Dmitri V. Khveshchenko
References /
Nuorodos
[1] T. Holstein, R.E. Norton, and P. Pincus, de Haas-van Alphen
Effect and the Specific Heat of an Electron Gas, Phys. Rev. B
8,
2649 (1973),
https://doi.org/10.1103/PhysRevB.8.2649
[2] M.Y. Reizer, Effective electron-electron interaction in
metals and superconductors, Phys. Rev. B
39, 1602
(1989),
https://doi.org/10.1103/PhysRevB.39.1602
[3] M.Y. Reizer, Relativistic effects in the electron density of
states, specific heat, and the electron spectrum of normal
metals, Phys. Rev. B
40, 11571 (1989),
https://doi.org/10.1103/PhysRevB.40.11571
[4] C.J. Pethick, G. Baym, and H. Monien, Kinetics of
quark-gluon plasmas, Nucl. Phys. A
498, 313c (1989),
https://doi.org/10.1016/0375-9474(89)90608-8
[5] P.A. Lee, Gauge field, Aharonov-Bohm flux, and high-Tc
superconductivity, Phys. Rev. Lett.
63, 680 (1989),
https://doi.org/10.1103/PhysRevLett.63.680
[6] L.B. Ioffe and A.I. Larkin, Gapless fermions and gauge
fields in dielectrics, Phys. Rev. B
39, 8988 (1989),
https://doi.org/10.1103/PhysRevB.39.8988
[7] P.A. Lee and N. Nagaosa, Normal-state properties of the
uniform resonating-valence-bond state, Phys. Rev. Lett.
64,
2450 (1990),
https://doi.org/10.1103/PhysRevLett.64.2450
[8] P.A. Lee and N. Nagaosa, Gauge theory of the normal state of
high-
Tc superconductors, Phys. Rev. B
46,
5621 (1992),
https://doi.org/10.1103/PhysRevB.46.5621
[9] J. Gan and E. Wong, Non-Fermi-liquid behavior in quantum
critical systems, Phys. Rev. Lett.
71, 4226 (1993),
https://doi.org/10.1103/PhysRevLett.71.4226
[10] C. Nayak and F. Wilczek, Renormalization group approach to
low temperature properties of a non-Fermi liquid metal, Nucl.
Phys. B
430, 534 (1994),
https://doi.org/10.1016/0550-3213(94)90158-9
[11] S. Chakravarty, R.E. Norton, and O.F. Syljuasen, Transverse
gauge interactions and the vanquished Fermi liquid, Phys. Rev.
Lett.
74, 1423 (1995),
https://doi.org/10.1103/PhysRevLett.74.1423
[12] C. Castellani and C. Di Castro, Crossover from Luttinger to
Fermi liquid by increasing dimension, Physica C
235-240,
99 (1994),
https://doi.org/10.1016/0921-4534(94)91324-2
[13] C. Castellani, C. Di Castro, and W. Metzner, Dimensional
crossover from Fermi to Luttinger liquid, Phys. Rev. Lett.
72,
316 (1994),
https://doi.org/10.1103/PhysRevLett.72.316
[14] W. Metzner, D. Rohe, and S. Andergassen, Soft Fermi
surfaces and breakdown of Fermi-liquid behavior, Phys. Rev.
Lett.
91, 066402 (2003),
https://doi.org/10.1103/PhysRevLett.91.066402
[15] L. Dell'Anna and W. Metzner, Fermi surfacefluctuations and
single electron excitations near Pomeranchuk instability in two
dimensions, Phys. Rev. B
73, 045127 (2006),
https://doi.org/10.1103/PhysRevB.73.045127
[16] L. Dell'Anna and W. Metzner, Electrical resistivity near
Pomeranchuk instability in two dimensions, Phys. Rev. Lett.
98,
136402 (2007),
https://doi.org/10.1103/PhysRevLett.98.136402
[17] B.I. Halperin, P.A. Lee, and N. Read, Theory of the
half-filled Landau level, Phys. Rev. B
47, 7312 (1993),
https://doi.org/10.1103/PhysRevB.47.7312
[18] A. Chubukov, C. Pepin, and J. Rech, Instability of the
quantum-critical point of itinerant ferromagnets, Phys. Rev.
Lett.
92, 147003 (2004),
https://doi.org/10.1103/PhysRevLett.92.147003
[19] J. Rech, C. Pepin, and A. Chubukov, Quantumcritical
behavior in itinerant electron systems: Eliashberg theory and
instability of a ferromagnetic quantum critical point, Phys.
Rev. B
74, 195126 (2006),
https://doi.org/10.1103/PhysRevB.74.195126
[20] A.V. Chubukov, Self-generated locality near a ferromagnetic
quantum critical point, Phys. Rev. B
71, 245123 (2005),
https://doi.org/10.1103/PhysRevB.71.245123
[21] A.V. Chubukov and D.V. Khveshchenko, Effect of Fermi
surface curvature on low-energy properties of fermions with
singular interactions, Phys. Rev. Lett.
97, 226403
(2006), arXiv:condmat/0604376,
https://doi.org/10.1103/PhysRevLett.97.226403
[22] T.A. Sedrakyan and A.V. Chubukov, Fermionic propagators for
two-dimensional systems with singular interactions, Phys. Rev. B
79, 115129 (2009), arXiv:0901.1459,
https://doi.org/10.1103/PhysRevB.79.115129
[23] S.-S. Lee, Stability of the U(1) spin liquid with a spinon
Fermi surface in 2 + 1 dimensions, Phys. Rev. B
78,
085129 (2008),
https://doi.org/10.1103/PhysRevB.78.085129
[24] S.-S. Lee, Non-Fermi liquid from a charged black hole: A
critical Fermi ball, Phys. Rev. D
79, 086006 (2009),
https://doi.org/10.1103/PhysRevD.79.086006
[25] S.-S. Lee, Low-energy effective theory of Fermi surface
coupled with U(1) gauge field in 2 + 1 dimensions, Phys. Rev. B
80, 165102 (2009),
https://doi.org/10.1103/PhysRevB.80.165102
[26] M. Metlitski and S. Sachdev, Quantum phase transitions of
metals in two spatial dimensions. I. Ising-nematic order, Phys.
