References /
Nuorodos
[1] G. Kamlage, T. Bauer, A. Ostendorf, and B.N. Chichkov, Deep
drilling of metals by femtosecond laser pulses, Appl. Phys. A
77,
307–310 (2003),
https://doi.org/10.1007/s00339-003-2120-x
[2] K.H. Leitz, B. Redlingshöer, Y. Reg, A. Otto, and M.
Schmidt, Metal ablation with short and ultrashort laser pulses,
Phys. Procedia
12, 230–238 (2011),
https://doi.org/10.1016/j.phpro.2011.03.128
[3] K. Sugioka and Y. Cheng, Ultrafast lasers-reliable tools for
advanced materials processing, Light Sci. Appl.
3, 1–12
(2014),
https://doi.org/10.1038/lsa.2014.30
[4] D. Nieto, J. Arines, G.M. O’Connor, and M.T. Flores-Arias,
Single-pulse laser ablation threshold of borosilicate, fused
silica, sapphire, and soda-lime glass for pulse widths of 500
fs, 10 ps, 20 ns, Appl. Opt.
54, 8596 (2015),
https://doi.org/10.1364/AO.54.008596
[5] B.N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and
A. Tünnermann, Femtosecond, picosecond and nanosecond laser
ablation of solids, Appl. Phys. A
63, 109–115 (1996),
https://doi.org/10.1007/BF01567637
[6] S. Butkus, V. Jukna, D. Paipulas, M. Barkauskas, and V.
Sirutkaitis, Micromachining of invar foils with GHz, MHz and kHz
femtosecond burst modes, Micromachines
11, 733 (2020),
https://doi.org/10.3390/mi11080733
[7] Y. Horie, A. Arbabi, E. Arbabi, S.M. Kamali, and A. Faraon,
High-speed, phase-dominant spatial light modulation with
silicon-based active resonant antennas, ACS Photonics
5,
1711–1717 (2018),
https://doi.org/10.1021/acsphotonics.7b01073
[8] R. Ivaškevičiūtė-Povilauskienė, P. Kizevičius, E. Nacius, D.
Jokubauskis, K. Ikamas, A. Lisauskas, nN. Alexeeva, I.
Matulaitienė, V. Jukna, S. Orlov, L. Minkevičius, and G.
Valušis, Terahertz structured light: nonparaxial Airy imaging
using silicon diffractive optics, Light Sci. Appl.
11,
326 (2022),
https://doi.org/10.1038/s41377-022-01007-z
[9] D. Flamm, D.G. Grossmann, M. Sailer, M. Kaiser, F.
Zimmermann, K. Chen, M. Jenne, J. Kleiner, J. Hellstern, C.
Tillkorn, D.H. Sutter, and M. Kumkar, Structured light for
ultrafast laser micro- and nanoprocessing, Opt. Eng.
60,
025105 (2021),
https://doi.org/10.1117/1.OE.60.2.025105
[10] S.D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R.J.
Narayan, and B.N. Chichkov, Fabrication of microscale medical
devices by two-photon polymerization with multiple foci via a
spatial light modulator, Biomed. Opt. Express
2, 3167
(2011),
https://doi.org/10.1364/BOE.2.003167
[11] E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G.
Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas,
Fabrication of micro-tube arrays in photopolymer SZ2080 by using
three different methods of a direct laser polymerization
technique, J. Micromech. Microeng.
22, 065022 (2012),
https://doi.org/10.1088/0960-1317/22/6/065022
[12] L. Zhao, L. Huang, J. Huang, K. Xu, M. Wang, S. Xu, and X.
Wang, Far-field parallel direct writing of sub-diffraction-limit
metallic nanowires by spatially modulated femtosecond vector
beam, Adv. Mater. Technol.
7, 2200125 (2022),
https://doi.org/10.1002/admt.202200125
[13] R.D. Simmonds, P.S. Salter, A. Jesacher, and M.J. Booth,
Three dimensional laser microfabrication in diamond using a dual
adaptive optics system, Opt. Express
19, 24122 (2011),
https://doi.org/10.1364/OE.19.024122
[14] B.P. Cumming, A. Jesacher, M.J. Booth, T. Wilson, and M.
Gu, Adaptive aberration compensation for three-dimensional
micro-fabrication of photonic crystals in lithium niobate, Opt.
Express
19, 9419 (2011),
https://doi.org/10.1364/OE.19.009419
[15] P.S. Salter, M. Baum, I. Alexeev, M. Schmidt, and M.J.
