Received 9 August 2022; revised 14 November 2022; accepted 16
December 2022
References /
Nuorodos
[1] A. Arkrog, in:
Inventories of Selected Radionuclides in
the Oceans, IAEA-TECDOC-481 (IAEA, International
Atomic Energy Agency, Vienna, 1988) pp. 103–137,
[PDF]
[2] E. Holm, Plutonium in the Baltic Sea, J. Appl. Radiat. Isot.
46(11), 1225–1229 (1995),
https://doi.org/10.1016/0969-8043(95)00164-9
[3] G. Lujanienė, A. Plukis, E. Kimtys, V. Remeikis, D.
Jankünaitė, and B.I. Ogorodnikov, Study of
137Cs,
90Sr,
239,240Pu,
238Pu and
241Am
behavior in the Chernobyl soil, J. Radioanal. Nucl. Chem.
251(1),
59–68 (2002),
https://doi.org/10.1023/A:1015185011201
[4] K. Meusburger, O. Evrard, C. Alewell, P. Borrelli, G.
Cinelli, M. Ketterer, L. Mabit, P. Panagos, K. van Oost, and C.
Ballabio, Plutonium aided reconstruction of caesium atmospheric
fallout in European topsoils, Sci. Rep.
10(1), 11858
(2020),
https://doi.org/10.1038/s41598-020-68736-2
[5] W. Jinlong, D. Jinzhou, and Z. Jian, Plutonium isotopes
research in the marine environment: A synthesis, J. Nucl.
Radiochem. Sci.
20, 1–11 (2020),
https://doi.org/10.14494/jnrs.20.1
[6] J. Wang, J. Du, J. Qu, and Q. Bi, Distribution of Pu
isotopes and
210Pb in the Bohai Sea and Yellow Sea:
Implications for provenance and transportation, Chemosphere
263,
127896 (2021),
https://doi.org/10.1016/j.chemosphere.2020.127896
[7] B. Skwarzec, D.I. Strumińska, and M. Prucnal, Estimates of
239+240Pu
inventories in Gdańsk bay and Gdańsk basin, J. Environ.
Radioact.
70, 237–252 (2003),
https://doi.org/10.1016/S0265-931X(03)00107-3
[8] G. Vaikutienė, R. Skipitytė, J. Mažeika, T. Martma, A.
Garbaras, R. Barisevičiūtė, and V. Remeikis, Environmental
changes induced by human activities in the Northern Curonian
Lagoon (Eastern Baltic): diatoms and stable isotope data, Est.
J. Earth Sci.
66(2), 93–108 (2017),
https://doi.org/10.3176/earth.2017.07
[9] R. Stakėnienė, K. Jokšas, R. Zinkutė, and E.
Raudonytė-Svirbutavičienė, Oil pollution and geochemical
hydrocarbon origin markers in sediments of the Curonian Lagoon
and the Nemunas River Delta, Baltica
32(1), 22–32
(2019),
https://doi.org/10.5200/baltica.2019.1.3
[10] K. Jokšas, A. Galkus, and R. Stakėnienė, Heavy metal
contamination of the Curonian Lagoon bottom sediments
(Lithuanian waters area), Baltica
29, 107–120 (2016),
https://doi.org/10.5200/baltica.2016.29.10
[11] G. Lujanienė, N. Remeikaitė-Nikienė, G. Garnaga, K. Jokšas,
B. Šilobritienė, A. Stankevičius, S. Šemčuk, and I.
Kulakauskaitė, Transport of
137Cs,
241Am
and Pu isotopes in the Curonian Lagoon and the Baltic Sea, J.
Environ. Radioact.
127, 40–49 (2014),
https://doi.org/10.1016/j.jenvrad.2013.09.013
[12] M. Kosior, I. Barska, and M. Domagala-Wieloszewska, Heavy
metals, Σ DDT and Σ PCB in the gonads of pikeperch females
spawning in southern Baltic Sea lagoons, Pol. J. Environ. Stud.
11(2), 127–134 (2002),
[PDF]
[13] S. Alexandrov, Influence of ‘blooming’ of blue-green algae
on the ecological state of the Curonian Lagoon, Water Chem.
