[PDF]    https://doi.org/10.3952/physics.2023.63.3.8

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 173–190 (2023)

INVESTIGATION OF BLUR KERNEL OF TERAHERTZ IMAGES
Viktoriia Abramovaa,b, Sergey Abramova, Vladimir Lukina, Ignas Grigelionisb, Linas Minkevičiusb, and Gintaras Valušisb
a Department of Information-Communication Technologies, National Aerospace University,
Chkalova 17, 61070 Kharkiv, Ukraine
b Department of Optoelectronics, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: viktoriia.abramova@ftmc.lt

Received 5 October 2023; accepted 6 October 2023

The paper discusses issues of digital processing of terahertz images. It is shown that despite the improvement of the hardware part of imaging setups, the acquired images still often have a low resolution and suffer from noise and blurring effects. Thus, to improve their visual quality, it is advisable to use special digital processing methods. While some progress has already been made in terms of denoising of terahertz images, the research of their deblurring is only at the very early stage. Therefore, this paper attempts to analyze the properties of blur functions for real terahertz images to further use them while designing a corresponding deblurring technique. For this purpose, the phase-only image method has been used. A study of blur properties for the three most common blur types (defocus, motion and Gaussian blur) has shown that for test images they can be distinguished and their main parameters can be assessed. However, the application of this method to real terahertz images has shown that the blur characteristics in them are very different from the ones obtained for modelled examples. The real blur demonstrates a quite complex behaviour and estimating its kernel requires additional research.
Keywords: terahertz imaging, image deblurring, blur kernel estimation

KAUKIŲ, LEMIANČIŲ TERAHERCINIŲ VAIZDŲ SULIEJIMĄ, TYRIMAS
Viktoriia Abramovaa,b, Sergey Abramova, Vladimir Lukina, Ignas Grigelionisb, Linas Minkevičiusb, Gintaras Valušisb

a Nacionalinio aerokosmoso universiteto Informacijos ir komunikacijos technologijų departamentas, Charkivas, Ukraina
b Fizinių ir technologijos mokslų centro Optoelektronikos skyrius, Vilnius, Lietuva

Šiame darbe aptariamos skaitmeninio terahercinių vaizdų apdorojimo problemos. Nepaisant vis tobulinamos aparatūrinės terahercinių vaizdų užrašymo dalies, jų kokybė vis tiek nukenčia dėl žemos skyros ar vaizdo suliejimo. Norint padidinti vaizdų kokybę galima naudoti tam tikrus skaitmeninius duomenų apdorojimo metodus. Didelis dėmesys skiriamas triukšmo filtravimo metodų vystymui, tačiau norint apčiuopiamai pagerinti vaizdų kokybę nemažiau svarbūs yra gerokai mažiau tyrinėti suliejimo mažinimo metodai. Todėl šiame darbe tiriamos ir analizuojamos suliejimo funkcijų savybės bei konstruojamas suliejimo pašalinimo iš terahercinių vaizdų mechanizmas. Tam šiuo atveju yra naudojami faziniai vaizdai. Trijų dažniausiai pasitaikančių (išfokusavimo, judėjimo, Gauso) suliejimo mechanizmų tyrimai su testinėmis matomos šviesos nuotraukomis atskleidė galimybę nustatyti suliejimo mechanizmų prigimtį bei jų parametrus. Tačiau eksperimente užrašytų terahercinių vaizdų atveju pastebėta, kad suliejimo mechanizmai yra visiškai kiti nei testiniuose vaizduose, o norint pagrįsti sudėtingą jų prigimtį reikalingi papildomi tyrimai.