Rev. B
82, 075127 (2010),
https://doi.org/10.1103/PhysRevB.82.075127
[27] M. Metlitski and A. Sachdev, Quantum phase transitions of
metals in two spatial dimensions. II. Spin density wave order,
Phys. Rev. B
82, 075128 (2010),
https://doi.org/10.1103/PhysRevB.82.075128
[28] D.F. Mross, J. McGreevy, H. Liu, and T. Senthil, Controlled
expansion for certain non-Fermi-liquid metals, Phys. Rev. B
82,
045121 (2010), arXiv:1003.0894,
https://doi.org/10.1103/PhysRevB.82.045121
[29] S. Raghu, G. Torroba, and H. Wang, Metallic quantum
critical points with finite BCS couplings, Phys. Rev. B
92,
205104 (2015),
https://doi.org/10.1103/PhysRevB.92.205104
[30] A.L. Fitzpatrick, S. Kachru, J. Kaplan, S. Raghu, and G.
Torroba, Enhanced pairing of quantum critical metals near
d
= 3 + 1, Phys. Rev. B
92, 045118 (2015),
https://doi.org/10.1103/PhysRevB.92.045118
[31] A. Eberlein, I. Mandal, and S. Sachdev, Hyperscaling
violation at the Ising-nematic quantum critical point in
two-dimensional metals, Phys. Rev. B
94, 045133 (2016),
arXiv:1605.00657,
https://doi.org/10.1103/PhysRevB.94.045133
[32] B.L. Altshuler and L.B. Ioffe, Motion of fast particles in
strongly fluctuating magnetic fields, Phys. Rev. Lett.
69,
2979 (1992),
https://doi.org/10.1103/PhysRevLett.69.2979
[33] A.G. Aronov, E. Altshuler, A.D. Mirlin, and P. Wölfle,
Single particle relaxation in a random magnetic field, EPL
29,
239 (1995), arXiv:condmat/9404071,
https://doi.org/10.1209/0295-5075/29/3/009
[34] A. Mirlin, E. Altshuler, and P. Wölfle, Quasiclassical
approach to impurity effect on magnetooscillations in 2D metals,
Ann. Physik
5, 281 (1996),
https://doi.org/10.1002/andp.2065080306
[35] I.V. Gornyi and A. Mirlin, Wave function correlations on
the ballistic scale: Exploring quantum chaos by quantum
disorder, Phys. Rev. E
65, 025202 (2002),
https://doi.org/10.1103/PhysRevE.65.025202
[36] D. Taras-Semchuk and K.B. Efetov, Influence of long-range
disorder on electron motion in two dimensions, Phys. Rev. B
64,
115301 (2001),
https://doi.org/10.1103/PhysRevB.64.115301
[37] D.V. Khveshchenko and S.V. Meshkov, Particle in a random
magnetic field on a plane, Phys. Rev. B
47, 12051
(1993),
https://doi.org/10.1103/PhysRevB.47.12051
[38] D.V. Khveshchenko, Magnetoresistance of two-dimensional
fermions in a random magnetic field, Phys. Rev. Lett.
77,
1817 (1996),
https://doi.org/10.1103/PhysRevLett.77.1817
[39] P.C.E. Stamp, Effect of singular interaction terms on
two-dimensional Fermi liquids, Phys. Rev. Lett.
68, 2180
(1992),
https://doi.org/10.1103/PhysRevLett.68.2180
[40] P.C.E. Stamp, Some aspects of singular interactions in
condensed Fermi systems, J. Phys. (France)
3, 625
(1993),
https://doi.org/10.1051/jp1:1993153
[41] D.V. Khveshchenko and P.C.E. Stamp, Low-energy properties
of two-dimensional fermions with long-range current-current
interactions, Phys. Rev. Lett.
71, 2118 (1993),
https://doi.org/10.1103/PhysRevLett.71.2118
[42] D.V. Khveshchenko and P.C.E. Stamp, Eikonal approximation
in the theory of two-dimensional fermions with long-range
current-current interactions, Phys. Rev. B
49, 5227
(1994),
https://doi.org/10.1103/PhysRevB.49.5227
[43] M.J. Lawler, D.G. Barci, V. Fernández, E. Fradkin, and L.
Oxman, Nonperturbative behavior of the quantum phase transition
to a nematic Fermi fluid, Phys. Rev. B
73, 085101
(2006), arXiv:condmat/0508747,
https://doi.org/10.1103/PhysRevB.73.085101
[44] M.J. Lawler and E. Fradkin, Local quantum criticality at
the nematic quantum phase transition, Phys. Rev. B
75,
033304 (2007), arXiv:condmat/0605203,
https://doi.org/10.1103/PhysRevB.75.033304
[45] P. Säterskog, B. Meszena, and K. Schalm, Two-point function
of a
d = 2 quantum critical metal in the limit
kF
→ ∞,
Nf → 0, with
NfkF
fixed, Phys. Rev. B
96, 155125 (2017), arXiv:1612.05326,
https://doi.org/10.1103/PhysRevB.96.155125
[46] P. Saterskog, A framework for studying a quantum critical
metal in the limit
Nf → 0, SciPost
Phys.
