, Liudmila Yu. Matzui
References /
Nuorodos
[1] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J.
Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Fine structure
constant defines visual transparency of graphene, Science
320(5881), 1308–1308 (2008),
https://doi.org/10.1126/science.1156965
[2] C. Liao, Y. Li, and S. Tjong, Graphene nanomaterials:
synthesis, biocompatibility, and cytotoxicity, Int. J. Mol. Sci.
19(11), 3564 (2018),
https://doi.org/10.3390/ijms19113564
[3] Y. Xia, W. Gao, and C. Gao, A review on graphene‐based
electromagnetic functional materials: electromagnetic wave
shielding and absorption, Adv. Funct. Mater.
32(42),
2204591 (2022),
https://doi.org/10.1002/adfm.202204591
[4] C.-H. Lin, Y.-S. Chen, J.T. Lin, H.C. Wu, H.T. Kuo, C.F.
Lin, P. Chen, and P.C. Wu, Automatic inverse design of
high-performance beam-steering metasurfaces via genetic-type
tree optimization, Nano Lett.
21(12), 4981–4989 (2021),
https://doi.org/10.1021/acs.nanolett.1c00720
[5] T. Kaplas and P. Kuzhir, Ultra-thin pyrocarbon films as a
versatile coating material, Nanoscale Res. Lett.
12(1),
121 (2017),
https://doi.org/10.1186/s11671-017-1896-0
[6] P.P. Kuzhir, A.G. Paddubskaya, N.I. Volynets, K.G. Batrakov,
T. Kaplas, P. Lamberti, R. Kotsilkova, and P. Lambin, Main
principles of passive devices based on graphene and carbon films
in microwave–THz frequency range, J. Nanophotonics
11(3),
032504 (2017),
https://doi.org/10.1117/1.JNP.11.032504
[7] M. Baah, A. Paddubskaya, A. Novitsky, N. Valynets, M. Kumar,
T. Itkonen, M. Pekkarinen, E. Soboleva, E. Lahderanta, M.
Kafesaki, Y. Svirko, and P. Kuzhir, All-graphene perfect
broadband THz absorber, Carbon
185, 709–716 (2021),
https://doi.org/10.1016/j.carbon.2021.09.067
[8] A.M. Lyons, Photodefinable carbon films: Control of image
quality, J. Vac. Sci. Technol. B
3(1), 447 (1985),
https://doi.org/10.1116/1.583284
[9] M. Schreiber, T. Lutz, G.P. Keeley, S. Kumar, M. Boese, S.
Krishnamurthy, and G.S. Duesberg, Transparent ultrathin
conducting carbon films, Appl. Surf. Sci.
256(21),
6186–6190 (2010),
https://doi.org/10.1016/j.apsusc.2010.03.138
[10] M. Baah, P. Obraztsov, A. Paddubskaya, A. Biciunas, S.
Suvanto, Y. Svirko, P. Kuzhir, and T. Kaplas, Electrical,
transport, and optical properties of multifunctional graphitic
films synthesized on dielectric surfaces by nickel
nanolayer-assisted pyrolysis, ACS Appl. Mater. Interfaces
12(5),
6226–6233 (2020),
https://doi.org/10.1021/acsami.9b18906
[11] S.T. Larsen, A. Argyraki, L. Amato, S. Tanzi, S.S. Keller,
N. Rozlosnik, and R. Taboryski, Pyrolyzed photoresist electrodes
for integration in microfluidic chips for transmitter detection
from biological cells, ECS Electrochem. Lett.
2(5),
B5–B7 (2013),
https://doi.org/10.1149/2.005305eel
[12] H. Zhou, J. Zhou, A. Gupta, and T. Zou, Photoresist derived
carbon for growth and differentiation of neuronal cells, Int. J.
Mol. Sci.
8(8), 884–893 (2007),
https://doi.org/10.3390/i8080884
[13] L. Golubewa, H. Rehman, T. Kulahava, R. Karpič, M. Baah, T.
Kaplas, A. Shah, S. Malykhin, A. Obraztsov, D. Rutkauskas, et
al., Macro-, micro- and nano-roughness of carbon-based interface
with the living cells: Towards a versatile bio-sensing platform,
Sensors
20(18), 5028 (2020),
https://doi.org/10.3390/s20185028
[14] D. Sánchez-Molas, J. Cases-Utrera, P. Godignon, and F.
Javier del Campo, Mercury detection at microfabricated pyrolyzed
photoresist film (PPF) disk electrodes, Sens. Actuators B Chem.
186, 293–299 (2013),
https://doi.org/10.1016/j.snb.2013.06.017
[15] Y.M. Hassan, C. Caviglia, S. Hemanth, D.M.A. Mackenzie,
T.S. Alstrøm, D.H. Petersen, and S.S. Keller, High temperature
SU-8 pyrolysis for fabrication of carbon electrodes, J. Anal.
