[PDF]    https://doi.org/10.3952/physics.2023.63.2.6

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 105–112 (2023)

ASSESSMENT OF THE INPUT OF PARTICULATE 239,240Pu AND 137Cs FROM THE NEMAN RIVER INTO THE CURONIAN LAGOON
Vitaliy Romanenkoa, Galina Lujanienėa, Sergej Šemčuka, Jonas Mažeikab, and Olga Jefanovab
a Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
b Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania
Email: vitaliy.romanenko@ftmc.lt

Received 9 August 2022; revised 14 November 2022; accepted 16 December 2022

The Curonian Lagoon is a unique system that is a temporary reservoir of water, accumulating about 62% of the suspended solids in the river runoff. The average activity of plutonium in the suspended particulate matter in the water of the Neris River was 0.26±0.02 Bq/kg, and the activity of 137Cs ranged from 23±8 to 49±12 Bq/kg. The average 137Cs flux to the Curonian Lagoon in the particulate and dissolved species was estimated to be (78±61) × 109 Bq/year. Preliminary estimates indicate that the annual input of 239,240Pu from the Neman River into the Curonian Lagoon is about 0.9 GBq, of which 0.56 GBq accumulates in the sediment of the lagoon.
Keywords: suspended sediment, Neman River, plutonium, caesium, Curonian Lagoon

239,240Pu ir 137Cs PATEKIMO SU KIETOSIOMIS DALELĖMIS NEMUNU Į KURŠIŲ MARIAS ĮVERTINIMAS
Vitaliy Romanenkoa, Galina Lujanienėa, Sergej Šemčuka, Jonas Mažeikab, Olga Jefanovab

a Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
b Gamtos tyrimų centras, Vilnius, Lietuva

Kuršių marios yra unikali sistema, veikianti kaip laikinas vandens rezervuaras, sukaupiantis apie 62 % kietųjų dalelių, įtekančių su upių vandenimis. Vidutinis suspenduotų kietųjų dalelių plutonio aktyvumas Neries upės vandenyje buvo 0,26±0,02 Bq/kg, o 137Cs aktyvumas svyravo nuo 23±8 Bq/kg iki 49±12 Bq/kg. Vidutinis 137Cs srautas į Kuršių marias, įskaitant kietąsias daleles ir ištirpusias formas, yra (78±61) × 109 Bq per metus. Preliminariais vertinimais, per metus 239,240Pu įtekėjimas į Kuršių marias su Nemuno upės vandenimis siekdavo apie 0,9 GBq, o Kuršių marių dugno nuosėdose susikaupdavo 0,56 GBq.