4, 015 (2018), arXiv:1711.04338,
https://doi.org/10.21468/SciPostPhys.4.3.015
[47] T. Ravid and T. Banks, Exact low-energy solution for
critical Fermi surfaces, arxiv.org/abs/2208.01183,
https://doi.org/10.48550/arXiv.2208.01183
[48] L.B. Ioffe, D. Lidsky, and B.L. Altshuler, Effective
lowering of dimensionality in the strongly correlated two
dimensional electron gas, Phys. Rev. Lett.
73, 472
(1994),
https://doi.org/10.1103/PhysRevLett.73.472
[49] B.L. Altshuler, L.B. Ioffe, and A.J. Millis, Low-energy
properties of fermions with singular interactions, Phys. Rev. B
50, 14048 (1994),
https://doi.org/10.1103/PhysRevB.50.14048
[50] B.L. Altshuler, L.B. Ioffe, and A.J. Millis, Critical
behavior of the
T = 0 2
kF density-wave
phase transition in a two-dimensional Fermi liquid, Phys. Rev. B
52, 5563 (1995),
https://doi.org/10.1103/PhysRevB.52.5563
[51] B.L. Altshuler, L.B. Ioffe, and A.J. Millis, Theory of the
spin gap in high-temperature superconductors, Phys. Rev. B
53,
415 (1996),
https://doi.org/10.1103/PhysRevB.53.415
[52] B.L. Altshuler, L.B. Ioffe, A.I. Larkin, and A.J. Millis,
Spin-density-wave transition in a two-dimensional spin liquid,
Phys. Rev. B
52, 4607 (1995),
https://doi.org/10.1103/PhysRevB.52.4607
[53] A. Luther, Tomonaga fermions and the Dirac equation in
three dimensions, Phys. Rev. B
19, 320 (1979),
https://doi.org/10.1103/PhysRevB.19.320
[54] F.D.M. Haldane, Luttinger's theorem and bosonization of the
Fermi surface, in:
Proceedings of the International School
of Physics "Enrico Fermi", Course CXXI (North-Holland,
Amsterdam, 1994), arXiv:cond-mat/0505529,
https://doi.org/10.48550/arXiv.cond-mat/0505529
[55] A. Houghton and J.B. Marston, Bosonization and fermion
liquids in dimensions greater than one, Phys. Rev. B
48,
7790 (1993),
https://doi.org/10.1103/PhysRevB.48.7790
[56] A. Houghton, H.J. Kwon, and J.B. Marston, Stability and
single-particle properties of bosonized Fermi liquids, Phys.
Rev.
50, 1351 (1994),
https://doi.org/10.1103/PhysRevB.50.1351
[57] A. Houghton, H.J. Kwon, and J.B. Marston, Coulomb
interaction and the Fermi liquid state: solution by
bosonization, J. Phys.
6, 4909 (1994),
https://doi.org/10.1088/0953-8984/6/26/012
[58] H.-J. Kwon, A. Houghton, and J.B. Marston, Gauge
interactions and bosonized fermion liquids, Phys. Rev. Lett.
73,
284 (1994),
https://doi.org/10.1103/PhysRevLett.73.284
[59] H.-J. Kwon, A. Houghton, and J.B. Marston, Theory of
fermion liquids, Phys. Rev. B
52, 8002 (1995),
https://doi.org/10.1103/PhysRevB.52.8002
[60] A.H. Castro Neto and E. Fradkin, Bosonization of the low
energy excitations of Fermi liquids, Phys. Rev. Lett.
72,
1393 (1994),
https://doi.org/10.1103/PhysRevLett.72.1393
[61] A.H. Castro Neto and E. Fradkin, Bosonization of Fermi
liquids, Phys. Rev. B
49, 10877 (1994),
https://doi.org/10.1103/PhysRevB.49.10877
[62] P. Kopietz, J. Hermisson, and K. Schönhammer, Bosonization
of interacting fermions in arbitrary dimension beyond the
Gaussian approximation, Phys. Rev. B
52, 10877 (1995),
https://doi.org/10.1103/PhysRevB.52.10877
[63] A. Houghton, H.J. Kwon, and J.B. Marston, Multidimensional
bosonization, Adv. Phys.
49, 141 (2000),
https://doi.org/10.1080/000187300243363
[64] D.V. Khveshchenko, R. Hlubina, and T.M. Rice,
Non-Fermi-liquid behavior in two dimensions due to long-ranged
current-current interactions, Phys. Rev. B
48, 10766
(1993),
https://doi.org/10.1103/PhysRevB.48.10766
[65] D.V. Khveshchenko, Bosonization of current-current
interactions, Phys. Rev. B
49, 16893 (1994),
https://doi.org/10.1103/PhysRevB.49.16893
[66] D.V. Khveshchenko, Geometrical approach to bosonization of
D > 1 dimensional (non)-Fermi liquids, Phys. Rev. B
52,
4833 (1995),
https://doi.org/10.1103/PhysRevB.52.4833
[67] L.V. Delacretaz, Y.-H. Du, U. Mehta, and D.T. Son,
Nonlinear bosonization of Fermi surfaces: The method of
coadjoint orbits, Phys. Rev. Research
4, 033131 (2022),
arXiv:2203.05004,
https://doi.org/10.1103/PhysRevResearch.4.033131
[68] W. Metzner, C. Castellani, and C. Di Castro, Fermi systems
with strong forward scattering, Adv. Phys.
47, 317
(1998),
https://doi.org/10.1080/000187398243528
[69] P. Kopietz and G.E. Castilla, Higher-dimensional
bosonization with nonlinear energy dispersion, Phys. Rev. Lett.
