References /
Nuorodos
[1] L. Esaki and R. Tsu, Superlattice and negative differential
conductivity in semiconductors, IBM J. Res. Dev.
14(1),
61–65 (1970),
https://doi.org/10.1147/rd.141.0061
[2] J. Feldmann, K. Leo, J. Shah, D.A.B. Miller, J.E.
Cunningham, T. Meier, G. von Plessen, A. Schulze, P. Thomas, and
S. Schmitt-Rink, Optical investigation of Bloch oscillations in
a semiconductor superlattice, Phys. Rev. B
46, 7252
(1992),
https://doi.org/10.1103/PhysRevB.46.7252
[3] V.G. Lyssenko, G. Valušis, F. Löser, T. Hasche, K. Leo, M.M.
Dignam, and K. Köhler, Direct measurement of the spatial
displacement of Bloch-oscillating electrons in semiconductor
superlattices, Phys. Rev. Lett.
79, 301 (1997),
https://doi.org/10.1103/PhysRevLett.79.301
[4] R. Terazzi, T. Gresch, M. Giovannini, N. Hoyler, N. Sekine,
and J. Faist, Bloch gain in quantum cascade lasers, Nat. Phys.
3,
329–333 (2007),
https://doi.org/10.1038/nphys577
[5] K.F. Renk, B.I. Stahl, A. Rogl, T. Janzen, D.G. Pavel'ev,
Yu.I. Koshurinov, V. Ustinov, and A. Zhukov, Subterahertz
superlattice parametric oscillator, Phys. Rev. Lett.
95,
126801 (2005),
https://doi.org/10.1103/PhysRevLett.95.126801
[6] K.F. Renk, A. Rogl, and B.I. Stahl,
Semiconductor-superlattice parametric oscillator for generation
of sub-terahertz and terahertz waves, J. Lumin.
125(1),
252–258 (2007),
https://doi.org/10.1016/j.jlumin.2006.08.037
[7] Yu.A. Romanov and Yu.Yu. Romanova, Self-oscillations in
semiconductor superlattices, J. Exp. Theor. Phys.
91,
1033–1045 (2000),
https://doi.org/10.1134/1.1334994
[8] T. Hyart, A.V. Shorokhov, and K.N. Alekseev, Theory of
parametric amplification in superlattices, Phys. Rev. Lett.
98,
220404 (2007),
https://doi.org/10.1103/PhysRevLett.98.220404
[9] T. Hyart and K.N. Alekseev, Nondegenerate parametric
amplification in superlattices and the limits of strong and weak
dissipation, Int. J. Mod. Phys. B
23, 4403–4413 (2009),
https://doi.org/10.1142/S0217979209063559
[10] T. Hyart, K.N. Alekseev, and E.V. Thuneberg, Bloch gain in
dc-ac-driven semiconductor superlattices in the absence of
electric domains, Phys. Rev. B
77, 165330 (2008),
https://doi.org/10.1103/PhysRevB.77.165330
[11] T. Hyart, N.V. Alexeeva, A. Leppänen, and K.N. Alekseev,
Terahertz parametric gain in semiconductor superlattices in the
absence of electric domains, Appl. Phys. Lett.
89(13),
132105 (2006),
https://doi.org/10.1063/1.2357579
[12] Y.A. Romanov, J.Yu. Romanova, L.G. Mourokh, and N.J.M.
Horing, Nonlinear terahertz oscillations in a semiconductor
superlattice, J. Appl. Phys.
89(7), 3835–3840 (2001),
https://doi.org/10.1063/1.1350978
[13] G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H.G.
Roskos, Roadmap of terahertz imaging 2021, Sensors
21(12),
4092 (2021),
https://doi.org/10.3390/s21124092
[14] A. Leitenstorfer, A.S. Moskalenko, T. Kampfrath, J. Kono,
E. Castro-Camus, K. Peng, N. Qureshi, D. Turchinovich, K.
Tanaka, A. Markelz, et al., The 2023 terahertz science and
technology roadmap, J. Phys. D
56, 223001 (2023),
https://doi.org/10.1088/1361-6463/acbe4c
[15] V. Čižas, L. Subačius, N.V. Alexeeva, D. Seliuta, T. Hyart,
K. Köhler, K.N. Alekseev, and G. Valušis, Dissipative parametric
gain in a GaAs/AlGaAs superlattice, Phys. Rev. Lett.
128,
236802 (2022),
https://doi.org/10.1103/PhysRevLett.128.236802
[16] V. Čižas, N. Alexeeva, K.N. Alekseev, and G. Valušis,
Coexistence of Bloch and parametric mechanisms of high-frequency
gain in doped superlattices, Nanomaterials
13(13), 1993
(2023),
https://doi.org/10.3390/nano13131993
[17] G. Haddad and R. Trew, Microwave solid-state active
devices, IEEE Trans. Microw. Theory Techn.
50(3),
760–779 (2002),
https://doi.org/10.1109/22.989960
[18] J.M. Manley and H.E. Rowe, Some general properties of
nonlinear elements - Part I. General energy relations, Proc. IRE
44, 904 (1956),
https://doi.org/10.1109/JRPROC.1956.275145