205.11478,
https://doi.org/10.3952/physics.v62i2.4741
[128] M. Mitrano, A.A. Husain, S. Vig, A. Kogar, M.S. Rak, S.I. Rubeck, J. Schmalian, B. Uchoa, J. Schneeloch, R. Zhong, G.D. Gu, and P. Abbamonte, Anomalous density fluctuations in a strange metal, PNAS 21, 495 (2018),
https://doi.org/10.1073/pnas.1721495115
[129] J. Romero-Bermudez, A. Krikun, K. Schalm, and J. Zaanen, Anomalous attenuation of plasmons in strange metals and holography, Phys. Rev. B 99, 235149 (2019),
https://doi.org/10.1103/PhysRevB.99.235149
[130] A.A. Hussain, M. Mitrano, M.S. Pak, S. Rubeck, B. Uchoa, K. March, C. Dwyer, J. Schneeloch, R. Zhong, G.P. Gu, and P. Abbamonte, Crossover of charge fluctuations across the strange metal phase diagram, Phys. Rev. X 9, 041062 (2019),
https://doi.org/10.1103/PhysRevX.9.041062
[131] P.W. Phillips, N.E. Hussey, and P. Abbamonte, Stranger than metals, Science 377, 1 (2022),
https://doi.org/10.1126/science.abh4273
[132] B. Michon, C. Berthod, C.W. Rischau, A. Ataei, L. Chen, S. Komiya, S. Ono, L. Taillefer, D. van der Marel, and A. Georges, Planckian behavior of cuprate superconductors: Reconciling the scaling of optical conductivity with resistivity and specific heat, arXiv:2205.04030,
https://doi.org/10.1038/s41467-023-38762-5
[133] E. van Heumen, X. Feng, S. Cassanelli, L. Neubrand, L. de Jager, M. Berben, Y. Huang, T. Kondo, T. Takeuchi, and J. Zaanen, Strange metal electrodynamics across the phase diagram of cuprates, Phys. Rev. B 106, 054515 (2022),
https://doi.org/10.1103/PhysRevB.106.054515
[134] F. Balm, N. Chagnet, S. Arend, J. Aretz, K. Grosvenor, M. Janse, O. Moors, J. Post, V. Ohanesjan, D. Rodriguez-Fernandez, K. Schalm, and J. Zaanen, T-linear resistivity, optical conductivity and Planckian transport for a holographic local quantum critical metal in a periodic potential, arXiv:2211.05492,
https://doi.org/10.48550/arXiv.2211.05492
[135] S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS5, Phys. Rev. D 81, 046001 (2010),
https://doi.org/10.1103/PhysRevD.81.046001
[136] D.V. Khveshchenko, Viable phenomenologies of the normal state of cuprates, EPL 111, 1700 (2015), arXiv:1502.03375,
https://doi.org/10.1209/0295-5075/111/17003
[137] D.V. Khveshchenko, Die hard holographic phenomenology of cuprates, Lith. J. Phys. 61, 1 (2021), arXiv:2011.11617,
https://doi.org/10.3952/physics.v61i1.4406
[138] S.A. Hartnoll and A. Karch, Scaling theory of the cuprate strange metals, Phys. Rev. B 91, 155126 (2015),
https://doi.org/10.1103/PhysRevB.91.155126
[139] A. Karch, K. Limtragool, and P.W. Phillips, Unparticles and anomalous dimensions in the cuprates, JHEP 2016, 175 (2016),
https://doi.org/10.1007/JHEP03(2016)175
[140] A. Amoretti and D. Musso, Magneto-transport from momentum dissipating holography, JHEP 2015(09), 094 (2015),
https://doi.org/10.1007/JHEP09(2015)094
[141] A. Amoretti, M. Meinero, D.K. Brattan, F. Caglieris, E. Giannini, M. Affronte, C. Hess, B. Buechner, N. Magnoli, and M. Putti, Hydrodynamical description for magnetotransport in the strange metal phase of Bi-2201, Phys. Rev. Res. 2, 023387 (2020),
https://doi.org/10.1103/PhysRevResearch.2.023387
[142] A. Amoretti, A. Braggio, N. Maggiore, and N. Magnoli, Thermo-electric transport in gauge/gravity models, Adv. Phys. X 2, 409 (2017),
https://doi.org/10.1080/23746149.2017.1300509
[143] A.A. Patel and S. Sachdev, Theory of a Planckian Metal, Phys. Rev. Lett. 123, 066601 (2019),
https://doi.org/10.1103/PhysRevLett.123.066601
[144] A.A. Patel and S. Sachdev, Critical strange metal from fluctuating gauge fields in a solvable random model, Phys. Rev. B 98, 125134 (2018),
https://doi.org/10.1103/PhysRevB.98.125134
[145] D. Miserev, J. Klinovaja, and D. Loss, Fermi surface resonance and quantum criticality in strongly interacting Fermi gases, Phys. Rev. B 103, 075104 (2021),
https://doi.org/10.1103/PhysRevB.103.075104
[146] D. Chowdhury, A. Georges, O. Parcollet, and S. Sachdev, Sachdev-Ye-Kitaev models and beyond: A window into non-Fermi liquids, Rev. Mod. Phys. 94, 035004 (2022),
