Received 9 August 2022; revised 14 November 2022; accepted 16
      December 2022
      
      
References /
          Nuorodos
        
        [1] A. Arkrog, in: 
Inventories of Selected Radionuclides in
          the Oceans, IAEA-TECDOC-481 (IAEA, International
        Atomic Energy Agency, Vienna, 1988) pp. 103–137, 
        
[PDF]
        [2] E. Holm, Plutonium in the Baltic Sea, J. Appl. Radiat. Isot.
        
46(11), 1225–1229 (1995), 
        
          https://doi.org/10.1016/0969-8043(95)00164-9
        [3] G. Lujanienė, A. Plukis, E. Kimtys, V. Remeikis, D.
        Jankünaitė, and B.I. Ogorodnikov, Study of 
137Cs, 
90Sr,
        
 239,240Pu, 
238Pu and 
241Am
        behavior in the Chernobyl soil, J. Radioanal. Nucl. Chem. 
251(1),
        59–68 (2002), 
        
          https://doi.org/10.1023/A:1015185011201
        [4] K. Meusburger, O. Evrard, C. Alewell, P. Borrelli, G.
        Cinelli, M. Ketterer, L. Mabit, P. Panagos, K. van Oost, and C.
        Ballabio, Plutonium aided reconstruction of caesium atmospheric
        fallout in European topsoils, Sci. Rep. 
10(1), 11858
        (2020), 
        
          https://doi.org/10.1038/s41598-020-68736-2
        [5] W. Jinlong, D. Jinzhou, and Z. Jian, Plutonium isotopes
        research in the marine environment: A synthesis, J. Nucl.
        Radiochem. Sci. 
20, 1–11 (2020), 
        
          https://doi.org/10.14494/jnrs.20.1
        [6] J. Wang, J. Du, J. Qu, and Q. Bi, Distribution of Pu
        isotopes and 
210Pb in the Bohai Sea and Yellow Sea:
        Implications for provenance and transportation, Chemosphere 
263,
        127896 (2021), 
        
          https://doi.org/10.1016/j.chemosphere.2020.127896
        [7] B. Skwarzec, D.I. Strumińska, and M. Prucnal, Estimates of 
239+240Pu
        inventories in Gdańsk bay and Gdańsk basin, J. Environ.
        Radioact. 
70, 237–252 (2003), 
        
          https://doi.org/10.1016/S0265-931X(03)00107-3
        [8] G. Vaikutienė, R. Skipitytė, J. Mažeika, T. Martma, A.
        Garbaras, R. Barisevičiūtė, and V. Remeikis, Environmental
        changes induced by human activities in the Northern Curonian
        Lagoon (Eastern Baltic): diatoms and stable isotope data, Est.
        J. Earth Sci. 
66(2), 93–108 (2017), 
        
          https://doi.org/10.3176/earth.2017.07
        [9] R. Stakėnienė, K. Jokšas, R. Zinkutė, and E.
        Raudonytė-Svirbutavičienė, Oil pollution and geochemical
        hydrocarbon origin markers in sediments of the Curonian Lagoon
        and the Nemunas River Delta, Baltica 
32(1), 22–32
        (2019), 
        
          https://doi.org/10.5200/baltica.2019.1.3
        [10] K. Jokšas, A. Galkus, and R. Stakėnienė, Heavy metal
        contamination of the Curonian Lagoon bottom sediments
        (Lithuanian waters area), Baltica 
29, 107–120 (2016), 
        
          https://doi.org/10.5200/baltica.2016.29.10
        [11] G. Lujanienė, N. Remeikaitė-Nikienė, G. Garnaga, K. Jokšas,
        B. Šilobritienė, A. Stankevičius, S. Šemčuk, and I.
        Kulakauskaitė, Transport of 
137Cs, 
241Am
        and Pu isotopes in the Curonian Lagoon and the Baltic Sea, J.
        Environ. Radioact. 
127, 40–49 (2014), 
        
          https://doi.org/10.1016/j.jenvrad.2013.09.013
        [12] M. Kosior, I. Barska, and M. Domagala-Wieloszewska, Heavy
        metals, Σ DDT and Σ PCB in the gonads of pikeperch females
        spawning in southern Baltic Sea lagoons, Pol. J. Environ. Stud.
        
