References /
Nuorodos
[1] Y. Takida, K. Nawata, and H. Minamide, Security screening
system based on terahertz-wave spectroscopic gas detection, Opt.
Express
29(2), 2529–2537 (2021),
https://doi.org/10.1364/OE.413201
[2] J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F.
Oliveira, and D. Zimdars, THz imaging and sensing for security
applications – explosives, weapons and drugs, Semicond. Sci.
Technol.
20(7), 266–280 (2005),
https://doi.org/10.1088/0268-1242/20/7/018
[3] N. Palka, M. Szustakowski, M. Kovalski, T. Trzcinski, R.
Ryniec, M. Piszczek, W. Ciurapinski, M. Zyczkowski, P. Zagrajek,
and J. Wrobel, THz spectroscopy and imaging in security
applications, in:
Proceedings of the 19th International
Conference on Microwaves, Radar & Wireless Communications
(2012) pp. 265–270,
https://doi.org/10.1109/MIKON.2012.6233513
[4] M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, and X.
Xu, Detection and identification of illicit drugs using
terahertz imaging, J. Appl. Phys.
100, 103104 (2006),
https://doi.org/10.1063/1.2388041
[5] P. Bawuah, D. Markl, D. Farrell, M. Evans, A. Portieri, A.
Anderson, D. Goodwin, R. Lukas, and J.A. Zeitler,
Terahertz-based porosity measurement of pharmaceutical tablets:
a tutorial, J. Infrared Millim. Terahertz Waves
41,
450–469 (2020),
https://doi.org/10.1007/s10762-019-00659-0
[6] I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F.
Wahaia, V. Tamošiunas, B. Voisiat, D. Seliuta, G. Valušis, A.
Švigelj, and J. Trontelj, Spectroscopic terahertz imaging at
room temperature employing microbolometer terahertz sensors and
its application to the study of carcinoma tissues, Sensors
16(4),
432 (2016),
https://doi.org/10.3390/s16040432
[7] Y. Liu, H. Liu, M. Tang, J. Huang, W. Liu, J. Dong, X. Chen,
W. Fu, and Y. Zhang, The medical application of terahertz
technology in non-invasive detection of cells and tissues:
opportunities and challenges, RSC Adv.
9, 9354–9363
(2019),
https://doi.org/10.1039/C8RA10605C
[8] M. Karaliūnas, K.E. Nasser, A. Urbanowicz, I. Kašalynas, D.
Bražinskenė, S. Asadauskas, and G. Valušis, Non-destructive
inspection of food and technical oils by terahertz spectroscopy,
Sci. Rep.
8, 18025 (2018),
https://doi.org/10.1038/s41598-018-36151-3
[9] L. Afsah-Hejri, P. Hajeb, P. Ara, and R.J. Ehsani, A
comprehensive review on food applications of terahertz
spectroscopy and imaging, Compr. Rev. Food Sci. Food Saf.
18(5),
1563–1621 (2019),
https://doi.org/10.1111/1541-4337.12490
[10] K. Krügener, J. Ornik, L.M. Schneider, A. Jackel, C.L.
Koch-Dandolo, E. Castro-Camus, N. Riedl-Siedow, M. Koch, and W.
Viol, Terahertz inspection of buildings and architectural art,
Appl. Sci.
10(15), 5166 (2020),
https://doi.org/10.3390/app10155166
[11] G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H.G.
Roskos, Roadmap of Terahertz Imaging 2021, Sensors
21(12),
4092 (2021),
https://doi.org/10.3390/s21124092
[12] D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas,
and G. Valušis, Terahertz homodyne spectroscopic imaging of
concealed low-absorbing objects, Opt. Eng.
58(2), 023104
(2019),
https://doi.org/10.1117/1.OE.58.2.023104
[13] L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G.
Valušis, A. Lisauskas, S. Boppel, H.G. Roskos, and K. Kohler,
Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,
Appl. Phys. Lett.
