[PDF]    https://doi.org/10.3952/physics.2023.63.3.4

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 140–147 (2023)

CHIRPED LG MODES INTERFERENCE FORMED CHIRAL BEAMS
Gabrielius Kontenisa, Darius Gailevičiusa, Vytautas Juknaa, and Kęstutis Staliūnasa,b,c
a Laser Research Center, Vilnius University, Saulėtekio 10, 10223 Vilnius, Lithuania
b ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
c Dep. de Fisica, UPC, Rambla Sant Nebridi 22, 08222 Terrassa, Spain
Email: gabrielius.kontenis@ff.vu.lt

Received 24 September 2023; accepted 25 September 2023

Non-Gaussian spatial intensity distribution beams used in laser micro- and nano-machining find many applications. For instance, Bessel beams, having a small diameter and a very long focal zone, allow the fabrication of high aspect ratio modifications in transparent materials. Higher-order Laguerre–Gauss modes are used in particle manipulation and even for multiplexing in optical communication. The temporal intensity distribution of a pulse is mostly overlooked or fixed to Gaussian shape distribution. However, pulse-shaped beams could improve the same fields of particle manipulation as optical traps, or the laser manufacturing. In this paper, we demonstrate a method of constructing a helical spatiotemporal intensity distribution beam the rotation of which in time can be varied. We demonstrate the analytical and numerical results and show an experimental realization of such a structure.
Keywords: chirped pulses, interference, orbital angular momentum
PACS: 42.65.Re, 42.25.Hz, 42.50.Tx

ČIRPUOTŲ LAGERO IR GAUSO MODŲ INTERFERENCIJOS SUFORMUOTI CHIRALINIAI PLUOŠTAI
Gabrielius Kontenisa, Darius Gailevičiusa, Vytautas Juknaa, and Kęstutis Staliūnasa,b,c

a Vilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva
b Katalonijos politechnikos universiteto Fizikos ir branduolinės inžinerijos katedra, Terasa, Ispanija
c Katalonų tyrimų ir aukštųjų studijų institutas (ICREA), Barselona, Ispanija

Šiame darbe tiriama greitai laike besisukančio interferencinio pluošto struktūra ir jo erdviniai parametrai. Tokio tipo struktūros yra realizuojamos suvedant du koherentinius pluoštus su topologiniu krūviu / orbitiniu judesio kiekio momentu. Jeigu jų topologiniai krūviai skiriasi, gaunamas pluoštas su maksimumų skaičiumi, lygiu abiejų pluoštų topologinių krūvių skirtumui. Toks pluoštas laike yra statiškas, norint indukuoti jam sukimąsi reikia laike moduliuoti vieno iš pluoštų fazę. Tai galima atlikti elektrooptiniais ar akustooptiniais moduliatoriais, tačiau tokie sprendimai lemia sąlyginai lėtą sukimąsi. Šiame darbe pademonstruotas laike moduliuoto spiralinio intensyvumo pasiskirstymo pluošto, kurio sukimąsi laike galima keisti, formavimo metodas. Tai įgyvendinama interferuojant du kolinearius čirpuotus ir laike pastumtus impulsus. Pateikiami analitiniai ir skaitiniai rezultatai bei parodomas eksperimentinis tokios struktūros realizavimas. Skirtingai nuo ankstesnių darbų [28, 29], čia parodoma realizacija nelyginių topologinių krūvių atvejais, kai nėra simetrijos apie nulį. Tikėtina, kad pluoštas su laikine moduliacija pikosekundinėje skalėje turės teigiamo poveikio šiluminiam režimui šviesai sąveikaujant su medžiaga.