Ecol. (4), 2–6 (2009) [in Russian]
[14] S. Aleksandrov, A. Krek, E. Bubnova, and A. Danchenkov,
Eutrophication and effects of algal bloom in the south-western
part of the Curonian Lagoon alongside the Curonian Spit, Baltica
31, 1–12 (2018),
https://doi.org/10.5200/baltica.2018.31.01
[15] J. Vogt, P. Soille, A. de Jager, E. Rimavičiūtė, W. Mehl,
S. Foisneau, K. Bódis, J. Dusart, M. Paracchini, P. Haastrup,
and C. Bamps,
A pan-European River and Catchment Database,
Report EUR 22920 EN (Office for Official Publications of the
European Communities, Luxembourg, 2007),
[PDF]
[16] M. Manton, E. Makrickas, P. Banaszuk, A. Kołos, A. Kamocki,
M. Grygoruk, M. Stachowicz, L. Jarašius, N. Zableckis, J.
Sendžikaitė, et al., Assessment and spatial planning for
peatland conservation and restoration: Europe’s trans-border
Neman River Basin as a case study, Land
10, 174 (2021),
https://doi.org/10.3390/land10020174
[17] Z. Gasiūnaitė, D. Daunys, S. Olenin, and A. Razinkovas, in:
Ecology of Baltic Coastal Waters, ed. U. Schiewer
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2008) pp.
197–215,
https://doi.org/10.1007/978-3-540-73524-3_9
[18] A. Aarkrog, in:
Proceedings of an International
Symposium on Environment Impact of Radioactive Release,
Vol. 1995 (IAEA, Vienna, 1995) p. 13,
https://digitallibrary.un.org/record/195401
[19] Yu. Izraehl’, The radioactive contamination of the Earth’s
surface, Vestn. Ross. Akad. Nauk
68(10), 898–915 (1998)
[in Russian],
https://www.osti.gov/etdeweb/biblio/20143312
[20] A. Yablokov, V. Nesterenko, and A. Nesterenko, Atmospheric,
water, and soil contamination after Chernobyl, Ann. NY Acad.
Sci.
1181, 223–236 (2009),
https://doi.org/10.1111/j.1749-6632.2009.04830.x
[21] G. Lujanienė, B. Šilobritienė, D. Tracevičienė, S. Šemčuk,
V. Romanenko, G. Garnaga-Budrė, J. Kaizer, and P.P. Povinec,
Distribution of
241Am and Pu isotopes in the
Curonian Lagoon and the south-eastern Baltic Sea seawater,
suspended particles, sediments and biota, J. Environ. Radioact.
249, 106892 (2022),
https://doi.org/10.1016/j.jenvrad.2022.106892
[22] B. Chubarenko, L. Lund-Hansen, and A. Beloshitskii,
Comparative analyses of potential wind-wave impact on bottom
sediments in the Vistula and Curonian lagoons, Baltica
15,
30–39 (2002),
[PDF]
[23] G. Umgiesser, P. Zemlys, A. Erturk, A. Razinkova-Baziukas,
J. Mėžinė, and C. Ferrarin, Seasonal renewal time variability in
the Curonian Lagoon caused by atmospheric and hydrographical
forcing, Ocean Sci.
12, 391–402 (2016),
https://doi.org/10.5194/os-12-391-2016
[24] D. Jakimavičius, J. Kriaučiūnienė, and D. Šarauskienė,
Impact of climate change on the Curonian Lagoon water balance
components, salinity and water temperature in the 21st century,
Oceanologia
60, 378–389 (2018),
https://doi.org/10.1016/j.oceano.2018.02.003
[25] C. Ferrarin, A. Razinkovas, S. Gulbinskas, G. Umgiesser,
and L. Bliūdžiutė, Hydraulic regime-based zonation scheme of the
Curonian Lagoon, Hydrobiologia
611, 133–146 (2008),
https://doi.org/10.1007/s10750-008-9454-5
[26] A. Galkus and K. Jokšas,
Nuosėdinė medžiaga
tranzitinėje akvasistemoje [
Sedimentary Material in the
Transitional Aquasystem] (Institute of Geography, Vilnius,
1997) [in Lithuanian]
[27] O. Pustelnikovas,
Geochemistry of Sediments of the
Curonian Lagoon (Institute of Geography, Vilnius, 1998)
[28] V. Lujanas, N. Tarasyuk, and N. Spirkauskaite, in:
Radionuclide Transport Dynamics in Freshwater Resources
(IAEA, Austria, 2002) pp. 77–105,
[PDF]
[29] J. Mėžinė, C. Ferrarin, D. Vaičiūtė, R. Idzelytė, P.
