[PDF]    https://doi.org/10.3952/physics.2023.63.3.3

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 131–139 (2023)

VOLTAGE COTROLLED FABRY–PEROT MODULATOR
Andrius Kamarauskasa, Laurynas Staišiūnasa, Dalius Seliutaa,b, Gediminas Šlekasa, and Žilvinas Kanclerisa
a Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
b Vilnius Gediminas Technical University, Saulėtekio 11, 10223 Vilnius, Lithuania
Email: andrius.kamarauskas@ftmc.lt

Received 19 September 2023; accepted 20 September 2023

Here we propose a voltage-controlled Fabry–Perot modulator made of two overlapping graphene sheets separated by a hafnium oxide layer, manufactured on a silicon substrate. The applied voltage shifts the Fermi level in both layers thus changing the total surface conductivity. This in turn changes the optical parameters of the system. Due to the architecture of the modulator, ≈50% of THz power is absorbed and the applied voltage controls the ratio between the reflection and transmittance. At the resonance frequency of 414 GHz, the transmission through the Fabry–Perot modulator can be doubly reduced in a voltage range of –1.5 to 10 V. In DC measurements, it is revealed that the electrical properties of graphene sheets dramatically depend on the technological process. The proposed multilayer structure can be manufactured on any THz-transparent substrate, compatible with photolithography and atomic layer deposition (ALD) processes. Voltage-controlled surface conductivity could find its application in sensing or modulation of electromagnetic waves.
Keywords: graphene, interference, modulation, surface conductivity
PACS: 81.05.ue, 42.25.Hz, 42.79.Hp, 73.25.+i

ĮTAMPA VALDOMAS FABRY IR PEROT MODULIATORIUS
Andrius Kamarauskasa, Laurynas Staišiūnasa, Dalius Seliutaa,b, Gediminas Šlekasa, Žilvinas Kanclerisa

a Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
b VILNIUS TECH, Vilnius, Lietuva

Pagamintas ir ištirtas įtampa valdomas Fabry ir Perot moduliatorius, ant silicio padėklo klojant du grafeno sluoksnius ir juos atskiriant hafnio oksidu (HfO2). Prijungus įtampą tarp grafeno sluoksnių abiejuose sluoksniuose ji skirtingai paveikia Fermi lygio padėtį, todėl keičiasi bendras paviršiaus laidumas. Tai keičia visos sistemos optinius parametrus. Dėl moduliatoriaus architektūros beveik 50 % galios sugeriama grafeno sluoksnyje. Įtampa valdomas santykis tarp atspindėtos ir praėjusios bangos per Fabry ir Perot moduliatorių. Nustačius 414 GHz rezonansinį dažnį, praėjusį elektromagnetinės bangos galingumą galima sumažinti du kartus įtampos diapazone nuo –1,5 iki 10 V. Atlikus nuolatinės srovės (DC) matavimus paaiškėjo, kad grafeno sluoksnių elektrinės savybės labai priklauso nuo technologinio proceso. Šią daugiasluoksnę struktūrą galima pagaminti ant bet kokio THz bangoms skaidraus pagrindo, suderinamo su fotolitografija bei atominio sluoksnio nusodinimo (ALD) technologija. Įtampa valdomas paviršiaus laidumas galėtų būti naudingas elektromagnetinių bangų jutikliams ar moduliatoriams.