76, 4777 (1996),
https://doi.org/10.1103/PhysRevLett.76.4777
[70] P. Kopietz and G.E. Castilla, Quasiparticle behavior of
composite fermions in the half-filled Landau level, Phys. Rev.
Lett.
78, 314 (1997),
https://doi.org/10.1103/PhysRevLett.78.314
[71] K.B. Efetov, C. Pepin, and H. Meier, Exact bosonization for
an interacting Fermi gas in arbitrary dimensions, Phys. Rev.
Lett.
103, 186403 (2009),
https://doi.org/10.1103/PhysRevLett.103.186403
[72] K.B. Efetov, C. Pepin, and H. Meier, Describing systems of
interacting fermions by boson models: Mapping in arbitrary
dimension and applications, Phys. Rev. B
82, 235120
(2010),
https://doi.org/10.1103/PhysRevB.82.235120
[73] S.A. Hartnoll, Lectures on holographic methods for
condensed matter physics, Class. Quant. Grav.
26, 224002
(2009),
https://doi.org/10.1088/0264-9381/26/22/224002
[74] C.P. Herzog, Lectures on holographic superfluidity and
superconductivity, J. Phys. A
42, 343001 (2009),
https://doi.org/10.1088/1751-8113/42/34/343001
[75] J. McGreevy, Holographic duality with a view toward
many-body physics, Adv. High Energy Phys.
2010, 723105
(2010),
https://doi.org/10.1155/2010/723105
[76] S. Sachdev, What can gauge-gravity duality teach us about
condensed matter physics?, Annu. Rev. Cond. Matt. Phys.
3,
9 (2012),
https://doi.org/10.1146/annurev-conmatphys-020911-125141
[77] J. Zaanen, Y. Liu, Y.-W. Sun, and K. Schalm,
Holographic
Duality in Condensed Matter Physics (Cambridge University
Press, 2015),
https://doi.org/10.1017/CBO9781139942492
[78] M. Ammon and J. Erdmenger,
Gauge/Gravity Duality
(Cambridge University Press, 2015),
https://doi.org/10.1017/CBO9780511846373
[79] S.A. Hartnoll, A. Lucas, and S. Sachdev,
Holographic
Quantum Matter (MIT Press, 2018), arXiv:1612.07324,
https://doi.org/10.48550/arXiv.1612.07324
https://mitpress.mit.edu/9780262038430/holographic-quantum-matter/
[80] J. Zaanen, Lectures on quantum supreme matter,
arXiv:2110.00961,
https://doi.org/10.48550/arXiv.2110.00961
[81] S. Kachru, X. Liu, and M. Mulligan, Gravity duals of
Lifshitz-like fixed points, Phys. Rev. D
78, 106005
(2008),
https://doi.org/10.1103/PhysRevD.78.106005
[82] S.A. Hartnoll and A. Tavanfar, Electron stars for
holographic metallic criticality, Phys. Rev. D
83,
046003 (2011),
https://doi.org/10.1103/PhysRevD.83.046003
[83] S.A. Hartnoll, D.M. Hofman, and D. Vegh, Stellar
spectroscopy: Fermions and holographic Lifshitz criticality,
JHEP
1108, 96 (2011), arXiv:1105.3197,
https://doi.org/10.1007/JHEP08(2011)096
[84] S.A. Hartnoll, J. Polchinski, E. Silverstein, and D. Tong,
Towards strange metallic holography, JHEP
2010(04), 120
(2010),
https://doi.org/10.1007/JHEP04(2010)120
[85] V.G.M. Puletti, S. Nowling, L. Thorlacius, and T. Zingg,
Holographic metals at finite temperature, JHEP
2011(01),
117 (2011),
https://doi.org/10.1007/JHEP01(2011)117
[86] M. Edalati, R.G. Leigh, and P.W. Phillips, Dynamically
generated Mott gap from holography, Phys. Rev. Lett.
106,
091602 (2011),
https://doi.org/10.1103/PhysRevLett.106.091602
[87] M. Edalati, R.G. Leigh, K.W. Lo, and P.W. Phillips,
Dynamical gap and cupratelike physics from holography, Phys.
Rev. D
83, 046012 (2011),
https://doi.org/10.1103/PhysRevD.83.046012
[88] H. Liu, J. McGreevy, and D. Vegh, Non-Fermi liquids from
holography, Phys. Rev. D
83, 065029 (2011),
https://doi.org/10.1103/PhysRevD.83.065029
[89] M. Cubrovic, J. Zaanen, and K. Schalm, String theory,
quantum phase transitions, and the emergent Fermi liquid,
Science
325, 439 (2009),
https://doi.org/10.1126/science.1174962
[90] M. Cubrovic, J. Zaanen, and K. Schalm, Constructing the AdS
dual of a Fermi liquid: AdS black holes with Dirac hair, JHEP
10,
017 (2011),
https://doi.org/10.1007/JHEP10(2011)017
[91] T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, Emergent
quantum criticality, Fermi surfaces, and AdS
2, Phys.
Rev. D
83, 125002 (2011),
https://doi.org/10.1103/PhysRevD.83.125002
[92] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, and D. Vegh,
From black holes to strange metals, arXiv:1003.1728,
https://doi.org/10.48550/arXiv.1003.1728
[93] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, and D. Vegh,
Holographic non-Fermi liquid fixed points, arXiv:1101.0597,
https://doi.org/10.1098/rsta.2010.0354
[94] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, and D. Vegh,
Charge transport by holographic Fermi surfaces, Phys. Rev. D
88,
045016 (2013),
https://doi.org/10.1103/PhysRevD.88.045016
[95] N. Iizuka, N. Kundu, P. Narayan, and S.P. Trivedi,
Holographic Fermi and non-Fermi liquids with transitions in
dilaton gravity, JHEP
01, 94 (2012),
https://doi.org/10.1007/JHEP01(2012)094
[96] D. Guarrera and J. McGreevy, Holographic Fermi surfaces and
bulk dipole couplings, arXiv:1102.3908,
https://doi.org/10.48550/arXiv.1102.3908
[97] K. Jensen, S. Kachru, A. Karch, J. Polchinski, and E.
