[PDF]    https://doi.org/10.3952/physics.2023.63.3.2

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 122–130 (2023)

3D PRINTED DIFFRACTIVE LENSES OPERATING AT 1 THz
Paweł Komorowskia, Mateusz Kaluzab, Mateusz Surmab, and Agnieszka Siemionb
a Institute of Optoelectronics, Military University of Technology, 00908 Warsaw, Poland
b Faculty of Physics, Warsaw University of Technology, 00662 Warsaw, Poland
Email: pawel.komorowski@wat.edu.pl

Received 17 September 2023; accepted 18 September 2023

In this paper, we demonstrate the manufacturing of diffractive optics for frequencies as high as 1 THz using a relatively simple and cost-effective fused deposition modelling (FDM) 3D printing technique. Four diffractive lenses were designed and manufactured from the cyclic olefin copolymer (COC). Fabrication of diffractive lenses for such high frequencies was possible due to an unusually small nozzle, refined printing procedures and a very transparent material. For the two of the manufactured lenses, more than twofold improvement in focusing efficiency has been shown in a direct comparison with their refractive counterparts. Moreover, the other two elements demonstrated the feasibility of lenses with very small f-numbers (0.95 and 0.63) with this technique.
Keywords: THz, 3D printing, optics, lenses, diffractive optical elements

3D SPAUSDINTI DIFRAKCINIAI LĘŠIAI 1 THz DAŽNIUI
Paweł Komorowskia, Mateusz Kaluzab, Mateusz Surmab, Agnieszka Siemionb

a Karo technologijos universiteto Optoelektronikos institutas, Varšuva, Lenkija
b Varšuvos technologijos universiteto Fizikos fakultetas, Varšuva, Lenkija


References / Nuorodos

[1] F. Sizov, Brief history of THz and IR technologies, Semicond. Phys. Quantum Electron. Optoelectron. 22(1), 67–79 (2019),
https://doi.org/10.15407/spqeo22.01.067
[2] G.P. Gallerano and S. Biedron, in: Proceedings of the 2004 FEL Conference (2004) pp. 216–221,
[PDF]
[3] F. Sizov, Terahertz radiation detectors: the state-of-the-art, Semicond. Sci. Technol. 33(12), 123001 (2018),
https://doi.org/10.1088/1361-6641/aae473
[4] I. Mehdi, J. Siles, C.P. Chen, and J.M. Jornet, in: Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC) (IEEE, 2018) pp. 76–78,
https://doi.org/10.23919/APMC.2018.8617235
[5] V. Pavelyev, K. Tukmakov, Y.Y. Choporova, N. Osintseva, and B. Knyazev, Towards multichannel terahertz telecommunication based on mode division multiplexing, AIP Conf. Proc. 2299, 030002 (2020),
https://doi.org/10.1063/5.0030592
[6] C. Castro, R. Elschner, T. Merkle, C. Schubert, and R. Freund, in: Proceedings of the 2020 Third International Workshop on Mobile Terahertz Systems (IWMTS) (IEEE, 2020) pp. 1–4,
https://doi.org/10.1109/IWMTS49292.2020.9166263
[7] E. Pickwell and V. Wallace, Biomedical applications of terahertz technology, J. Phys. D 39(17), R301 (2006),
https://doi.org/10.1088/0022-3727/39/17/R01
[8] T. Amini, F. Jahangiri, Z. Ameri, and M.A. Hemmatian, A review of feasible applications of THz waves in medical diagnostics and treatments, J. Lasers Med. Sci. 12, e92 (2021),
https://doi.org/10.34172/jlms.2021.92
[9] Z. Yan, L.-G. Zhu, K. Meng, W. Huang, and Q. Shi, THz medical imaging: from in vitro to in vivo, Trends Biotechnol. 40(7), 816–830 (2022),
https://doi.org/10.1016/j.tibtech.2021.12.002
[10] M. Naftaly and R.E. Miles, Terahertz time-domain spectroscopy for material characterization, Proc. IEEE 95(8), 16581665 (2007),
https://doi.org/10.1109/JPROC.2007.898835
[11] A.G. Davies, A.D. Burnett, W. Fan, E.H. Linfield, and J.E. Cunningham, Terahertz spectroscopy of explosives and drugs, Mater. Today 11(3), 1826 (2008),
https://doi.org/10.1016/S1369-7021(08)70016-6
[12] J.A. Spies, J. Neu, U.T. Tayvah, M.D. Capobianco, B. Pattengale, S. Ostresh, and C.A. Schmuttenmaer, Terahertz spectroscopy of emerging materials, J. Phys. Chem. C 124(41), 2233522346 (2020),
https://doi.org/10.1021/acs.jpcc.0c06344
[13] J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, THz imaging and sensing for security applications explosives, weapons and drugs, Semicond. Sci. Technol. 20(7), S266 (2005),
https://doi.org/10.1088/0268-1242/20/7/018
[14] M.O. AlNabooda, R.M. Shubair, N.R. Rishani, and G. Aldabbagh, in: 2017 Sensors Networks Smart and Emerging Technologies (SENSET) (IEEE, 2017) pp. 14,
https://doi.org/10.1109/SENSET.2017.8125065
[15] G. Tzydynzhapov, P. Gusikhin, V. Muravev, A. Dremin, Y. Nefyodov, and I. Kukushkin, New real-time sub-terahertz security body scanner, J. Infrared Millim. Terahertz Waves 41, 632641 (2020),
https://doi.org/10.1007/s10762-020-00683-5
[16] S.F. Busch, M. Weidenbach, J.C. Balzer, and M. Koch, THz optics 3D printed with TOPAS, J. Infrared Millim. Terahertz Waves 37, 303307 (2016),
https://doi.org/10.1007/s10762-015-0236-7
[17] W.D. Furlan, V. Ferrando, J.A. Monsoriu, P. Zagrajek, E. Czerwińska, and M. Szustakowski, 3D printed diffractive terahertz lenses, Opt. Lett. 41(8), 17481751 (2016),
https://doi.org/10.1364/OL.41.001748
[18] A. Siemion, Terahertz diffractive optics smart control over radiation, J. Infrared Millim. Terahertz Waves 40(5), 477499 (2019),
https://doi.org/10.1007/s10762-019-00581-5
[19] A. Siemion, A. Melaniuk, P. Zagrajek, P. Komorowski, M. Walczakowski, M. Surma, P. Sobotka, I. Ducin, and E. Czerwińska, in: Proceedings of the 2020 23rd International Microwave and Radar Conference (MIKON) (IEEE, 2020) pp. 225228,
https://doi.org/10.1109/10.23919/MIKON48703.2020.9253821
[20] M. Kaluza, M. Surma, P. Komorowski, M. Walczakowski, and A. Siemion, in: Proceedings of the 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2022) pp. 12,
https://doi.org/10.1109/IRMMW-THz50927.2022.9895845
[21] P. Komorowski, A. Siemion, M. Walczakowski, and P. Zagrajek, The role of the directivity of various THz detectors in multiplexing systems, Appl. Sci. 12(7), 3545 (2022),
https://doi.org/10.3390/app12073545