Booth, Exploring the depth range for three-dimensional laser
machining with aberration correction, Opt. Express
22,
17644 (2014),
https://doi.org/10.1364/OE.22.017644
[16] A. Jesacher and M.J. Booth, Parallel direct laser writing
in three dimensions with spatially dependent aberration
correction, Opt. Express
18, 21090 (2010),
https://doi.org/10.1364/OE.18.021090
[17] B. Wetzel, C. Xie, P.A. Lacourt, J.M. Dudley, and F.
Courvoisier, Femtosecond laser fabrication of micro and
nano-disks in single layer graphene using vortex Bessel beams,
Appl. Phys. Lett.
103, 24111 (2013),
https://doi.org/10.1063/1.4846415
[18] R. Bowman, N. Muller, X. Zambrana-Puyalto, O. Jedrkiewicz,
P. Di Trapani, and M.J. Padgett, Efficient generation of Bessel
beam arrays by means of an SLM, Eur. Phys. J. Spec. Top.
199,
159–166 (2011),
https://doi.org/10.1140/epjst/e2011-01511-3
[19] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H.
Huang, A.E. Willner, and S. Ramachandran, Terabit-scale orbital
angular momentum mode division multiplexing in fibers, Science
340,
1545–1548 (2013),
https://doi.org/10.1126/science.1237861
[20] M. Martyanov, V. Ginzburg, A. Balakin, S. Skobelev, D.
Silin, A. Kochetkov, I. Yakovlev, A. Kuzmin, S. Mironov, I.
Shaikin, S. Stukachev, A. Shaykin, E. Khazanov, and A. Litvak,
Suppressing small-scale self-focusing of high-power femtosecond
pulses, High Power Laser Sci. Eng.
11, e28 (2023),
https://doi.org/10.1017/hpl.2023.20
[21] Z. Chen, S. Zheng, X. Lu, X. Wang, Y. Cai, C. Wang, M.
Zheng, Y. Ai, Y. Leng, S. Xu, and D. Fan, Forty-five terawatt
vortex ultrashort laser pulses from a chirped-pulse
amplification system, High Power Laser Sci. Eng.
10, 1–7
(2022),
https://doi.org/10.1017/hpl.2022.19
[22] S. Jiménez-Gambín, N. Jiménez, J.M. Benllo, F. Camarena,
J.M. Benlloch, and F. Camarena, Generating Bessel beams with
broad depth-of-field by using phase-only acoustic
holograms, Sci. Rep.
9, 1–13 (2019),
https://doi.org/10.1038/s41598-019-56369-z
[23] G. Kontenis, D. Gailevičius, N. Jiménez, and K. Staliunas,
Optical drills by dynamic highorder Bessel beam mixing, Phys.
Rev. Appl.
17, 1–7 (2022),
https://doi.org/10.1103/PhysRevApplied.17.034059
[24] N.J. González, K. Staliunas, and F. Camarena, Sistema y
método de generación de haces acústicos confocales de vórtice
con superposición espacio temporal, Spanish Patent P202030766
(2020), European Patent ES2811650 (2021), G01N29/22,A61N
7/00,B06B 1/06
[25] N. Jiménez, V. Romero-García, R. Picó, A. Cebrecos, V.J.
Sánchez-Morcillo, L.M. Garcia-Raffi, J.V. Sánchez-Pérez, and K.
Staliunas, Acoustic Bessel-like beam formation by an
axisymmetric grating, Europhys. Lett.
106, 24005 (2014),
https://doi.org/10.1209/0295-5075/106/24005
[26] N. Jiménez, R. Picó, V. Sánchez-Morcillo, V. Romero-García,
L.M. García-Raffi, and K. Staliunas, Formation of high-order
acoustic Bessel beams by spiral diffraction gratings, Phys. Rev.
E.
94, 053004 (2016),
https://doi.org/10.1103/PhysRevE.94.053004
[27] S. Franke-Arnold, J. Leach, M.J. Padgett, V.E. Lembessis,
D. Ellinas, A.J. Wright, J.M. Girkin, P. Öhberg, and A.S.
Arnold, Optical ferris wheel for ultracold atoms, Opt. InfoBase
Conf. Pap.
15, 169–175 (2007),
https://doi.org/10.1364/CQO.2007.CMI3
[28] K. Yamane, M. Sakamoto, N. Murakami, R. Morita, and K. Oka,
Picosecond rotation of a ring-shaped optical lattice by using a
chirped vortex-pulse pair, Opt. Lett.
41, 4597 (2016),
https://doi.org/10.1364/OL.41.004597
[29] A. Honda, K. Yamane, K. Iwasa, K. Oka, Y. Toda, and R.
Morita, Ultrafast beam pattern modulation by superposition of
chirped optical vortex pulses, Sci. Rep.
12, 1–12
(2022),
https://doi.org/10.1038/s41598-022-18145-4