References / Nuorodos

[1] G. Kamlage, T. Bauer, A. Ostendorf, and B.N. Chichkov, Deep drilling of metals by femtosecond laser pulses, Appl. Phys. A 77, 307–310 (2003),
https://doi.org/10.1007/s00339-003-2120-x
[2] K.H. Leitz, B. Redlingshöer, Y. Reg, A. Otto, and M. Schmidt, Metal ablation with short and ultrashort laser pulses, Phys. Procedia 12, 230–238 (2011),
https://doi.org/10.1016/j.phpro.2011.03.128
[3] K. Sugioka and Y. Cheng, Ultrafast lasers-reliable tools for advanced materials processing, Light Sci. Appl. 3, 1–12 (2014),
https://doi.org/10.1038/lsa.2014.30
[4] D. Nieto, J. Arines, G.M. O’Connor, and M.T. Flores-Arias, Single-pulse laser ablation threshold of borosilicate, fused silica, sapphire, and soda-lime glass for pulse widths of 500 fs, 10 ps, 20 ns, Appl. Opt. 54, 8596 (2015),
https://doi.org/10.1364/AO.54.008596
[5] B.N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A 63, 109–115 (1996),
https://doi.org/10.1007/BF01567637
[6] S. Butkus, V. Jukna, D. Paipulas, M. Barkauskas, and V. Sirutkaitis, Micromachining of invar foils with GHz, MHz and kHz femtosecond burst modes, Micromachines 11, 733 (2020),
https://doi.org/10.3390/mi11080733
[7] Y. Horie, A. Arbabi, E. Arbabi, S.M. Kamali, and A. Faraon, High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas, ACS Photonics 5, 1711–1717 (2018),
https://doi.org/10.1021/acsphotonics.7b01073
[8] R. Ivaškevičiūtė-Povilauskienė, P. Kizevičius, E. Nacius, D. Jokubauskis, K. Ikamas, A. Lisauskas, nN. Alexeeva, I. Matulaitienė, V. Jukna, S. Orlov, L. Minkevičius, and G. Valušis, Terahertz structured light: nonparaxial Airy imaging using silicon diffractive optics, Light Sci. Appl. 11, 326 (2022),
https://doi.org/10.1038/s41377-022-01007-z
[9] D. Flamm, D.G. Grossmann, M. Sailer, M. Kaiser, F. Zimmermann, K. Chen, M. Jenne, J. Kleiner, J. Hellstern, C. Tillkorn, D.H. Sutter, and M. Kumkar, Structured light for ultrafast laser micro- and nanoprocessing, Opt. Eng. 60, 025105 (2021),
https://doi.org/10.1117/1.OE.60.2.025105
[10] S.D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R.J. Narayan, and B.N. Chichkov, Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator, Biomed. Opt. Express 2, 3167 (2011),
https://doi.org/10.1364/BOE.2.003167
[11] E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique, J. Micromech. Microeng. 22, 065022 (2012),
https://doi.org/10.1088/0960-1317/22/6/065022
[12] L. Zhao, L. Huang, J. Huang, K. Xu, M. Wang, S. Xu, and X. Wang, Far-field parallel direct writing of sub-diffraction-limit metallic nanowires by spatially modulated femtosecond vector beam, Adv. Mater. Technol. 7, 2200125 (2022),
https://doi.org/10.1002/admt.202200125
[13] R.D. Simmonds, P.S. Salter, A. Jesacher, and M.J. Booth, Three dimensional laser microfabrication in diamond using a dual adaptive optics system, Opt. Express 19, 24122 (2011),
https://doi.org/10.1364/OE.19.024122
[14] B.P. Cumming, A. Jesacher, M.J. Booth, T. Wilson, and M. Gu, Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate, Opt. Express 19, 9419 (2011),
https://doi.org/10.1364/OE.19.009419
[15] P.S. Salter, M. Baum, I. Alexeev, M. Schmidt, and M.J. Booth, Exploring the depth range for three-dimensional laser machining with aberration correction, Opt. Express 22, 17644 (2014),
https://doi.org/10.1364/OE.22.017644