References / Nuorodos

[1] A. Arkrog, in: Inventories of Selected Radionuclides in the Oceans, IAEA-TECDOC-481 (IAEA, International Atomic Energy Agency, Vienna, 1988) pp. 103–137,
[PDF]
[2] E. Holm, Plutonium in the Baltic Sea, J. Appl. Radiat. Isot. 46(11), 1225–1229 (1995),
https://doi.org/10.1016/0969-8043(95)00164-9
[3] G. Lujanienė, A. Plukis, E. Kimtys, V. Remeikis, D. Jankünaitė, and B.I. Ogorodnikov, Study of 137Cs, 90Sr, 239,240Pu, 238Pu and 241Am behavior in the Chernobyl soil, J. Radioanal. Nucl. Chem. 251(1), 59–68 (2002),
https://doi.org/10.1023/A:1015185011201
[4] K. Meusburger, O. Evrard, C. Alewell, P. Borrelli, G. Cinelli, M. Ketterer, L. Mabit, P. Panagos, K. van Oost, and C. Ballabio, Plutonium aided reconstruction of caesium atmospheric fallout in European topsoils, Sci. Rep. 10(1), 11858 (2020),
https://doi.org/10.1038/s41598-020-68736-2
[5] W. Jinlong, D. Jinzhou, and Z. Jian, Plutonium isotopes research in the marine environment: A synthesis, J. Nucl. Radiochem. Sci. 20, 1–11 (2020),
https://doi.org/10.14494/jnrs.20.1
[6] J. Wang, J. Du, J. Qu, and Q. Bi, Distribution of Pu isotopes and 210Pb in the Bohai Sea and Yellow Sea: Implications for provenance and transportation, Chemosphere 263, 127896 (2021),
https://doi.org/10.1016/j.chemosphere.2020.127896
[7] B. Skwarzec, D.I. Strumińska, and M. Prucnal, Estimates of 239+240Pu inventories in Gdańsk bay and Gdańsk basin, J. Environ. Radioact. 70, 237–252 (2003),
https://doi.org/10.1016/S0265-931X(03)00107-3
[8] G. Vaikutienė, R. Skipitytė, J. Mažeika, T. Martma, A. Garbaras, R. Barisevičiūtė, and V. Remeikis, Environmental changes induced by human activities in the Northern Curonian Lagoon (Eastern Baltic): diatoms and stable isotope data, Est. J. Earth Sci. 66(2), 93–108 (2017),
https://doi.org/10.3176/earth.2017.07
[9] R. Stakėnienė, K. Jokšas, R. Zinkutė, and E. Raudonytė-Svirbutavičienė, Oil pollution and geochemical hydrocarbon origin markers in sediments of the Curonian Lagoon and the Nemunas River Delta, Baltica 32(1), 22–32 (2019),
https://doi.org/10.5200/baltica.2019.1.3
[10] K. Jokšas, A. Galkus, and R. Stakėnienė, Heavy metal contamination of the Curonian Lagoon bottom sediments (Lithuanian waters area), Baltica 29, 107–120 (2016),
https://doi.org/10.5200/baltica.2016.29.10
[11] G. Lujanienė, N. Remeikaitė-Nikienė, G. Garnaga, K. Jokšas, B. Šilobritienė, A. Stankevičius, S. Šemčuk, and I. Kulakauskaitė, Transport of 137Cs, 241Am and Pu isotopes in the Curonian Lagoon and the Baltic Sea, J. Environ. Radioact. 127, 40–49 (2014),
https://doi.org/10.1016/j.jenvrad.2013.09.013
[12] M. Kosior, I. Barska, and M. Domagala-Wieloszewska, Heavy metals, Σ DDT and Σ PCB in the gonads of pikeperch females spawning in southern Baltic Sea lagoons, Pol. J. Environ. Stud. 11(2), 127–134 (2002),
[PDF]
[13] S. Alexandrov, Influence of ‘blooming’ of blue-green algae on the ecological state of the Curonian Lagoon, Water Chem. Ecol. (4), 2–6 (2009) [in Russian]
[14] S. Aleksandrov, A. Krek, E. Bubnova, and A. Danchenkov, Eutrophication and effects of algal bloom in the south-western part of the Curonian Lagoon alongside the Curonian Spit, Baltica 31, 1–12 (2018),
https://doi.org/10.5200/baltica.2018.31.01