99, 131101 (2011),
https://doi.org/10.1063/1.3641907
[14] B.K. Kundu and Pragti, THz image processing and its
applications, in:
Generation, Detection and Processing of
Terahertz Signals, Lecture Notes in Electrical
Engineering, Vol. 794 (Springer, Singapore, 2022) pp. 123–137,
https://doi.org/10.1007/978-981-16-4947-9_9
[15] Y. Li, W. Hu, X. Zhang, Z. Xu, J. Ni, and L.P. Ligthart,
Adaptive terahertz image super-resolution with adjustable
convolutional neural network, Opt. Express
28(15),
22200–22217 (2020),
https://doi.org/10.1364/OE.394943
[16] Z. Long, T. Wang, Ch. You, Z. Yang, K. Wang, and J. Liu,
Terahertz image super-resolution based on a deep convolutional
neural network, Appl. Opt.
58(10), 2731–2735 (2019),
https://doi.org/10.1364/AO.58.002731
[17] Z. Chen, C. Wang, J. Feng, Z. Zou, F. Jiang, H. Liu, and Y.
Jie, Identification of blurred terahertz images by improved
cross-layer convolutional neural network, Opt. Express
31(10),
16035–16053 (2023),
https://doi.org/10.1364/OE.487324
[18] V. Abramova, S. Abramov, V. Lukin, I. Grigelionis, L.
Minkevičius, and G. Valušis, Improvement of terahertz images by
adaptive discrete cosine transform (DCT)-based denoising, Lith.
J. Phys.
62(4), 267–276 (2022),
https://doi.org/10.3952/physics.v62i4.4823
[19] S. Abramov, M. Uss, V. Abramova, V. Lukin, B. Vozel, and K.
Chehdi, On noise properties in hyperspectral images, in:
IGARSS'2015
(2015) pp. 3501–3504,
https://doi.org/10.1109/IGARSS.2015.7326575
[20] O. Rubel, V. Lukin, S. Krivenko, V. Pavlikov, S. Zhyla, and
E. Tserne, Reduction of spatially correlated speckle in textured
SAR images, Int. J. Comp.
20(3), 319–327 (2021),
https://doi.org/10.47839/ijc.20.3.2276
[21] V. Abramova, S. Krivenko, V. Lukin, and O. Krylova,
Analysis of noise properties in dental images, in:
ELNANO
2020, Vol. 9088768 (Milan, Italy, 2020) pp. 511–515,
https://doi.org/10.1109/ELNANO50318.2020.9088768
[22] V. Abramova, S. Abramov, and V. Lukin, Iterative method for
blind evaluation of mixed noise characteristics on images,
Inform. Telecommun. Sci.
6(1), 8–14 (2015),
https://doi.org/10.20535/2411-2976.12015.8-14
[23] K. Zhang, W. Ren, W. Luo, W.-S. Lai, B. Stenger, M.-H.
Yang, and H. Li, Deep image deblurring: a survey, Int. J.
Comput. Vis.
130, 2103–2130 (2022),
https://doi.org/10.1007/s11263-022-01633-5
[24] Y. Lu, Out-of-focus blur: Image de-blurring, arXiv
preprint, arXiv:1710.00620 (2017),
https://doi.org/10.48550/arXiv.1710.00620
[25] X. Zhang, Gaussian distribution, in:
Encyclopedia of
Machine Learning, eds. C. Sammut, G.I. Webb (Springer,
Boston, MA, 2011) pp. 425–428,
https://doi.org/10.1007/978-0-387-30164-8_323
[26] E. Kalalembang, K. Usman, and I.P. Gunawan, DCT-based local
motion blur detection, in:
Proceedings of the International
Conference on Instrumentation, Communication, Information
Technology, and Biomedical Engineering (Bandung,
Indonesia, 2009) pp. 1–6,
https://doi.org/10.1109/ICICI-BME.2009.5417252
[27] F. Yang, Y. Huang, Y. Luo, L. Li, and H. Li, Robust image
restoration for motion blur of image sensors, Sensors
16(6),
845 (2016),
https://doi.org/10.3390/s16060845
[28] C. Seibold, A. Hilsmann, and P. Eisert, Model-based motion
blur estimation for the improvement of motion tracking, Comput.
Vis. Image Underst.