https://doi.org/10.1103/RevModPhys.94.035004
[147] I. Esterlis, H. Guo, A.A. Patel, and S. Sachdev, Large-N theory of critical Fermi surfaces, Phys. Rev. B 103, 235129 (2021),
https://doi.org/10.1103/PhysRevB.103.235129
[148] D. Chowdhury and E. Berg, Intrinsic superconducting instabilities of a solvable model for an incoherent metal, Phys. Rev. Res. 2, 013301 (2020),
https://doi.org/10.1103/PhysRevResearch.2.013301
[149] P. Cha, A.A. Patel, E. Gull, and E.-A. Kim, Slope invariant T-linear resistivity from local self-energy, Phys. Rev. Research 2, 033434 (2020),
https://doi.org/10.1103/PhysRevResearch.2.033434
[150] H. Guo, Y. Gu, and S. Sachdev, Transport and chaos in lattice Sachdev-Ye-Kitaev models, Phys. Rev. B 100, 045140 (2019),
https://doi.org/10.1103/PhysRevB.100.045140
[151] A.A. Patel, H. Guo, I. Esterlis, and S. Sachdev, Universal theory of strange metals from spatially random interactions, arXiv:2203.04990,
https://doi.org/10.48550/arXiv.2203.04990
[152] X. Wang and D. Chowdhury, Collective density fluctuations of strange metals with critical Fermi surfaces, arXiv:2209.05491,
https://doi.org/10.1103/PhysRevB.107.125157
[153] H. Guo, A.A. Patel, I. Esterlis, and S. Sachdev, Large-N theory of critical Fermi surfaces. II. Conductivity, Phys. Rev. B 106, 115151 (2022),
https://doi.org/10.1103/PhysRevB.106.115151
[154] G.T. Horowitz, J.E. Santos, and D. Tong, Optical conductivity with holographic lattices, JHEP 2012(07), 168 (2012),
https://doi.org/10.1007/JHEP07(2012)168
[155] G.T. Horowitz, J.E. Santos, and D. Tong, Further evidence for lattice-induced scaling, JHEP 2012(11), 102 (2012),
https://doi.org/10.1007/JHEP11(2012)102
[156] A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 2014(04), 040 (2014),
https://doi.org/10.1007/JHEP04(2014)040
[157] M. Rangamani, M. Rozali, and D. Smyth, Spatial modulation and conductivities in effective holographic theories, JHEP 2015(07), 024 (2015),
https://doi.org/10.1007/JHEP07(2015)024
[158] B.W. Langley, G. Vanacore, and P.W. Phillips, Absence of power-law mid-infrared conductivity in gravitational crystals, JHEP 2015(10), 163 (2015),
https://doi.org/10.1007/JHEP10(2015)163
[159] G.A. Inkof, K. Schalm, and J. Schmalian, Quantum critical Eliashberg theory, the SYK superconductor and their holographic duals, npj Quantum Mater. 7, 56 (2022),
https://doi.org/10.1038/s41535-022-00460-8
[160] J. Schmalian, Holographic superconductivity of a critical Fermi surface, arXiv:2209.00474,
https://doi.org/10.48550/arXiv.2209.00474
[161] B. Meszena, P. Saterskog, A. Bagrov, and K. Schalm, Nonperturbative emergence of non-Fermi-liquid behavior in d = 2 quantum critical metals, Phys. Rev. B 94, 115134 (2016),
https://doi.org/10.1103/PhysRevB.94.115134
[162] P. Saterskog, Instabilities of quantum critical metals in the limit Nf → 0, SciPost Phys. 10, 067 (2021),
https://doi.org/10.21468/SciPostPhys.10.3.067
[163] P. Nozieres, Properties of Fermi liquids with a finite range interaction, J. Phys. (Paris) 2, 443 (1992),
https://doi.org/10.1051/jp1:1992156
[164] J.A. Hertz, Quantum critical phenomena, Phys. Rev. B 14, 1165 (1976),
https://doi.org/10.1103/PhysRevB.14.1165
[165] A.J. Millis, Nearly antiferromagnetic Fermi liquids: An analytic Eliashberg approach, Phys. Rev. B 45, 13047 (1992),
https://doi.org/10.1103/PhysRevB.45.13047
[166] Ar. Abanov, A.V. Chubukov, and J. Schmalian, Quantum-critical theory of the spin-fermion model and its application to cuprates: Normal state analysis, Adv. Phys. 52, 119 (2003),
https://doi.org/10.1080/0001873021000057123
[167] T.D. Son, Is the composite fermion a Dirac particle?, Phys. Rev. X 5, 031027 (2015),
https://doi.org/10.1103/PhysRevX.5.031027
[168] T.D. Son, The Dirac composite fermion of the fractional quantum Hall effect, Prog. Theor. Exp. Phys. 2016(12), 12C103 (2016),
https://doi.org/10.1093/ptep/ptw133