Silverstein, Towards a holographic marginal Fermi liquid, Phys.
Rev. D
84, 126002 (2011),
https://doi.org/10.1103/PhysRevD.84.126002
[98] L. Huijse and S. Sachdev, Fermi surfaces and gauge-gravity
duality, Phys. Rev. D
84, 026001 (2011),
https://doi.org/10.1103/PhysRevD.84.026001
[99] L. Huijse, S. Sachdev, and B. Swingle, Hidden Fermi
surfaces in compressible states of gauge-gravity duality, Phys.
Rev. B
85, 035121 (2012),
https://doi.org/10.1103/PhysRevB.85.035121
[100] F. Hercek, V. Gecin, and M. Cubrovic, Photoemission
"experiments" on holographic lattices, arXiv:2208.05920,
https://doi.org/10.21468/SciPostPhysCore.6.2.027
[101] C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis, and R.
Meyer, Effective holographic theories for low-temperature
condensed matter systems, JHEP
2010(11), 151 (2010),
https://doi.org/10.1007/JHEP11(2010)151
[102] E. Perlmutter, Hyperscaling violation from supergravity,
JHEP
2012(06), 165 (2012),
https://doi.org/10.1007/JHEP06(2012)165
[103] Xi Dong, S. Harrison, S. Kachru, G. Torroba, and H. Wang,
Aspects of holography for theories with hyperscaling violation,
JHEP
2012(06), 041 (2012),
https://doi.org/10.1007/JHEP06(2012)041
[104] B.S. Kim, Schrödinger holography with and without
hyperscaling violation, JHEP
2012(06), 116 (2012),
https://doi.org/10.1007/JHEP06(2012)116
[105] D.V. Khveshchenko, Searching for non-Fermi liquids under
holographic light, Phys. Rev. B
86, 115115 (2012),
https://doi.org/10.1103/PhysRevB.86.115115
[106] S. Sachdev and J. Ye, Gapless spin-fluid ground state in a
random quantum Heisenberg magnet, Phys. Rev. Lett.
70,
3339 (1993),
https://doi.org/10.1103/PhysRevLett.70.3339
[107] S. Sachdev, Holographic metals and the fractionalized
Fermi liquid, Phys. Rev. Lett.
105, 151602 (2010),
https://doi.org/10.1103/PhysRevLett.105.151602
[108] S. Sachdev, Bekenstein-Hawking entropy and strange metals,
Phys. Rev. X
5, 041025 (2015),
https://doi.org/10.1103/PhysRevX.5.041025
[109] A. Kitaev, KITP Seminars (2015),
https://online.kitp.ucsb.edu/
[110] A. Kitaev, Notes on
representations, arXiv:1711.08169,
https://doi.org/10.48550/arXiv.1711.08169
[111] A. Kitaev and S.J. Suh, The soft mode in the
Sachdev-Ye-Kitaev model and its gravity dual, JHEP
2018,
183 (2018), arXiv:1711.08467,
https://doi.org/10.1007/JHEP05(2018)183
[112] A. Kitaev and S.J. Suh, Statistical mechanics of a
two-dimensional black hole, JHEP
2019, 198 (2019),
https://doi.org/10.1007/JHEP05(2019)198
[113] S. Sachdev, Statistical mechanics of strange metals and
black holes, arXiv:2205.02285,
https://doi.org/10.48550/arXiv.2205.02285
[114] D.V. Khveshchenko, Thickening and sickening the SYK model,
SciPost Phys.
5, 012 (2018), arXiv:1705.03956,
https://doi.org/10.21468/SciPostPhys.5.1.012
[115] D.V. Khveshchenko, Seeking to develop global SYK-ness,
Condens. Matter
3(4), 40 (2018), arXiv:1805.00870,
https://doi.org/10.3390/condmat3040040
[116] D.V. Khveshchenko, Connecting the SYK dots, Condens.
Matter
5, 37 (2020), arXiv:2004.06646,
https://doi.org/10.3390/condmat5020037
[117] E. Berg, S. Lederer, Y. Schattner, and S. Trebst, Monte
Carlo studies of quantum critical metals, Annu. Rev. Condens.
Matter Phys.
10, 63 (2019),
https://doi.org/10.1146/annurev-conmatphys-031218-013339
[118] Y. Schattner, S. Lederer, S.A. Kivelson, and E. Berg,
Ising nematic quantum critical point in a metal: A Monte Carlo
study, Phys. Rev. X
6, 031028 (2016),
https://doi.org/10.1103/PhysRevX.6.031028
[119] S. Lederer, Y. Schattner, E. Berg, and S.A. Kivelson,
Superconductivity and non-Fermi liquid behavior near a nematic
quantum critical point, PNAS
114(19), 4905 (2017),
https://doi.org/10.1073/pnas.1620651114
[120] X.Y. Xu, K. Sun, Y. Schattner, E. Berg, and Z.Y. Meng,
Non-Fermi Liquid at (2+1)D Ferromagnetic Quantum Critical Point,
Phys. Rev. X
7, 031058 (2017), arXiv:1612.06075,
https://doi.org/10.1103/PhysRevX.7.031058
[121] X.Y. Xu, A. Klein, K. Sun, A.V. Chubukov, and Z.Y. Meng,
Identification of non-Fermi liquid fermionic self-energy from
quantum Monte Carlo data, npj Quantum Mater.