Appl. Pyrolysis
125, 91–99 (2017),
https://doi.org/10.1016/j.jaap.2017.04.015
[16] M. Baah, A. Rahman, S. Sibilia, G. Trezza, L. Ferrigno, L.
Micheli, A. Maffucci, E. Soboleva, Y. Svirko, and P. Kuzhir,
Electrical impedance sensing of organic pollutants with
ultrathin graphitic membranes, Nanotechnology
33(7),
075207 (2022),
https://doi.org/10.1088/1361-6528/ac3861
[17] J.J. Heikkinen, J. Košir, V. Jokinen, and S. Franssila,
Fabrication and design rules of three dimensional pyrolytic
carbon suspended microstructures, J. Micromech. Microeng.
30(11),
115003 (2020),
https://doi.org/10.1088/1361-6439/ab9f5b
[18] O. Pilloni, M. Madou, D. Mendoza, S. Muhl, and L.
Oropeza-Ramos, Methodology and fabrication žof adherent and
crack-free SU-8 photoresist-derived carbon MEMS on fused silica
transparent substrates, J. Micromech. Microeng.
29(2),
027002 (2019),
https://doi.org/10.1088/1361-6439/aaf70f
[19] M. Kurek, F. Larsen, P. Larsen, S. Schmid, A. Boisen, and
S. Keller, Nanomechanical pyrolytic carbon resonators: novel
fabrication method and characterization of mechanical
properties, Sensors
16(7), 1097 (2016),
https://doi.org/10.3390/s16071097
[20] L.N. Quang, P.E. Larsen, A. Boisen, and S.S. Keller,
Tailoring stress in pyrolytic carbon for fabrication of
nanomechanical string resonators, Carbon
133, 358–368
(2018),
https://doi.org/10.1016/j.carbon.2018.03.005
[21] R. Du, S. Ssenyange, M. Aktary, and M.T. McDermott,
Fabrication and characterization of graphitic carbon
nanostructures with controllable size, shape, and position,
Small
5(10), 1162–1168 (2009),
https://doi.org/10.1002/smll.200801357
[22] J.A. Lee, K.-C. Lee, S. Il Park, and S.S. Lee, The
fabrication of carbon nanostructures using electron beam resist
pyrolysis and nanomachining processes for biosensing
applications, Nanotechnology
19(21), 215302 (2008),
https://doi.org/10.1088/0957-4484/19/21/215302
[23] K. Malladi, C. Wang, and M. Madou, Fabrication of suspended
carbon microstructures by e-beam writer and pyrolysis, Carbon
44(13),
2602–2607 (2006),
https://doi.org/10.1016/j.carbon.2006.04.039
[24] A. Singh, J. Jayaram, M. Madou, and S. Akbar, Pyrolysis of
negative photoresists to fabricate carbon structures for
microelectromechanical systems and electrochemical applications,
J. Electrochem. Soc.
149(3), E78 (2002),
https://doi.org/10.1149/1.1436085
[25] S. Ranganathan, R. McCreery, S.M. Majji, and M. Madou,
Photoresist-derived carbon for microelectromechanical systems
and electrochemical applications, J. Electrochem. Soc.
147(1),
277 (2000),
https://doi.org/10.1149/1.1393188
[26] A.C. Ferrari and D.M. Basko, Raman spectroscopy as a
versatile tool for studying the properties of graphene, Nat.
Nanotechnol.
8(4), 235–246 (2013),
https://doi.org/10.1038/nnano.2013.46
[27] M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S.
Dresselhaus, and M. Endo, Origin of dispersive effects of the
Raman D band in carbon materials, Phys. Rev. B
59(10),
R6585–R6588 (1999),
https://doi.org/10.1103/PhysRevB.59.R6585
[28] M. van Exter and D. Grischkowsky, Carrier dynamics of
electrons and holes in moderately doped silicon, Phys. Rev. B
41(17),
12140–12149 (1990),
https://doi.org/10.1103/PhysRevB.41.12140
[29] Y. Homma, S. Suzuki, Y. Kobayashi, M. Nagase, and D.
Takagi, Mechanism of bright selective imaging of single-walled
carbon nanotubes on insulators by scanning electron microscopy,
Appl. Phys. Lett.
84(10), 1750–1752 (2004),
https://doi.org/10.1063/1.1667608
[30] L. Bareket-Keren and Y. Hanein, Carbon nanotube-based multi
electrode arrays for neuronal interfacing: progress and
prospects, Front. Neural Circuits
6 (2013),
https://doi.org/10.3389/fncir.2012.00122