Zemlys, and G. Umgiesser, Sediment transport mechanisms in a
lagoon with high river discharge and sediment loading, Water
11,
1970 (2019),
https://doi.org/10.3390/w11101970
[30] L. Monte, A.I. Klyashtorin, F. Strebl, P. Bossew, and P.
Aggarwal, in:
Radionuclide Transport Dynamics in Freshwater
Resources (IAEA, Austria, 2002) pp. 5–35,
[PDF]
[31] D. Marčiulionienė, B. Lukšienė, D. Montvydienė, O.
Jefanova, J. Mažeika, R. Taraškevičius, R. Stakėnienė, R.
Petrošius, E. Maceika, N. Tarasiuk, et al.,
137Cs
and plutonium isotopes accumulation/retention in bottom
sediments and soil in Lithuania: A case study of the activity
concentration of anthropogenic radionuclides and their
provenance before the start of operation of the Belarusian
Nuclear Power Plant (NPP), J. Environ. Radioact.
178–179,
253–264 (2017),
https://doi.org/10.1016/j.jenvrad.2017.07.024
[32] F. Zhang, J. Wang, D. Liu, Q. Bi, and J. Du, Distribution
of
137Cs in the Bohai Sea, Yellow Sea and East China
Sea: Sources, budgets and environmental implications, Sci. Total
Environ.
672, 1004–1016 (2019),
https://doi.org/10.1016/j.scitotenv.2019.04.001
[33] E.P. Hardy, P.W. Krey, and H.L. Volchok, Global inventory
and distribution of fallout plutonium, Nature
241,
444–445 (1973),
https://doi.org/10.1038/241444a0
[34] UNSCEAR,
Ionising Radiation Sources and Biological
Effects, Report to the General Assembly with Annexes (UN
Press, New York, 1982) pp. 228, 238,
https://www.unscear.org/unscear/en/publications/1982.html
[35] M.E. Ketterer, K.M. Hafer, and J.W. Mietelski, Resolving
Chernobyl vs. global fallout contributions in soils from Poland
using Plutonium atom ratios measured by inductively coupled
plasma mass spectrometry, J. Environ. Radioact.
73,
183–201 (2004),
https://doi.org/10.1016/j.jenvrad.2003.09.001
[36] J. Mietelski, Plutonium in the environment of Poland (a
review), Radioact. Environ.
1, 401–412 (2001),
https://doi.org/10.1016/S1569-4860(01)80026-7
[37] B. Lukšienė, A. Puzas, V. Remeikis, R. Druteikienė, A.
Gudelis, R. Gvozdaitė, Š. Buivydas, R. Davidonis, and G.
Kandrotas, Spatial patterns and ratios of
137Cs,
90Sr,
and Pu isotopes in the top layer of undisturbed meadow soils as
indicators for contamination origin, Environ. Monit. Assess.
187,
1–16 (2015),
https://doi.org/10.1007/s10661-015-4491-9
[38] J. Smith, K. Ellis, and D. Nelson, Time-dependent modeling
of fallout radionuclide transport in a drainage basin:
Significance of “slow” erosional and “fast” hydrological
components, Chem. Geol.
63(1–2), 157–180 (1987),
https://doi.org/10.1016/0009-2541(87)90082-9
[39] G.R. Foster and T.E. Hakonson, Predicted erosion and
sediment delivery of fallout plutonium, J. Environ. Qual.
13,
595–602 (1984),
https://doi.org/10.2134/jeq1984.00472425001300040017x
[40] T. Beasley and C. Jennings, Inventories of
239,240Pu,
241Am,
137Cs, and
60Co in
Columbia River sediments from Hanford to the Columbia River
Estuary, Environ. Sci. Technol.
18, 207–212 (1984),
https://doi.org/10.1021/es00121a014
[41] Q. Zhuang, G. Li, F. Wang, L. Tian, X. Jiang, K. Zhang, G.
Liu, S. Pan, and Z. Liu,
137Cs and
239+240Pu
in the Bohai Sea of China: Comparison in distribution and source
identification between the inner bay and the tidal flat, Mar.
Pollut. Bull.
138, 604–617 (2019),
https://doi.org/10.1016/j.marpolbul.2018.12.005
[42] J. Wang, J. Du, J. Qu, and Q. Bi, Distribution of Pu
isotopes and
210Pb in the Bohai Sea and Yellow Sea:
Implications for provenance and transportation, Chemosphere
263,
127896 (2021),
https://doi.org/10.1016/j.chemosphere.2020.127896