5, 65
(2020),
https://doi.org/10.1038/s41535-020-00266-6
[122] A. Klein, Y. Schattner, E. Berg, and A.V. Chubukov, Normal
state properties of quantum critical metals at finite
temperature, Phys. Rev. X
10, 031053 (2020),
https://doi.org/10.1103/PhysRevX.10.031053
[123] D.V. Khveshchenko, Taking a critical look at holographic
critical matter, Lith. J. Phys.
55, 208 (2015),
arXiv:1404.7000,
https://doi.org/10.3952/physics.v55i3.3150
[124] D.V. Khveshchenko, Demystifying the holographic mystique:
A critical review, Lith. J. Phys.
56, 125 (2016),
arXiv:1603.09741,
https://doi.org/10.3952/physics.v56i3.3363
[125] D.V. Khveshchenko, On a (pseudo)holographic nature of the
SYK-like models, Lith. J. Phys.
59, 104 (2019),
arXiv:1905.04381,
https://doi.org/10.3952/physics.v59i2.4013
[126] D.V. Khveshchenko, One SYK single electron transistor,
Lith. J. Phys.
60, 185 (2020), arXiv:1912.05691,
https://doi.org/10.3952/physics.v60i3.4305
[127] D.V. Khveshchenko, The
gloria mundi of SYK does
not transit yet, Lith. J. Phys.
62, 2 (2022),
arXiv:2205.11478,
https://doi.org/10.3952/physics.v62i2.4741
[128] M. Mitrano, A.A. Husain, S. Vig, A. Kogar, M.S. Rak, S.I.
Rubeck, J. Schmalian, B. Uchoa, J. Schneeloch, R. Zhong, G.D.
Gu, and P. Abbamonte, Anomalous density fluctuations in a
strange metal, PNAS
21, 495 (2018),
https://doi.org/10.1073/pnas.1721495115
[129] J. Romero-Bermudez, A. Krikun, K. Schalm, and J. Zaanen,
Anomalous attenuation of plasmons in strange metals and
holography, Phys. Rev. B
99, 235149 (2019),
https://doi.org/10.1103/PhysRevB.99.235149
[130] A.A. Hussain, M. Mitrano, M.S. Pak, S. Rubeck, B. Uchoa,
K. March, C. Dwyer, J. Schneeloch, R. Zhong, G.P. Gu, and P.
Abbamonte, Crossover of charge fluctuations across the strange
metal phase diagram, Phys. Rev. X
9, 041062 (2019),
https://doi.org/10.1103/PhysRevX.9.041062
[131] P.W. Phillips, N.E. Hussey, and P. Abbamonte, Stranger
than metals, Science
377, 1 (2022),
https://doi.org/10.1126/science.abh4273
[132] B. Michon, C. Berthod, C.W. Rischau, A. Ataei, L. Chen, S.
Komiya, S. Ono, L. Taillefer, D. van der Marel, and A. Georges,
Planckian behavior of cuprate superconductors: Reconciling the
scaling of optical conductivity with resistivity and specific
heat, arXiv:2205.04030,
https://doi.org/10.1038/s41467-023-38762-5
[133] E. van Heumen, X. Feng, S. Cassanelli, L. Neubrand, L. de
Jager, M. Berben, Y. Huang, T. Kondo, T. Takeuchi, and J.
Zaanen, Strange metal electrodynamics across the phase diagram
of cuprates, Phys. Rev. B
106, 054515 (2022),
https://doi.org/10.1103/PhysRevB.106.054515
[134] F. Balm, N. Chagnet, S. Arend, J. Aretz, K. Grosvenor, M.
Janse, O. Moors, J. Post, V. Ohanesjan, D. Rodriguez-Fernandez,
K. Schalm, and J. Zaanen, T-linear resistivity, optical
conductivity and Planckian transport for a holographic local
quantum critical metal in a periodic potential,
arXiv:2211.05492,
https://doi.org/10.48550/arXiv.2211.05492
[135] S.S. Gubser and F.D. Rocha, Peculiar properties of a
charged dilatonic black hole in AdS
5, Phys. Rev. D
81,
046001 (2010),
https://doi.org/10.1103/PhysRevD.81.046001
[136] D.V. Khveshchenko, Viable phenomenologies of the normal
state of cuprates, EPL
111, 1700 (2015),
arXiv:1502.03375,
https://doi.org/10.1209/0295-5075/111/17003
[137] D.V. Khveshchenko, Die hard holographic phenomenology of
cuprates, Lith. J. Phys.
61, 1 (2021), arXiv:2011.11617,
https://doi.org/10.3952/physics.v61i1.4406
[138] S.A. Hartnoll and A. Karch, Scaling theory of the cuprate
strange metals, Phys. Rev. B
91, 155126 (2015),
https://doi.org/10.1103/PhysRevB.91.155126
[139] A. Karch, K. Limtragool, and P.W. Phillips, Unparticles
and anomalous dimensions in the cuprates, JHEP
2016, 175
(2016),
https://doi.org/10.1007/JHEP03(2016)175
[140] A. Amoretti and D. Musso, Magneto-transport from momentum
dissipating holography, JHEP
2015(09), 094 (2015),
https://doi.org/10.1007/JHEP09(2015)094
[141] A. Amoretti, M. Meinero, D.K. Brattan, F. Caglieris, E.
Giannini, M. Affronte, C. Hess, B. Buechner, N. Magnoli, and M.
Putti, Hydrodynamical description for magnetotransport in the
strange metal phase of Bi-2201, Phys. Rev. Res.