[15] J. Vogt, P. Soille, A. de Jager, E. Rimavičiūtė, W. Mehl, S. Foisneau, K. Bódis, J. Dusart, M. Paracchini, P. Haastrup, and C. Bamps, A pan-European River and Catchment Database, Report EUR 22920 EN (Office for Official Publications of the European Communities, Luxembourg, 2007),
[PDF]
[16] M. Manton, E. Makrickas, P. Banaszuk, A. Kołos, A. Kamocki, M. Grygoruk, M. Stachowicz, L. Jarašius, N. Zableckis, J. Sendžikaitė, et al., Assessment and spatial planning for peatland conservation and restoration: Europe’s trans-border Neman River Basin as a case study, Land 10, 174 (2021),
https://doi.org/10.3390/land10020174
[17] Z. Gasiūnaitė, D. Daunys, S. Olenin, and A. Razinkovas, in: Ecology of Baltic Coastal Waters, ed. U. Schiewer (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008) pp. 197–215,
https://doi.org/10.1007/978-3-540-73524-3_9
[18] A. Aarkrog, in: Proceedings of an International Symposium on Environment Impact of Radioactive Release, Vol. 1995 (IAEA, Vienna, 1995) p. 13,
https://digitallibrary.un.org/record/195401
[19] Yu. Izraehl’, The radioactive contamination of the Earth’s surface, Vestn. Ross. Akad. Nauk 68(10), 898–915 (1998) [in Russian],
https://www.osti.gov/etdeweb/biblio/20143312
[20] A. Yablokov, V. Nesterenko, and A. Nesterenko, Atmospheric, water, and soil contamination after Chernobyl, Ann. NY Acad. Sci. 1181, 223–236 (2009),
https://doi.org/10.1111/j.1749-6632.2009.04830.x
[21] G. Lujanienė, B. Šilobritienė, D. Tracevičienė, S. Šemčuk, V. Romanenko, G. Garnaga-Budrė, J. Kaizer, and P.P. Povinec, Distribution of 241Am and Pu isotopes in the Curonian Lagoon and the south-eastern Baltic Sea seawater, suspended particles, sediments and biota, J. Environ. Radioact. 249, 106892 (2022),
https://doi.org/10.1016/j.jenvrad.2022.106892
[22] B. Chubarenko, L. Lund-Hansen, and A. Beloshitskii, Comparative analyses of potential wind-wave impact on bottom sediments in the Vistula and Curonian lagoons, Baltica 15, 30–39 (2002),
[PDF]
[23] G. Umgiesser, P. Zemlys, A. Erturk, A. Razinkova-Baziukas, J. Mėžinė, and C. Ferrarin, Seasonal renewal time variability in the Curonian Lagoon caused by atmospheric and hydrographical forcing, Ocean Sci. 12, 391–402 (2016),
https://doi.org/10.5194/os-12-391-2016
[24] D. Jakimavičius, J. Kriaučiūnienė, and D. Šarauskienė, Impact of climate change on the Curonian Lagoon water balance components, salinity and water temperature in the 21st century, Oceanologia 60, 378–389 (2018),
https://doi.org/10.1016/j.oceano.2018.02.003
[25] C. Ferrarin, A. Razinkovas, S. Gulbinskas, G. Umgiesser, and L. Bliūdžiutė, Hydraulic regime-based zonation scheme of the Curonian Lagoon, Hydrobiologia 611, 133–146 (2008),
https://doi.org/10.1007/s10750-008-9454-5
[26] A. Galkus and K. Jokšas, Nuosėdinė medžiaga tranzitinėje akvasistemoje [Sedimentary Material in the Transitional Aquasystem] (Institute of Geography, Vilnius, 1997) [in Lithuanian]
[27] O. Pustelnikovas, Geochemistry of Sediments of the Curonian Lagoon (Institute of Geography, Vilnius, 1998)
[28] V. Lujanas, N. Tarasyuk, and N. Spirkauskaite, in: Radionuclide Transport Dynamics in Freshwater Resources (IAEA, Austria, 2002) pp. 77–105,
[PDF]
[29] J. Mėžinė, C. Ferrarin, D. Vaičiūtė, R. Idzelytė, P. Zemlys, and G. Umgiesser, Sediment transport mechanisms in a lagoon with high river discharge and sediment loading, Water 11, 1970 (2019),
https://doi.org/10.3390/w11101970
