[PDF]    https://doi.org/10.3952/physics.2023.63.3.6

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 155–163 (2023)

PYROLYZED PHOTORESIST THIN FILM: EFFECT OF ELECTRON BEAM PATTERNING ON DC AND THz CONDUCTIVITY
Justinas Jorudasa,b, Hamza Rehmana, Georgy Fedorova, Maria Cojocaria, Petri Karvinena, Andrzej Urbanowiczb, Irmantas Kašalynasb, Liudmila Yu. Matzuic, Yuri Svirkoa, and Polina Kuzhira
a Department of Physics and Mathematics, Center of Photonics Sciences, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
b Department of Optoelectronics, Center for Physical Sciences and Technology (FTMC), Saulėtekio 3, 10257 Vilnius, Lithuania
c Faculty of Physics, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, 01601 Kyiv, Ukraine
Email: justinas.jorudas@ftmc.lt

Received 28 September 2023; accepted 2 October 2023

Pyrolyzed photoresist films (PPFs), which are formed via vacuum annealing of a photoresist without a catalyst, can be employed for fabrication of graphitic nanostructures by using conventional lithographic techniques. Such approach allows for reduction of technological steps required for fabrication of conductive micro- and nanoelectrodes for different applications. However, the operation frequency range of PPF electrodes is still unknown. Here, we report the results of the comparative study of PPF structures fabricated by electron beam lithography prior and after the annealing process with preference to the first approach. By performing the comparative measurements of PPF transport properties we found that both pre-and post-processed PPFs possess the same conductivities at dc-current and in the frequency range from 0.2 to 1.5 THz. Moreover, we achieved the sheet resistance of 150 nm thick PPFs as low as 570 Ω/sq, which is comparable to that of commercially available chemical vapour deposited (CVD) graphene. These findings open a path for a simple, reproducible and scalable fabrication of graphitic nanocircuits, nanoresonators and passive components suitable for applications in frequencies up to few terahertz.
Keywords: pyrolyzed carbon, pyrolyzed photoresist, terahertz, graphitic film, transport properties

PLONIEJI PIROLIZUOTO FOTOREZISTO SLUOKSNIAI: STRUKTŪRIZAVIMO ELEKTRONŲ PLUOŠTU ĮTAKA SLUOKSNIO NUOLATINĖS SROVĖS IR THz ELEKTRINIAM LAIDUMUI
Justinas Jorudasa,b, Hamza Rehmana, Georgy Fedorova, Maria Cojocaria, Petri Karvinena, Andrzej Urbanowiczb, Irmantas Kašalynasb, Liudmila Yu. Matzuic, Yuri Svirkoa, and Polina Kuzhira

a Rytų Suomijos universiteto Fotonikos mokslų centro Fizikos ir matematikos skyrius, Joensu, Suomija
b Fizinių ir technologijos mokslų centro Optoelektronikos skyrius, Vilnius, Lietuva
c Kyjivo nacionalinio Taraso Ševčenkos universiteto Fizikos fakultetas, Kyjivas, Ukraina

Pirolizuoto fotorezisto sluoksniai (PPF), sudaromi kaitinant fotorezistą vakuume nenaudojant katalizatoriaus, gali būti panaudoti grafitinių nano darinių gamybai pasitelkiant įprastas litografines technologijas. Toks metodas leidžia supaprastinti technologinį procesą, reikalingą gaminti laidžius mikro- ir nanoelektrodus. Tačiau PPF elektrodų elektrinio laidumo charakteristikos plačiame dažnių ruože vis dar nėra žinomos. Šiame darbe ištirti PPF dariniai pagaminti naudojant elektronų pluošto litografiją arba prieš, arba po fotorezisto pirolizės. Atlikus palyginamuosius PPF laidumo matavimus, nustatyta, kad dariniai, pagaminti iš PPF, paveikto elektronų pluoštu ar prieš, ar po fotorezisto pirolizės, pasižymi vienodu elektriniu laidumu ir nuolatinės srovės (DC) režime, ir THz dažnių ruože iki 1,5 THz. Pavyko pagaminti 150 nm storio PFF bandinius, kurių sluoksnio varža buvo tik 570 Ω/sq, – panašios yra komercinio CVD grafeno laidumo vertės. Šie rezultatai atveria galimybių paprastai, atkartojamai gaminti lengvai keičiamo dydžio grafitinius nanograndynus, nanorezonatorius ir pasyviuosius komponentus, kurie gali būti taikomi nuo DC iki keleto terahercų (THz) dažnių ruože.