2,
023387 (2020),
https://doi.org/10.1103/PhysRevResearch.2.023387
[142] A. Amoretti, A. Braggio, N. Maggiore, and N. Magnoli,
Thermo-electric transport in gauge/gravity models, Adv. Phys. X
2, 409 (2017),
https://doi.org/10.1080/23746149.2017.1300509
[143] A.A. Patel and S. Sachdev, Theory of a Planckian Metal,
Phys. Rev. Lett.
123, 066601 (2019),
https://doi.org/10.1103/PhysRevLett.123.066601
[144] A.A. Patel and S. Sachdev, Critical strange metal from
fluctuating gauge fields in a solvable random model, Phys. Rev.
B
98, 125134 (2018),
https://doi.org/10.1103/PhysRevB.98.125134
[145] D. Miserev, J. Klinovaja, and D. Loss, Fermi surface
resonance and quantum criticality in strongly interacting Fermi
gases, Phys. Rev. B
103, 075104 (2021),
https://doi.org/10.1103/PhysRevB.103.075104
[146] D. Chowdhury, A. Georges, O. Parcollet, and S. Sachdev,
Sachdev-Ye-Kitaev models and beyond: A window into non-Fermi
liquids, Rev. Mod. Phys.
94, 035004 (2022),
https://doi.org/10.1103/RevModPhys.94.035004
[147] I. Esterlis, H. Guo, A.A. Patel, and S. Sachdev, Large-N
theory of critical Fermi surfaces, Phys. Rev. B
103,
235129 (2021),
https://doi.org/10.1103/PhysRevB.103.235129
[148] D. Chowdhury and E. Berg, Intrinsic superconducting
instabilities of a solvable model for an incoherent metal, Phys.
Rev. Res.
2, 013301 (2020),
https://doi.org/10.1103/PhysRevResearch.2.013301
[149] P. Cha, A.A. Patel, E. Gull, and E.-A. Kim, Slope
invariant T-linear resistivity from local self-energy, Phys.
Rev. Research
2, 033434 (2020),
https://doi.org/10.1103/PhysRevResearch.2.033434
[150] H. Guo, Y. Gu, and S. Sachdev, Transport and chaos in
lattice Sachdev-Ye-Kitaev models, Phys. Rev. B
100,
045140 (2019),
https://doi.org/10.1103/PhysRevB.100.045140
[151] A.A. Patel, H. Guo, I. Esterlis, and S. Sachdev, Universal
theory of strange metals from spatially random interactions,
arXiv:2203.04990,
https://doi.org/10.48550/arXiv.2203.04990
[152] X. Wang and D. Chowdhury, Collective density fluctuations
of strange metals with critical Fermi surfaces,
arXiv:2209.05491,
https://doi.org/10.1103/PhysRevB.107.125157
[153] H. Guo, A.A. Patel, I. Esterlis, and S. Sachdev, Large-N
theory of critical Fermi surfaces. II. Conductivity, Phys. Rev.
B
106, 115151 (2022),
https://doi.org/10.1103/PhysRevB.106.115151
[154] G.T. Horowitz, J.E. Santos, and D. Tong, Optical
conductivity with holographic lattices, JHEP
2012(07),
168 (2012),
https://doi.org/10.1007/JHEP07(2012)168
[155] G.T. Horowitz, J.E. Santos, and D. Tong, Further evidence
for lattice-induced scaling, JHEP
2012(11), 102 (2012),
https://doi.org/10.1007/JHEP11(2012)102
[156] A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP
2014(04), 040 (2014),
https://doi.org/10.1007/JHEP04(2014)040
[157] M. Rangamani, M. Rozali, and D. Smyth, Spatial modulation
and conductivities in effective holographic theories, JHEP
2015(07),
024 (2015),
https://doi.org/10.1007/JHEP07(2015)024
[158] B.W. Langley, G. Vanacore, and P.W. Phillips, Absence of
power-law mid-infrared conductivity in gravitational crystals,
JHEP
2015(10), 163 (2015),
https://doi.org/10.1007/JHEP10(2015)163
[159] G.A. Inkof, K. Schalm, and J. Schmalian, Quantum critical
Eliashberg theory, the SYK superconductor and their holographic
duals, npj Quantum Mater.
7, 56 (2022),
https://doi.org/10.1038/s41535-022-00460-8
[160] J. Schmalian, Holographic superconductivity of a critical
Fermi surface, arXiv:2209.00474,
https://doi.org/10.48550/arXiv.2209.00474
[161] B. Meszena, P. Saterskog, A. Bagrov, and K. Schalm,
Nonperturbative emergence of non-Fermi-liquid behavior in
d
= 2 quantum critical metals, Phys. Rev. B
94, 115134
(2016),
https://doi.org/10.1103/PhysRevB.94.115134
[162] P. Saterskog, Instabilities of quantum critical metals in
the limit
Nf → 0, SciPost Phys.
10,
067 (2021),
https://doi.org/10.21468/SciPostPhys.10.3.067
[163] P. Nozieres, Properties of Fermi liquids with a finite
range interaction, J. Phys. (Paris)
2, 443 (1992),
https://doi.org/10.1051/jp1:1992156
[164] J.A. Hertz, Quantum critical phenomena, Phys. Rev. B
14,
1165 (1976),
https://doi.org/10.1103/PhysRevB.14.1165
[165] A.J. Millis, Nearly antiferromagnetic Fermi liquids: An
analytic Eliashberg approach, Phys. Rev. B
45, 13047
(1992),
https://doi.org/10.1103/PhysRevB.45.13047
[166] Ar. Abanov, A.V. Chubukov, and J. Schmalian,
Quantum-critical theory of the spin-fermion model and its
application to cuprates: Normal state analysis, Adv. Phys.