160, 45–56 (2017),
https://doi.org/10.1016/j.cviu.2017.03.005
[29] C. Mei and I. Reid, Modeling and generating complex motion
blur for real-time tracking, in:
Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(Anchorage, AK, USA, 2008) pp. 1–8,
https://doi.org/10.1109/CVPR.2008.4587535
[30] T. Brooks and J.T. Barron, Learning to synthesize motion
blur, in:
Proceedings of the 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (Long
Beach, CA, USA, 2019) pp. 6833–6841,
https://doi.org/10.1109/CVPR.2019.00700
[31] R.A. Haddad and A.N. Akansu, A class of fast Gaussian
binomial filters for speech and image processing, IEEE Trans.
Signal Process.
39, 723–727 (1991),
https://doi.org/10.1109/78.80892
[32] D. Krishnan and R. Fergus, Fast image deconvolution using
hyper-Laplacian priors, in:
Advances in Neural Information
Processing Systems (NIPS, 2009) pp. 1033–1041,
https://dl.acm.org/doi/abs/10.5555/2984093.2984210
[33] D. Zoran and Y. Weiss, From learning models of natural
image patches to whole image restoration, in:
Proceedings of
the International Conference on Computer Vision
(Barcelona, Spain, 2011) pp. 479–486,
https://doi.org/10.1109/ICCV.2011.6126278
[34] W. Ren, J. Pan, X. Cao, and M.-H. Yang, Video deblurring
via semantic segmentation and pixelwise non-linear kernel, in:
Proceedings
of the IEEE International Conference on Computer Vision (ICCV)
(Venice, Italy, 2017) pp. 1086–1094,
https://doi.org/10.1109/ICCV.2017.123
[35] J. Kruse, C. Rother, and U. Schmidt, Learning to push the
limits of efficient FFT-based image deconvolution, in:
Proceedings
of the IEEE International Conference on Computer Vision (ICCV)
(Venice, Italy, 2017) pp. 4596–4604,
https://doi.org/10.1109/ICCV.2017.491
[36] A. Foi, K. Dabov, V. Katkovnik, and K. Egiazarian,
Shape-adaptive DCT for denoising and image reconstruction, Proc.
SPIE
6064, A-18 (2006),
https://doi.org/10.1117/12.642839
[37] S. Cho, J. Wang, and S. Lee, Handling outliers in non-blind
image deconvolution, in:
Proceedings of the 2011
International Conference on Computer Vision (Barcelona,
Spain, 2011) pp. 495–502,
https://doi.org/10.1109/ICCV.2011.6126280
[38] Y. Nan, Y. Quan, and H. Ji, Variational-EM-based deep
learning for noise-blind image deblurring, in:
Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (Seattle, WA, USA, 2020) pp. 3623–3632,
https://doi.org/10.1109/CVPR42600.2020.00368
[39] L. Pan, Y. Dai, and M. Liu, Single image deblurring and
camera motion estimation with depth map, in:
Proceedings of
the IEEE Winter Conference on Applications of Computer Vision
(WACV) (Waikoloa Village, HI, USA, 2019) pp. 2116–2125,
https://doi.org/10.1109/WACV.2019.00229
[40] M. McKenney and M. Schneider,
Map Framework: A Formal
Model of Maps as a Fundamental Data Type in Information
Systems (Springer Cham, 2016),
https://doi.org/10.1007/978-3-319-46766-5_2
[41] L. Pan, R. Hartley, M. Liu, and Y. Dai, Phase-only image
based kernel estimation for single image blind deblurring, in:
Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (Long Beach, CA, USA, 2019) pp.
6027–6036,
https://doi.org/10.1109/CVPR.2019.00619
[42] L. Li, J. Pan, W.-S. Lai, C. Gao, N. Sang, and M.-H. Yang,
Learning a discriminative prior for blind image deblurring, in:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2018) pp. 6616–6625,
https://doi.org/10.1109/CVPR.2018.00692
[43] X. Tao, H. Gao, X. Shen, J. Wang, and J. Jia,
Scale-recurrent network for deep image deblurring, in:
Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (Salt Lake City, UT, USA, 2018) pp. 8174–8182,
https://doi.org/10.1109/CVPR.2018.00853