[169] T.D. Son, The Dirac composite fermion of the fractional quantum Hall effect, Annu. Rev. Condens. Matter Phys. 9, 397 (2018),
https://doi.org/10.1146/annurev-conmatphys-033117-054227
[170] D.V. Khveshchenko, Composite Dirac fermions in graphene, Phys. Rev. B 75, 153405 (2007), arXiv:cond-mat/0607174,
https://doi.org/10.1103/PhysRevB.75.153405
[171] H. Schulz, Wigner crystal in one dimension, Phys. Rev. Lett. 71, 1864 (1993),
https://doi.org/10.1103/PhysRevLett.71.1864
[172] W. Rantner and X-G. Wen, Electron spectral function and algebraic spin liquid for the normal state of underdoped high superconductors, Phys. Rev. Lett. 86, 3871 (2001),
https://doi.org/10.1103/PhysRevLett.86.3871
[173] J. Ye, Thermally generated vortices, gauge invariance, and electron spectral function in the pseudogap regime, Phys. Rev. Lett. 87, 227003 (2001),
https://doi.org/10.1103/PhysRevLett.87.227003
[174] M. Franz and Z. Tesanovic, Algebraic Fermi liquid from phase fluctuations: "topological" fermions, vortex "Berryons," and QED3 theory of cuprate superconductors, Phys. Rev. Lett. 87, 257003 (2001),
https://doi.org/10.1103/PhysRevLett.87.257003
[175] D.V. Khveshchenko, Comment on "Electron spectral function and algebraic spin liquid for the normal state of underdoped high superconductors", Phys. Rev. Lett. 90, 199701 (2003), arXiv:cond-mat/0306079,
https://doi.org/10.1103/PhysRevLett.90.199701
[176] D.V. Khveshchenko, Comment on "Algebraic Fermi Liquid from Phase Fluctuations: 'Topological' Fermions, Vortex 'Berryons,' and QED3 Theory of Cuprate Superconductor", Phys. Rev. Lett. 91, 269701 (2003), arXiv:condmat/0306080,
https://doi.org/10.1103/PhysRevLett.91.269701
[177] D.V. Khveshchenko, Gauge-invariant Green functions of Dirac fermions coupled to gauge fields, Phys. Rev. B 65, 235111 (2002), arXiv:cond-mat/0112202,
https://doi.org/10.1103/PhysRevB.65.235111
[178] D.V. Khveshchenko, Elusive physical electron propagator in QED-like effective theories, Nucl. Phys. B 642, 515 (2002), arXiv:condmat/0204040,
https://doi.org/10.1016/S0550-3213(02)00793-9
[179] D.V. Khveshchenko, Elusive gauge-invariant fermion propagator in QED-like effective theories: Round II, arXiv:cond-mat/0205106,
https://doi.org/10.48550/arXiv.cond-mat/0205106
[180] V.P. Gusynin, D.V. Khveshchenko, and M. Reenders, Anomalous dimensions of gauge-invariant amplitudes in massless effective gauge theories of strongly correlated systems, Phys. Rev. B 67, 115201 (2003), arXiv:condmat/0207372,
https://doi.org/10.1103/PhysRevB.67.115201
[181] E. Bagan, M. Lavelle, and D. McMullan, Charges from dressed matter: Construction, Ann. Phys. 282, 471 (2000),
https://doi.org/10.1006/aphy.2000.6048
[182] D.V. Khveshchenko and A.G. Yashenkin, Planar Dirac fermions in long-range-correlated random vector potential, Phys. Lett. A 309, 363 (2003), arXiv:cond-mat/0202173,
https://doi.org/10.1016/S0375-9601(03)00212-3
[183] D.V. Khveshchenko and A.G. Yashenkin, Two different quasiparticle scattering rates in vortex line liquid phase of layered d-wave superconductors, Phys. Rev. B 67, 052502 (2003), arXiv:cond-mat/0204215,
https://doi.org/10.1103/PhysRevB.67.052502
[184] D.V. Khveshchenko, Long-range-correlated disorder in graphene, Phys. Rev. B 75, 241406(R) (2007), arXiv:cond-mat/0611485,
https://doi.org/10.1103/PhysRevB.75.241406
[185] D.V. Khveshchenko, Dirac fermions in a power-law-correlated random vector potential, EPL 82, 57008 (2008), arXiv:0705.4105,
https://doi.org/10.1209/0295-5075/82/57008
[186] D.V. Khveshchenko, Simulating holographic correspondence in flexible graphene, EPL 104, 47002 (2013), arXiv:1305.6651,
https://doi.org/10.1209/0295-5075/104/47002
[187] D.V. Khveshchenko, Contrasting string holography to its optical namesake, EPL 109, 61001 (2015), arXiv:1411.1693,
https://doi.org/10.1209/0295-5075/109/61001
[188] D.V. Khveshchenko, Phase space holography with no strings attached, Lith. J. Phys. 61, 233 (2021), arXiv:2102.01617,
https://doi.org/10.3952/physics.v61i4.4642