52,
119 (2003),
https://doi.org/10.1080/0001873021000057123
[167] T.D. Son, Is the composite fermion a Dirac particle?,
Phys. Rev. X
5, 031027 (2015),
https://doi.org/10.1103/PhysRevX.5.031027
[168] T.D. Son, The Dirac composite fermion of the fractional
quantum Hall effect, Prog. Theor. Exp. Phys.
2016(12),
12C103 (2016),
https://doi.org/10.1093/ptep/ptw133
[169] T.D. Son, The Dirac composite fermion of the fractional
quantum Hall effect, Annu. Rev. Condens. Matter Phys.
9,
397 (2018),
https://doi.org/10.1146/annurev-conmatphys-033117-054227
[170] D.V. Khveshchenko, Composite Dirac fermions in graphene,
Phys. Rev. B
75, 153405 (2007), arXiv:cond-mat/0607174,
https://doi.org/10.1103/PhysRevB.75.153405
[171] H. Schulz, Wigner crystal in one dimension, Phys. Rev.
Lett.
71, 1864 (1993),
https://doi.org/10.1103/PhysRevLett.71.1864
[172] W. Rantner and X-G. Wen, Electron spectral function and
algebraic spin liquid for the normal state of underdoped high
superconductors, Phys. Rev. Lett.
86, 3871 (2001),
https://doi.org/10.1103/PhysRevLett.86.3871
[173] J. Ye, Thermally generated vortices, gauge invariance, and
electron spectral function in the pseudogap regime, Phys. Rev.
Lett.
87, 227003 (2001),
https://doi.org/10.1103/PhysRevLett.87.227003
[174] M. Franz and Z. Tesanovic, Algebraic Fermi liquid from
phase fluctuations: "topological" fermions, vortex "Berryons,"
and QED
3 theory of cuprate superconductors, Phys.
Rev. Lett.
87, 257003 (2001),
https://doi.org/10.1103/PhysRevLett.87.257003
[175] D.V. Khveshchenko, Comment on "Electron spectral function
and algebraic spin liquid for the normal state of underdoped
high superconductors", Phys. Rev. Lett.
90, 199701
(2003), arXiv:cond-mat/0306079,
https://doi.org/10.1103/PhysRevLett.90.199701
[176] D.V. Khveshchenko, Comment on "Algebraic Fermi Liquid from
Phase Fluctuations: 'Topological' Fermions, Vortex 'Berryons,'
and QED3 Theory of Cuprate Superconductor", Phys. Rev. Lett.
91,
269701 (2003), arXiv:condmat/0306080,
https://doi.org/10.1103/PhysRevLett.91.269701
[177] D.V. Khveshchenko, Gauge-invariant Green functions of
Dirac fermions coupled to gauge fields, Phys. Rev. B
65,
235111 (2002), arXiv:cond-mat/0112202,
https://doi.org/10.1103/PhysRevB.65.235111
[178] D.V. Khveshchenko, Elusive physical electron propagator in
QED-like effective theories, Nucl. Phys. B
642, 515
(2002), arXiv:condmat/0204040,
https://doi.org/10.1016/S0550-3213(02)00793-9
[179] D.V. Khveshchenko, Elusive gauge-invariant fermion
propagator in QED-like effective theories: Round II,
arXiv:cond-mat/0205106,
https://doi.org/10.48550/arXiv.cond-mat/0205106
[180] V.P. Gusynin, D.V. Khveshchenko, and M. Reenders,
Anomalous dimensions of gauge-invariant amplitudes in massless
effective gauge theories of strongly correlated systems, Phys.
Rev. B
67, 115201 (2003), arXiv:condmat/0207372,
https://doi.org/10.1103/PhysRevB.67.115201
[181] E. Bagan, M. Lavelle, and D. McMullan, Charges from
dressed matter: Construction, Ann. Phys.
282, 471
(2000),
https://doi.org/10.1006/aphy.2000.6048
[182] D.V. Khveshchenko and A.G. Yashenkin, Planar Dirac
fermions in long-range-correlated random vector potential, Phys.
Lett. A
309, 363 (2003), arXiv:cond-mat/0202173,
https://doi.org/10.1016/S0375-9601(03)00212-3
[183] D.V. Khveshchenko and A.G. Yashenkin, Two different
quasiparticle scattering rates in vortex line liquid phase of
layered
d-wave superconductors, Phys. Rev. B
67,
052502 (2003), arXiv:cond-mat/0204215,
https://doi.org/10.1103/PhysRevB.67.052502
[184] D.V. Khveshchenko, Long-range-correlated disorder in
graphene, Phys. Rev. B
75, 241406(R) (2007),
arXiv:cond-mat/0611485,
https://doi.org/10.1103/PhysRevB.75.241406
[185] D.V. Khveshchenko, Dirac fermions in a
power-law-correlated random vector potential, EPL
82,
57008 (2008), arXiv:0705.4105,
https://doi.org/10.1209/0295-5075/82/57008
[186] D.V. Khveshchenko, Simulating holographic correspondence
in flexible graphene, EPL
104, 47002 (2013),
arXiv:1305.6651,
https://doi.org/10.1209/0295-5075/104/47002
[187] D.V. Khveshchenko, Contrasting string holography to its
optical namesake, EPL
109, 61001 (2015),
arXiv:1411.1693,
https://doi.org/10.1209/0295-5075/109/61001
[188] D.V. Khveshchenko, Phase space holography with no strings
attached, Lith. J. Phys.
61, 233 (2021),
arXiv:2102.01617,
https://doi.org/10.3952/physics.v61i4.4642