References / Nuorodos

[1] F. Ellrich, M. Bauer, N. Schreiner, A. Keil, T. Pfeiffer, J. Klier, S. Weber, J. Jonuscheit, F. Friederich, and D. Molter, Terahertz quality inspection for automotive and aviation industries, J. Infrared Millim. Terahertz Waves 41(4), 470–489 (2020),
https://doi.org/10.1007/s10762-019-00639-4
[2] S.H. Lee, J.H. Choe, C. Kim, S. Bae, J.S. Kim, Q.H. Park, and M. Seo, Graphene assisted terahertz metamaterials for sensitive bio-sensing, Sens. Actuators B Chem. 310, 127841 (2020),
https://doi.org/10.1016/j.snb.2020.127841
[3] T. Ikari, Y. Sasaki, and C. Otani, 275–305 GHz FM-CW Radar 3D imaging for walk-through security body scanner, Photonics 10(3), 343 (2023),
https://doi.org/10.3390/photonics10030343
[4] M.A. Andersson, Y. Zhang, and J. Stake, A 185-215-GHz subharmonic resistive graphene FET integrated mixer on silicon, IEEE Trans. Microw. Theory Tech. 65(1), 165–172 (2017),
https://doi.org/10.1109/TMTT.2016.2615928
[5] A. Ahmadivand, B. Gerislioglu, and Z. Ramezani, Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator, Nanoscale 11(17), 8091–8095 (2019),
https://doi.org/10.1039/C8NR10151E
[6] L. Viti, A.R. Cadore, X. Yang, A. Vorobiev, J.E. Muench, K. Watanabe, T. Taniguchi, J. Stake, A.C. Ferrari, and M.S. Vitiello, Thermoelectric graphene photodetectors with sub-nanosecond response times at terahertz frequencies, Nanophotonics 10(1), 89–98 (2021),
https://doi.org/10.1515/nanoph-2020-0255
[7] C. In, H.D. Kim, B. Min, and H. Choi, Photoinduced nonlinear mixing of terahertz dipole resonances in graphene metadevices, Adv. Mater. 28(7), 1495–1500 (2016),
https://doi.org/10.1002/adma.201504444
[8] S.H. Lee, H.D. Kim, H.J. Choi, B. Kang, Y.R. Cho, and B. Min, Broadband modulation of terahertz waves with non-resonant graphene metadevices, IEEE Trans. Terahertz Sci. Technol. 3(6), 764–771 (2013),
https://doi.org/10.1109/TTHZ.2013.2285615
[9] H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J.H. Cho, H. Choi, M.S. Kang, and H. Lee, Electrically controllable molecularization of terahertz meta-atoms, Adv. Mater. 30(31), 1–7 (2018),
https://doi.org/10.1002/adma.201802760
[10] H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M.S. Kang, and H. Lee, Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling, Adv. Opt. Mater. 7(2), 1–6 (2019),
https://doi.org/10.1002/adom.201801205
[11] G. Šlekas, D. Seliuta, J. Devenson, A. Urbanovič, and Kancleris, Modulation of terahertz radiation using optical control of Fabry–Perot resonances, Electron. Lett. 51(23), 1908–1909 (2015),
https://doi.org/10.1049/el.2015.2396
[12] E. Yablonovitch, D.L. Allara, C.C. Chang, T. Gmitter, and T.B. Bright, Unusually low surface-recombination velocity on silicon and germanium surfaces, Phys. Rev. Lett. 57, 249 (1986),
https://doi.org/10.1103/PhysRevLett.57.249
[13] W. Kern, Handbook of Semiconductor Wafer Cleaning Technology: Science, Technology, and Applications (Noyes Publications, Westwood, New Jersey, 1993),
https://archive.org/details/handbookofsemico0000unse
[14] J. Jorudas, D. Pashnev, I. Kašalynas, I. Ignatjev, G. Niaura, A. Selskis, V. Astachov, and N. Alexeeva, Green removal of DUV-polarity-modified PMMA for wet transfer of CVD graphene, Nanomaterials 12(22), 1–17 (2022),
https://doi.org/10.3390/nano12224017
[15] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai, Nanotube molecular wires as chemical sensors, Science 287(5453), 622–625 (2000),
https://doi.org/10.1126/science.287.5453.622
[16] B. Aqlan, M. Himdi, H. Vettikalladi, and L. Le-Coq, A 300-GHz low-cost high-gain fully metallic Fabry–Perot cavity antenna for 6G terahertz wireless communications, Sci. Rep. 11(1), 1–9 (2021),
https://doi.org/10.1038/s41598-021-87076-3
[17] A. Roggenbuck, K. Thirunavukkuarasu, H. Schmitz, J. Marx, A. Deninger, I.C. Mayorga, R. Güsten, J. Hemberger, and M. Grüninger, Using a fiber stretcher as a fast phase modulator in a continuous wave terahertz spectrometer, J. Opt. Soc. Am. B. 29(4), 614 (2012),
https://doi.org/10.1364/JOSAB.29.000614
[18] P. Ragulis, R. Simniškis, and Ž. Kancleris, Shift and elimination of microwave Fabry-Perot resonances in a dielectric covered with a thin metal layer, J. Appl. Phys. 117(16), 163101 (2015),
https://doi.org/10.1063/1.4918917
[19] G.D. Boreman and E.R. Raudenbush, Modulation depth characteristics of a liquid crystal television spatial light modulator, Appl. Opt. 27(14), 2940 (1988),
https://doi.org/10.1364/AO.27.002940
[20] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, and A.K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nat. Nanotechnol. 3(4), 210–215 (2008),
https://doi.org/10.1038/nnano.2008.67
[21] P. Joshi, H.E. Romero, A.T. Neal, V.K. Toutam, and S.A. Tadigadapa, Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates, J. Phys. Condens. Matter. 22(33), 334214 (2010),
https://doi.org/10.1088/0953-8984/22/33/334214
[22] A. Sakavičius, Nanometrinio storio sluoksniuotų darinių su grafenu savybių priklausomybė nuo konstrukcijos ir aplinkos poveikio (Dependence of the properties of the nanometer-thin layered structures containing graphene on the layout and the ambient conditions), Doctoral Thesis (Vilnius University, Lithuania, 2021) [in Lithuanian],
https://doi.org/10.15388/vu.thesis.149
[23] M. Krüger, I. Widmer, T. Nussbaumer, M. Buitelaar, and C. Schönenberger, Sensitivity of single multiwalled carbon nanotubes to the environment, New J. Phys. 5, 1–11 (2003),
https://doi.org/10.1088/1367-2630/5/1/138
[24] S. Rathi, I. Lee, D. Lim, J. Wang, Y. Ochiai, N. Aoki, K. Watanabe, T. Taniguchi, G.-H. Lee, Y.-J. Yu, P. Kim, and G.-H. Kim, Tunable electrical and optical characteristics in monolayer graphene and few-layer MoS2 heterostructure devices, Nano Lett. 15(8), 5017–5024 (2015),
https://doi.org/10.1021/acs.nanolett.5b01030
[25] A. Kamarauskas, D. Seliuta, G. Šlekas, M. Sadauskas, E. Kvietkauskas, R. Trusovas, K. Ratautas, and Ž. Kancleris, Experimental demonstration of multiple Fano resonances in a mirrored array of split-ring resonators on a thick substrate, Sci. Rep. 12(1), 1–9 (2022),
https://doi.org/10.1038/s41598-022-20434-x
[26] R. Sordan, F. Traversi, and V. Russo, Logic gates with a single graphene transistor, Appl. Phys. Lett. 94(7), 1–3 (2009),
https://doi.org/10.1063/1.3079663
[27] F. Traversi, V. Russo, and R. Sordan, Integrated complementary graphene inverter, Appl. Phys. Lett. 94(22), 1–4 (2009),
https://doi.org/10.1063/1.3148342