[30] L. Monte, A.I. Klyashtorin, F. Strebl, P. Bossew, and P. Aggarwal, in: Radionuclide Transport Dynamics in Freshwater Resources (IAEA, Austria, 2002) pp. 5–35,
[PDF]
[31] D. Marčiulionienė, B. Lukšienė, D. Montvydienė, O. Jefanova, J. Mažeika, R. Taraškevičius, R. Stakėnienė, R. Petrošius, E. Maceika, N. Tarasiuk, et al., 137Cs and plutonium isotopes accumulation/retention in bottom sediments and soil in Lithuania: A case study of the activity concentration of anthropogenic radionuclides and their provenance before the start of operation of the Belarusian Nuclear Power Plant (NPP), J. Environ. Radioact. 178–179, 253–264 (2017),
https://doi.org/10.1016/j.jenvrad.2017.07.024
[32] F. Zhang, J. Wang, D. Liu, Q. Bi, and J. Du, Distribution of 137Cs in the Bohai Sea, Yellow Sea and East China Sea: Sources, budgets and environmental implications, Sci. Total Environ. 672, 1004–1016 (2019),
https://doi.org/10.1016/j.scitotenv.2019.04.001
[33] E.P. Hardy, P.W. Krey, and H.L. Volchok, Global inventory and distribution of fallout plutonium, Nature 241, 444–445 (1973),
https://doi.org/10.1038/241444a0
[34] UNSCEAR, Ionising Radiation Sources and Biological Effects, Report to the General Assembly with Annexes (UN Press, New York, 1982) pp. 228, 238,
https://www.unscear.org/unscear/en/publications/1982.html
[35] M.E. Ketterer, K.M. Hafer, and J.W. Mietelski, Resolving Chernobyl vs. global fallout contributions in soils from Poland using Plutonium atom ratios measured by inductively coupled plasma mass spectrometry, J. Environ. Radioact. 73, 183–201 (2004),
https://doi.org/10.1016/j.jenvrad.2003.09.001
[36] J. Mietelski, Plutonium in the environment of Poland (a review), Radioact. Environ. 1, 401–412 (2001),
https://doi.org/10.1016/S1569-4860(01)80026-7
[37] B. Lukšienė, A. Puzas, V. Remeikis, R. Druteikienė, A. Gudelis, R. Gvozdaitė, Š. Buivydas, R. Davidonis, and G. Kandrotas, Spatial patterns and ratios of 137Cs, 90Sr, and Pu isotopes in the top layer of undisturbed meadow soils as indicators for contamination origin, Environ. Monit. Assess. 187, 1–16 (2015),
https://doi.org/10.1007/s10661-015-4491-9
[38] J. Smith, K. Ellis, and D. Nelson, Time-dependent modeling of fallout radionuclide transport in a drainage basin: Significance of “slow” erosional and “fast” hydrological components, Chem. Geol. 63(1–2), 157–180 (1987),
https://doi.org/10.1016/0009-2541(87)90082-9
[39] G.R. Foster and T.E. Hakonson, Predicted erosion and sediment delivery of fallout plutonium, J. Environ. Qual. 13, 595–602 (1984),
https://doi.org/10.2134/jeq1984.00472425001300040017x
[40] T. Beasley and C. Jennings, Inventories of 239,240Pu, 241Am, 137Cs, and 60Co in Columbia River sediments from Hanford to the Columbia River Estuary, Environ. Sci. Technol. 18, 207–212 (1984),
https://doi.org/10.1021/es00121a014
[41] Q. Zhuang, G. Li, F. Wang, L. Tian, X. Jiang, K. Zhang, G. Liu, S. Pan, and Z. Liu, 137Cs and 239+240Pu in the Bohai Sea of China: Comparison in distribution and source identification between the inner bay and the tidal flat, Mar. Pollut. Bull. 138, 604–617 (2019),
https://doi.org/10.1016/j.marpolbul.2018.12.005
[42] J. Wang, J. Du, J. Qu, and Q. Bi, Distribution of Pu isotopes and 210Pb in the Bohai Sea and Yellow Sea: Implications for provenance and transportation, Chemosphere 263, 127896 (2021),
https://doi.org/10.1016/j.chemosphere.2020.127896