References / Nuorodos

[1] Y. Takida, K. Nawata, and H. Minamide, Security screening system based on terahertz-wave spectroscopic gas detection, Opt. Express 29(2), 2529–2537 (2021),
https://doi.org/10.1364/OE.413201
[2] J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, THz imaging and sensing for security applications – explosives, weapons and drugs, Semicond. Sci. Technol. 20(7), 266–280 (2005),
https://doi.org/10.1088/0268-1242/20/7/018
[3] N. Palka, M. Szustakowski, M. Kovalski, T. Trzcinski, R. Ryniec, M. Piszczek, W. Ciurapinski, M. Zyczkowski, P. Zagrajek, and J. Wrobel, THz spectroscopy and imaging in security applications, in: Proceedings of the 19th International Conference on Microwaves, Radar & Wireless Communications (2012) pp. 265–270,
https://doi.org/10.1109/MIKON.2012.6233513
[4] M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, and X. Xu, Detection and identification of illicit drugs using terahertz imaging, J. Appl. Phys. 100, 103104 (2006),
https://doi.org/10.1063/1.2388041
[5] P. Bawuah, D. Markl, D. Farrell, M. Evans, A. Portieri, A. Anderson, D. Goodwin, R. Lukas, and J.A. Zeitler, Terahertz-based porosity measurement of pharmaceutical tablets: a tutorial, J. Infrared Millim. Terahertz Waves 41, 450–469 (2020),
https://doi.org/10.1007/s10762-019-00659-0
[6] I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiunas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues, Sensors 16(4), 432 (2016),
https://doi.org/10.3390/s16040432
[7] Y. Liu, H. Liu, M. Tang, J. Huang, W. Liu, J. Dong, X. Chen, W. Fu, and Y. Zhang, The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges, RSC Adv. 9, 9354–9363 (2019),
https://doi.org/10.1039/C8RA10605C
[8] M. Karaliūnas, K.E. Nasser, A. Urbanowicz, I. Kašalynas, D. Bražinskenė, S. Asadauskas, and G. Valušis, Non-destructive inspection of food and technical oils by terahertz spectroscopy, Sci. Rep. 8, 18025 (2018),
https://doi.org/10.1038/s41598-018-36151-3
[9] L. Afsah-Hejri, P. Hajeb, P. Ara, and R.J. Ehsani, A comprehensive review on food applications of terahertz spectroscopy and imaging, Compr. Rev. Food Sci. Food Saf. 18(5), 1563–1621 (2019),
https://doi.org/10.1111/1541-4337.12490
[10] K. Krügener, J. Ornik, L.M. Schneider, A. Jackel, C.L. Koch-Dandolo, E. Castro-Camus, N. Riedl-Siedow, M. Koch, and W. Viol, Terahertz inspection of buildings and architectural art, Appl. Sci. 10(15), 5166 (2020),
https://doi.org/10.3390/app10155166
[11] G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H.G. Roskos, Roadmap of Terahertz Imaging 2021, Sensors 21(12), 4092 (2021),
https://doi.org/10.3390/s21124092
[12] D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects, Opt. Eng. 58(2), 023104 (2019),
https://doi.org/10.1117/1.OE.58.2.023104
[13] L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H.G. Roskos, and K. Kohler, Terahertz heterodyne imaging with InGaAs-based bow-tie diodes, Appl. Phys. Lett. 99, 131101 (2011),
https://doi.org/10.1063/1.3641907
[14] B.K. Kundu and Pragti, THz image processing and its applications, in: Generation, Detection and Processing of Terahertz Signals, Lecture Notes in Electrical Engineering, Vol. 794 (Springer, Singapore, 2022) pp. 123–137,
https://doi.org/10.1007/978-981-16-4947-9_9
[15] Y. Li, W. Hu, X. Zhang, Z. Xu, J. Ni, and L.P. Ligthart, Adaptive terahertz image super-resolution with adjustable convolutional neural network, Opt. Express 28(15), 22200–22217 (2020),
https://doi.org/10.1364/OE.394943
[16] Z. Long, T. Wang, Ch. You, Z. Yang, K. Wang, and J. Liu, Terahertz image super-resolution based on a deep convolutional neural network, Appl. Opt. 58(10), 2731–2735 (2019),
https://doi.org/10.1364/AO.58.002731
[17] Z. Chen, C. Wang, J. Feng, Z. Zou, F. Jiang, H. Liu, and Y. Jie, Identification of blurred terahertz images by improved cross-layer convolutional neural network, Opt. Express 31(10), 16035–16053 (2023),
https://doi.org/10.1364/OE.487324
[18] V. Abramova, S. Abramov, V. Lukin, I. Grigelionis, L. Minkevičius, and G. Valušis, Improvement of terahertz images by adaptive discrete cosine transform (DCT)-based denoising, Lith. J. Phys. 62(4), 267–276 (2022),
https://doi.org/10.3952/physics.v62i4.4823
[19] S. Abramov, M. Uss, V. Abramova, V. Lukin, B. Vozel, and K. Chehdi, On noise properties in hyperspectral images, in: IGARSS'2015 (2015) pp. 3501–3504,
https://doi.org/10.1109/IGARSS.2015.7326575
[20] O. Rubel, V. Lukin, S. Krivenko, V. Pavlikov, S. Zhyla, and E. Tserne, Reduction of spatially correlated speckle in textured SAR images, Int. J. Comp. 20(3), 319–327 (2021),
https://doi.org/10.47839/ijc.20.3.2276
[21] V. Abramova, S. Krivenko, V. Lukin, and O. Krylova, Analysis of noise properties in dental images, in: ELNANO 2020, Vol. 9088768 (Milan, Italy, 2020) pp. 511–515,