11(2), 127–134 (2002), 
        
[PDF]
        [13] S. Alexandrov, Influence of ‘blooming’ of blue-green algae
        on the ecological state of the Curonian Lagoon, Water Chem.
        Ecol. (4), 2–6 (2009) [in Russian]
        [14] S. Aleksandrov, A. Krek, E. Bubnova, and A. Danchenkov,
        Eutrophication and effects of algal bloom in the south-western
        part of the Curonian Lagoon alongside the Curonian Spit, Baltica
        
31, 1–12 (2018), 
        
          https://doi.org/10.5200/baltica.2018.31.01
        [15] J. Vogt, P. Soille, A. de Jager, E. Rimavičiūtė, W. Mehl,
        S. Foisneau, K. Bódis, J. Dusart, M. Paracchini, P. Haastrup,
        and C. Bamps, 
A pan-European River and Catchment Database,
        Report EUR 22920 EN (Office for Official Publications of the
        European Communities, Luxembourg, 2007), 
        
[PDF]
        [16] M. Manton, E. Makrickas, P. Banaszuk, A. Kołos, A. Kamocki,
        M. Grygoruk, M. Stachowicz, L. Jarašius, N. Zableckis, J.
        Sendžikaitė, et al., Assessment and spatial planning for
        peatland conservation and restoration: Europe’s trans-border
        Neman River Basin as a case study, Land 
10, 174 (2021),
        
        
          https://doi.org/10.3390/land10020174
        [17] Z. Gasiūnaitė, D. Daunys, S. Olenin, and A. Razinkovas, in:
        
Ecology of Baltic Coastal Waters, ed. U. Schiewer
        (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008) pp.
        197–215, 
        
          https://doi.org/10.1007/978-3-540-73524-3_9
        [18] A. Aarkrog, in: 
Proceedings of an International
          Symposium on Environment Impact of Radioactive Release,
        Vol. 1995 (IAEA, Vienna, 1995) p. 13, 
        
https://digitallibrary.un.org/record/195401
        [19] Yu. Izraehl’, The radioactive contamination of the Earth’s
        surface, Vestn. Ross. Akad. Nauk 
68(10), 898–915 (1998)
        [in Russian], 
        
https://www.osti.gov/etdeweb/biblio/20143312
        [20] A. Yablokov, V. Nesterenko, and A. Nesterenko, Atmospheric,
        water, and soil contamination after Chernobyl, Ann. NY Acad.
        Sci. 
1181, 223–236 (2009), 
        
https://doi.org/10.1111/j.1749-6632.2009.04830.x
        [21] G. Lujanienė, B. Šilobritienė, D. Tracevičienė, S. Šemčuk,
        V. Romanenko, G. Garnaga-Budrė, J. Kaizer, and P.P. Povinec,
        Distribution of 
241Am and Pu isotopes in the
        Curonian Lagoon and the south-eastern Baltic Sea seawater,
        suspended particles, sediments and biota, J. Environ. Radioact.
        
249, 106892 (2022), 
        
          https://doi.org/10.1016/j.jenvrad.2022.106892
        [22] B. Chubarenko, L. Lund-Hansen, and A. Beloshitskii,
        Comparative analyses of potential wind-wave impact on bottom
        sediments in the Vistula and Curonian lagoons, Baltica 
15,
        30–39 (2002), 
        
[PDF]
        [23] G. Umgiesser, P. Zemlys, A. Erturk, A. Razinkova-Baziukas,
        J. Mėžinė, and C. Ferrarin, Seasonal renewal time variability in
        the Curonian Lagoon caused by atmospheric and hydrographical
        forcing, Ocean Sci. 
12, 391–402 (2016), 
        
          https://doi.org/10.5194/os-12-391-2016
        [24] D. Jakimavičius, J. Kriaučiūnienė, and D. Šarauskienė,
        Impact of climate change on the Curonian Lagoon water balance
        components, salinity and water temperature in the 21st century,
        Oceanologia 
60, 378–389 (2018), 
        
          https://doi.org/10.1016/j.oceano.2018.02.003
        [25] C. Ferrarin, A. Razinkovas, S. Gulbinskas, G. Umgiesser,
        and L. Bliūdžiutė, Hydraulic regime-based zonation scheme of the
        Curonian Lagoon, Hydrobiologia 
611, 133–146 (2008), 
        
          https://doi.org/10.1007/s10750-008-9454-5
        [26] A. Galkus and K. Jokšas, 
Nuosėdinė medžiaga
          tranzitinėje akvasistemoje [
Sedimentary Material in the
          Transitional Aquasystem] (Institute of Geography, Vilnius,
        1997) [in Lithuanian]
        [27] O. Pustelnikovas, 
Geochemistry of Sediments of the
          Curonian Lagoon (Institute of Geography, Vilnius, 1998)
        [28] V. Lujanas, N. Tarasyuk, and N. Spirkauskaite, in: 
          Radionuclide Transport Dynamics in Freshwater Resources
        (IAEA, Austria, 2002) pp. 77–105, 
        