[16] A. Jesacher and M.J. Booth, Parallel direct laser writing in three dimensions with spatially dependent aberration correction, Opt. Express 18, 21090 (2010),
https://doi.org/10.1364/OE.18.021090
[17] B. Wetzel, C. Xie, P.A. Lacourt, J.M. Dudley, and F. Courvoisier, Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams, Appl. Phys. Lett. 103, 24111 (2013),
https://doi.org/10.1063/1.4846415
[18] R. Bowman, N. Muller, X. Zambrana-Puyalto, O. Jedrkiewicz, P. Di Trapani, and M.J. Padgett, Efficient generation of Bessel beam arrays by means of an SLM, Eur. Phys. J. Spec. Top. 199, 159–166 (2011),
https://doi.org/10.1140/epjst/e2011-01511-3
[19] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, and S. Ramachandran, Terabit-scale orbital angular momentum mode division multiplexing in fibers, Science 340, 1545–1548 (2013),
https://doi.org/10.1126/science.1237861
[20] M. Martyanov, V. Ginzburg, A. Balakin, S. Skobelev, D. Silin, A. Kochetkov, I. Yakovlev, A. Kuzmin, S. Mironov, I. Shaikin, S. Stukachev, A. Shaykin, E. Khazanov, and A. Litvak, Suppressing small-scale self-focusing of high-power femtosecond pulses, High Power Laser Sci. Eng. 11, e28 (2023),
https://doi.org/10.1017/hpl.2023.20
[21] Z. Chen, S. Zheng, X. Lu, X. Wang, Y. Cai, C. Wang, M. Zheng, Y. Ai, Y. Leng, S. Xu, and D. Fan, Forty-five terawatt vortex ultrashort laser pulses from a chirped-pulse amplification system, High Power Laser Sci. Eng. 10, 1–7 (2022),
https://doi.org/10.1017/hpl.2022.19
[22] S. Jiménez-Gambín, N. Jiménez, J.M. Benllo, F. Camarena, J.M. Benlloch, and F. Camarena, Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms,  Sci. Rep. 9, 1–13 (2019),
https://doi.org/10.1038/s41598-019-56369-z
[23] G. Kontenis, D. Gailevičius, N. Jiménez, and K. Staliunas, Optical drills by dynamic highorder Bessel beam mixing, Phys. Rev. Appl. 17, 1–7 (2022),
https://doi.org/10.1103/PhysRevApplied.17.034059
[24] N.J. González, K. Staliunas, and F. Camarena, Sistema y método de generación de haces acústicos confocales de vórtice con superposición espacio temporal, Spanish Patent P202030766 (2020), European Patent ES2811650 (2021), G01N29/22,A61N 7/00,B06B 1/06
[25] N. Jiménez, V. Romero-García, R. Picó, A. Cebrecos, V.J. Sánchez-Morcillo, L.M. Garcia-Raffi, J.V. Sánchez-Pérez, and K. Staliunas, Acoustic Bessel-like beam formation by an axisymmetric grating, Europhys. Lett. 106, 24005 (2014),
https://doi.org/10.1209/0295-5075/106/24005
[26] N. Jiménez, R. Picó, V. Sánchez-Morcillo, V. Romero-García, L.M. García-Raffi, and K. Staliunas, Formation of high-order acoustic Bessel beams by spiral diffraction gratings, Phys. Rev. E. 94, 053004 (2016),
https://doi.org/10.1103/PhysRevE.94.053004
[27] S. Franke-Arnold, J. Leach, M.J. Padgett, V.E. Lembessis, D. Ellinas, A.J. Wright, J.M. Girkin, P. Öhberg, and A.S. Arnold, Optical ferris wheel for ultracold atoms, Opt. InfoBase Conf. Pap. 15, 169–175 (2007),
https://doi.org/10.1364/CQO.2007.CMI3
[28] K. Yamane, M. Sakamoto, N. Murakami, R. Morita, and K. Oka, Picosecond rotation of a ring-shaped optical lattice by using a chirped vortex-pulse pair, Opt. Lett. 41, 4597 (2016),
https://doi.org/10.1364/OL.41.004597
[29] A. Honda, K. Yamane, K. Iwasa, K. Oka, Y. Toda, and R. Morita, Ultrafast beam pattern modulation by superposition of chirped optical vortex pulses, Sci. Rep. 12, 1–12 (2022),
https://doi.org/10.1038/s41598-022-18145-4