https://doi.org/10.1109/ELNANO50318.2020.9088768
[22] V. Abramova, S. Abramov, and V. Lukin, Iterative method for blind evaluation of mixed noise characteristics on images, Inform. Telecommun. Sci. 6(1), 8–14 (2015),
https://doi.org/10.20535/2411-2976.12015.8-14
[23] K. Zhang, W. Ren, W. Luo, W.-S. Lai, B. Stenger, M.-H. Yang, and H. Li, Deep image deblurring: a survey, Int. J. Comput. Vis. 130, 2103–2130 (2022),
https://doi.org/10.1007/s11263-022-01633-5
[24] Y. Lu, Out-of-focus blur: Image de-blurring, arXiv preprint, arXiv:1710.00620 (2017),
https://doi.org/10.48550/arXiv.1710.00620
[25] X. Zhang, Gaussian distribution, in: Encyclopedia of Machine Learning, eds. C. Sammut, G.I. Webb (Springer, Boston, MA, 2011) pp. 425–428,
https://doi.org/10.1007/978-0-387-30164-8_323
[26] E. Kalalembang, K. Usman, and I.P. Gunawan, DCT-based local motion blur detection, in: Proceedings of the International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering (Bandung, Indonesia, 2009) pp. 1–6,
https://doi.org/10.1109/ICICI-BME.2009.5417252
[27] F. Yang, Y. Huang, Y. Luo, L. Li, and H. Li, Robust image restoration for motion blur of image sensors, Sensors 16(6), 845 (2016),
https://doi.org/10.3390/s16060845
[28] C. Seibold, A. Hilsmann, and P. Eisert, Model-based motion blur estimation for the improvement of motion tracking, Comput. Vis. Image Underst. 160, 45–56 (2017),
https://doi.org/10.1016/j.cviu.2017.03.005
[29] C. Mei and I. Reid, Modeling and generating complex motion blur for real-time tracking, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Anchorage, AK, USA, 2008) pp. 1–8,
https://doi.org/10.1109/CVPR.2008.4587535
[30] T. Brooks and J.T. Barron, Learning to synthesize motion blur, in: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (Long Beach, CA, USA, 2019) pp. 6833–6841,
https://doi.org/10.1109/CVPR.2019.00700
[31] R.A. Haddad and A.N. Akansu, A class of fast Gaussian binomial filters for speech and image processing, IEEE Trans. Signal Process. 39, 723–727 (1991),
https://doi.org/10.1109/78.80892
[32] D. Krishnan and R. Fergus, Fast image deconvolution using hyper-Laplacian priors, in: Advances in Neural Information Processing Systems (NIPS, 2009) pp. 1033–1041,
https://dl.acm.org/doi/abs/10.5555/2984093.2984210
[33] D. Zoran and Y. Weiss, From learning models of natural image patches to whole image restoration, in: Proceedings of the International Conference on Computer Vision (Barcelona, Spain, 2011) pp. 479–486,
https://doi.org/10.1109/ICCV.2011.6126278
[34] W. Ren, J. Pan, X. Cao, and M.-H. Yang, Video deblurring via semantic segmentation and pixelwise non-linear kernel, in: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (Venice, Italy, 2017) pp. 1086–1094,
https://doi.org/10.1109/ICCV.2017.123
[35] J. Kruse, C. Rother, and U. Schmidt, Learning to push the limits of efficient FFT-based image deconvolution, in: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (Venice, Italy, 2017) pp. 4596–4604,
https://doi.org/10.1109/ICCV.2017.491
[36] A. Foi, K. Dabov, V. Katkovnik, and K. Egiazarian, Shape-adaptive DCT for denoising and image reconstruction, Proc. SPIE 6064, A-18 (2006),
https://doi.org/10.1117/12.642839
[37] S. Cho, J. Wang, and S. Lee, Handling outliers in non-blind image deconvolution, in: Proceedings of the 2011 International Conference on Computer Vision (Barcelona, Spain, 2011) pp. 495–502,
https://doi.org/10.1109/ICCV.2011.6126280
[38] Y. Nan, Y. Quan, and H. Ji, Variational-EM-based deep learning for noise-blind image deblurring, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (Seattle, WA, USA, 2020) pp. 3623–3632,
https://doi.org/10.1109/CVPR42600.2020.00368
[39] L. Pan, Y. Dai, and M. Liu, Single image deblurring and camera motion estimation with depth map, in: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV) (Waikoloa Village, HI, USA, 2019) pp. 2116–2125,
https://doi.org/10.1109/WACV.2019.00229
[40] M. McKenney and M. Schneider, Map Framework: A Formal Model of Maps as a Fundamental Data Type in Information Systems (Springer Cham, 2016),
https://doi.org/10.1007/978-3-319-46766-5_2
[41] L. Pan, R. Hartley, M. Liu, and Y. Dai, Phase-only image based kernel estimation for single image blind deblurring, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (Long Beach, CA, USA, 2019) pp. 6027–6036,
https://doi.org/10.1109/CVPR.2019.00619
[42] L. Li, J. Pan, W.-S. Lai, C. Gao, N. Sang, and M.-H. Yang, Learning a discriminative prior for blind image deblurring, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018) pp. 6616–6625,
https://doi.org/10.1109/CVPR.2018.00692
[43] X. Tao, H. Gao, X. Shen, J. Wang, and J. Jia, Scale-recurrent network for deep image deblurring, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT, USA, 2018) pp. 8174–8182,
https://doi.org/10.1109/CVPR.2018.00853