[PDF]
        [29] J. Mėžinė, C. Ferrarin, D. Vaičiūtė, R. Idzelytė, P.
        Zemlys, and G. Umgiesser, Sediment transport mechanisms in a
        lagoon with high river discharge and sediment loading, Water 
11,
        1970 (2019), 
        
          https://doi.org/10.3390/w11101970
        [30] L. Monte, A.I. Klyashtorin, F. Strebl, P. Bossew, and P.
        Aggarwal, in: 
Radionuclide Transport Dynamics in Freshwater
          Resources (IAEA, Austria, 2002) pp. 5–35, 
        
[PDF]
        [31] D. Marčiulionienė, B. Lukšienė, D. Montvydienė, O.
        Jefanova, J. Mažeika, R. Taraškevičius, R. Stakėnienė, R.
        Petrošius, E. Maceika, N. Tarasiuk, et al., 
137Cs
        and plutonium isotopes accumulation/retention in bottom
        sediments and soil in Lithuania: A case study of the activity
        concentration of anthropogenic radionuclides and their
        provenance before the start of operation of the Belarusian
        Nuclear Power Plant (NPP), J. Environ. Radioact. 
178–179,
        253–264 (2017), 
        
          https://doi.org/10.1016/j.jenvrad.2017.07.024
        [32] F. Zhang, J. Wang, D. Liu, Q. Bi, and J. Du, Distribution
        of 
137Cs in the Bohai Sea, Yellow Sea and East China
        Sea: Sources, budgets and environmental implications, Sci. Total
        Environ. 
672, 1004–1016 (2019), 
        
          https://doi.org/10.1016/j.scitotenv.2019.04.001
        [33] E.P. Hardy, P.W. Krey, and H.L. Volchok, Global inventory
        and distribution of fallout plutonium, Nature 
241,
        444–445 (1973), 
        
          https://doi.org/10.1038/241444a0
        [34] UNSCEAR, 
Ionising Radiation Sources and Biological
          Effects, Report to the General Assembly with Annexes (UN
        Press, New York, 1982) pp. 228, 238, 
        
https://www.unscear.org/unscear/en/publications/1982.html
        [35] M.E. Ketterer, K.M. Hafer, and J.W. Mietelski, Resolving
        Chernobyl vs. global fallout contributions in soils from Poland
        using Plutonium atom ratios measured by inductively coupled
        plasma mass spectrometry, J. Environ. Radioact. 
73,
        183–201 (2004), 
        
          https://doi.org/10.1016/j.jenvrad.2003.09.001
        [36] J. Mietelski, Plutonium in the environment of Poland (a
        review), Radioact. Environ. 
1, 401–412 (2001), 
        
          https://doi.org/10.1016/S1569-4860(01)80026-7
        [37] B. Lukšienė, A. Puzas, V. Remeikis, R. Druteikienė, A.
        Gudelis, R. Gvozdaitė, Š. Buivydas, R. Davidonis, and G.
        Kandrotas, Spatial patterns and ratios of 
137Cs, 
90Sr,
        and Pu isotopes in the top layer of undisturbed meadow soils as
        indicators for contamination origin, Environ. Monit. Assess. 
187,
        1–16 (2015), 
        
          https://doi.org/10.1007/s10661-015-4491-9
        [38] J. Smith, K. Ellis, and D. Nelson, Time-dependent modeling
        of fallout radionuclide transport in a drainage basin:
        Significance of “slow” erosional and “fast” hydrological
        components, Chem. Geol. 
63(1–2), 157–180 (1987), 
        
https://doi.org/10.1016/0009-2541(87)90082-9
        [39] G.R. Foster and T.E. Hakonson, Predicted erosion and
        sediment delivery of fallout plutonium, J. Environ. Qual. 
13,
        595–602 (1984), 
        
          https://doi.org/10.2134/jeq1984.00472425001300040017x
        [40] T. Beasley and C. Jennings, Inventories of 
239,240Pu,
        
 241Am, 
137Cs, and 
60Co in
        Columbia River sediments from Hanford to the Columbia River
        Estuary, Environ. Sci. Technol. 
18, 207–212 (1984), 
        
          https://doi.org/10.1021/es00121a014
        [41] Q. Zhuang, G. Li, F. Wang, L. Tian, X. Jiang, K. Zhang, G.
        Liu, S. Pan, and Z. Liu, 
137Cs and 
239+240Pu
        in the Bohai Sea of China: Comparison in distribution and source
        identification between the inner bay and the tidal flat, Mar.
        Pollut. Bull. 
 138, 604–617 (2019), 
        
          https://doi.org/10.1016/j.marpolbul.2018.12.005
        [42] J. Wang, J. Du, J. Qu, and Q. Bi, Distribution of Pu
        isotopes and 
210Pb in the Bohai Sea and Yellow Sea:
        Implications for provenance and transportation, Chemosphere 
263,
        127896 (2021), 
        
          https://doi.org/10.1016/j.chemosphere.2020.127896