References / Nuorodos

[1] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308–1308 (2008),
https://doi.org/10.1126/science.1156965
[2] C. Liao, Y. Li, and S. Tjong, Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity, Int. J. Mol. Sci. 19(11), 3564 (2018),
https://doi.org/10.3390/ijms19113564
[3] Y. Xia, W. Gao, and C. Gao, A review on graphene‐based electromagnetic functional materials: electromagnetic wave shielding and absorption, Adv. Funct. Mater. 32(42), 2204591 (2022),
https://doi.org/10.1002/adfm.202204591
[4] C.-H. Lin, Y.-S. Chen, J.T. Lin, H.C. Wu, H.T. Kuo, C.F. Lin, P. Chen, and P.C. Wu, Automatic inverse design of high-performance beam-steering metasurfaces via genetic-type tree optimization, Nano Lett. 21(12), 4981–4989 (2021),
https://doi.org/10.1021/acs.nanolett.1c00720
[5] T. Kaplas and P. Kuzhir, Ultra-thin pyrocarbon films as a versatile coating material, Nanoscale Res. Lett. 12(1), 121 (2017),
https://doi.org/10.1186/s11671-017-1896-0
[6] P.P. Kuzhir, A.G. Paddubskaya, N.I. Volynets, K.G. Batrakov, T. Kaplas, P. Lamberti, R. Kotsilkova, and P. Lambin, Main principles of passive devices based on graphene and carbon films in microwave–THz frequency range, J. Nanophotonics 11(3), 032504 (2017),
https://doi.org/10.1117/1.JNP.11.032504
[7] M. Baah, A. Paddubskaya, A. Novitsky, N. Valynets, M. Kumar, T. Itkonen, M. Pekkarinen, E. Soboleva, E. Lahderanta, M. Kafesaki, Y. Svirko, and P. Kuzhir, All-graphene perfect broadband THz absorber, Carbon 185, 709–716 (2021),
https://doi.org/10.1016/j.carbon.2021.09.067
[8] A.M. Lyons, Photodefinable carbon films: Control of image quality, J. Vac. Sci. Technol. B 3(1), 447 (1985),
https://doi.org/10.1116/1.583284
[9] M. Schreiber, T. Lutz, G.P. Keeley, S. Kumar, M. Boese, S. Krishnamurthy, and G.S. Duesberg, Transparent ultrathin conducting carbon films, Appl. Surf. Sci. 256(21), 6186–6190 (2010),
https://doi.org/10.1016/j.apsusc.2010.03.138
[10] M. Baah, P. Obraztsov, A. Paddubskaya, A. Biciunas, S. Suvanto, Y. Svirko, P. Kuzhir, and T. Kaplas, Electrical, transport, and optical properties of multifunctional graphitic films synthesized on dielectric surfaces by nickel nanolayer-assisted pyrolysis, ACS Appl. Mater. Interfaces 12(5), 6226–6233 (2020),
https://doi.org/10.1021/acsami.9b18906
[11] S.T. Larsen, A. Argyraki, L. Amato, S. Tanzi, S.S. Keller, N. Rozlosnik, and R. Taboryski, Pyrolyzed photoresist electrodes for integration in microfluidic chips for transmitter detection from biological cells, ECS Electrochem. Lett. 2(5), B5–B7 (2013),
https://doi.org/10.1149/2.005305eel
[12] H. Zhou, J. Zhou, A. Gupta, and T. Zou, Photoresist derived carbon for growth and differentiation of neuronal cells, Int. J. Mol. Sci. 8(8), 884–893 (2007),
https://doi.org/10.3390/i8080884
[13] L. Golubewa, H. Rehman, T. Kulahava, R. Karpič, M. Baah, T. Kaplas, A. Shah, S. Malykhin, A. Obraztsov, D. Rutkauskas, et al., Macro-, micro- and nano-roughness of carbon-based interface with the living cells: Towards a versatile bio-sensing platform, Sensors 20(18), 5028 (2020),
https://doi.org/10.3390/s20185028
[14] D. Sánchez-Molas, J. Cases-Utrera, P. Godignon, and F. Javier del Campo, Mercury detection at microfabricated pyrolyzed photoresist film (PPF) disk electrodes, Sens. Actuators B Chem. 186, 293–299 (2013),
https://doi.org/10.1016/j.snb.2013.06.017
[15] Y.M. Hassan, C. Caviglia, S. Hemanth, D.M.A. Mackenzie, T.S. Alstrøm, D.H. Petersen, and S.S. Keller, High temperature SU-8 pyrolysis for fabrication of carbon electrodes, J. Anal. Appl. Pyrolysis 125, 91–99 (2017),
https://doi.org/10.1016/j.jaap.2017.04.015
[16] M. Baah, A. Rahman, S. Sibilia, G. Trezza, L. Ferrigno, L. Micheli, A. Maffucci, E. Soboleva, Y. Svirko, and P. Kuzhir, Electrical impedance sensing of organic pollutants with ultrathin graphitic membranes, Nanotechnology 33(7), 075207 (2022),
https://doi.org/10.1088/1361-6528/ac3861
[17] J.J. Heikkinen, J. Košir, V. Jokinen, and S. Franssila, Fabrication and design rules of three dimensional pyrolytic carbon suspended microstructures, J. Micromech. Microeng. 30(11), 115003 (2020),
https://doi.org/10.1088/1361-6439/ab9f5b
[18] O. Pilloni, M. Madou, D. Mendoza, S. Muhl, and L. Oropeza-Ramos, Methodology and fabrication žof adherent and crack-free SU-8 photoresist-derived carbon MEMS on fused silica transparent substrates, J. Micromech. Microeng. 29(2), 027002 (2019),
https://doi.org/10.1088/1361-6439/aaf70f
[19] M. Kurek, F. Larsen, P. Larsen, S. Schmid, A. Boisen, and S. Keller, Nanomechanical pyrolytic carbon resonators: novel fabrication method and characterization of mechanical properties, Sensors 16(7), 1097 (2016),
https://doi.org/10.3390/s16071097
[20] L.N. Quang, P.E. Larsen, A. Boisen, and S.S. Keller, Tailoring stress in pyrolytic carbon for fabrication of nanomechanical string resonators, Carbon 133, 358–368 (2018),
https://doi.org/10.1016/j.carbon.2018.03.005
[21] R. Du, S. Ssenyange, M. Aktary, and M.T. McDermott, Fabrication and characterization of graphitic carbon nanostructures with controllable size, shape, and position, Small 5(10), 1162–1168 (2009),
https://doi.org/10.1002/smll.200801357
[22] J.A. Lee, K.-C. Lee, S. Il Park, and S.S. Lee, The fabrication of carbon nanostructures using electron beam resist pyrolysis and nanomachining processes for biosensing applications, Nanotechnology 19(21), 215302 (2008),
https://doi.org/10.1088/0957-4484/19/21/215302
[23] K. Malladi, C. Wang, and M. Madou, Fabrication of suspended carbon microstructures by e-beam writer and pyrolysis, Carbon 44(13), 2602–2607 (2006),
https://doi.org/10.1016/j.carbon.2006.04.039
[24] A. Singh, J. Jayaram, M. Madou, and S. Akbar, Pyrolysis of negative photoresists to fabricate carbon structures for microelectromechanical systems and electrochemical applications, J. Electrochem. Soc. 149(3), E78 (2002),
https://doi.org/10.1149/1.1436085
[25] S. Ranganathan, R. McCreery, S.M. Majji, and M. Madou, Photoresist-derived carbon for microelectromechanical systems and electrochemical applications, J. Electrochem. Soc. 147(1), 277 (2000),
https://doi.org/10.1149/1.1393188
[26] A.C. Ferrari and D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol. 8(4), 235–246 (2013),
https://doi.org/10.1038/nnano.2013.46
[27] M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, and M. Endo, Origin of dispersive effects of the Raman D band in carbon materials, Phys. Rev. B 59(10), R6585–R6588 (1999),
https://doi.org/10.1103/PhysRevB.59.R6585
[28] M. van Exter and D. Grischkowsky, Carrier dynamics of electrons and holes in moderately doped silicon, Phys. Rev. B 41(17), 12140–12149 (1990),
https://doi.org/10.1103/PhysRevB.41.12140
[29] Y. Homma, S. Suzuki, Y. Kobayashi, M. Nagase, and D. Takagi, Mechanism of bright selective imaging of single-walled carbon nanotubes on insulators by scanning electron microscopy, Appl. Phys. Lett. 84(10), 1750–1752 (2004),
https://doi.org/10.1063/1.1667608
[30] L. Bareket-Keren and Y. Hanein, Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects, Front. Neural Circuits 6 (2013),
https://doi.org/10.3389/fncir.2012.00122