[PDF]    https://doi.org/10.3952/physics.2023.63.4.1

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 191–201 (2023)

TERAHERTZ BOW-TIE DIODE BASED ON ASYMMETRICALLY SHAPED AlGaN/GaN HETEROSTRUCTURES
Justinas Jorudasa, Dalius Seliutaa, Linas Minkevičiusa, Vytautas Janonisa, Liudvikas Subačiusa, Daniil Pashneva, Sandra Pralgauskaitėa, Jonas Matukasa, Kęstutis Ikamasb, Alvydas Lisauskasb, Emilis Šermukšnisc, Artūr Šimukovičc, Juozapas Liberisc, Vitalij Kovalevskijd, and Irmantas Kašalynasa,b
a Terahertz Photonics Laboratory, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
b Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
c Fluctuation Research Laboratory, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
d Experimental Nuclear Physics Laboratory, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: irmantas.kasalynas@ftmc.lt

Received 3 October 2023; accepted 3 October 2023

Asymmetrical shaping of AlGaN/GaN heterostructures containing a conductive layer of two-dimensional electron gas (2DEG) was used for the development of bow-tie (BT) diodes for room temperature terahertz (THz) detection. Considering operation of the THz BT diode in the unbiased mode as preferable for practical applications, we investigated the diodes with an obvious asymmetry of IV characteristics, which was found to be more pronounced with the decrease of an apex width, resulting in the sensitive THz detection. A nonuniform heating of carriers in a metalized leaf of the BT diode was attributed as the main mechanism that caused the rectification of THz waves. The responsivity and noise-equivalent power (NEP) at the fundamental antenna frequency of 150 GHz were up to 4 V/W and 2 nW/√Hz, respectively. Such high sensitivity of BT diodes allowed us to measure for the first time the response spectrum of the asymmetric BT antenna demonstrating fundamental and higher order resonances in good agreement with finite-difference time-domain simulation data in a broad spectrum range. The detailed investigation of the low- and high-frequency noise characteristics of AlGaN/GaN BT diodes revealed that only thermal noise needs to be considered for the unbiased operation, the value of which was relatively low due to a high density of 2DEG enabling low resistivity values. Moreover, we observed that the responsivity of BT diode scales with its resistance, revealing that tapering of the diode apex below a few microns could be ineffective in applications which require low NEP values.
Keywords: THz bow-tie diode, AlGaN/GaN heterostructure, 2DEG, asymmetrical BT antenna

ASIMETRIŠKAI SUSIAURINTŲ AlGaN/GaN HETEROSTRUKTŪRŲ PETELIŠKĖS TIPO DIODAI TERAHERCINIAM DAŽNIŲ RUOŽUI
Justinas Jorudasa, Dalius Seliutaa, Linas Minkevičiusa, Vytautas Janonisa, Liudvikas Subačiusa, Daniil Pashneva, Sandra Pralgauskaitėa, Jonas Matukasa, Kęstutis Ikamasb, Alvydas Lisauskasb, Emilis Šermukšnisc, Artūr Šimukovičc, Juozapas Liberisc, Vitalij Kovalevskijd, Irmantas Kašalynasa,b

a Fizinių ir technologijos mokslų centro Terahercų fotonikos laboratorija, Vilnius, Lietuva
b Vilniaus universiteto Taikomosios elektrodinamikos ir telekomunikacijų institutas, Vilnius, Lietuva
c Fizinių ir technologijos mokslų centro Fliuktuacinių reiškinių laboratorija, Vilnius, Lietuva
d Fizinių ir technologijos mokslų centro Eksperimentinės branduolio fizikos laboratorija, Vilnius, Lietuva

Asimetriškai susiaurintos AlGaN/GaN heterostruktūros su laidžiu dvimačių elektronų dujų (2DEG) sluoksniu panaudotos sukurti peteliškės tipo (BT) diodus, tinkančius terahercinio dažnių ruožo (THz) bangoms registruoti kambario temperatūroje. Atsižvelgiant į tai, kad be išorinės postūmio įtampos THz BT diodo veikimas yra labiau tinkamas praktiniams taikymams, ištyrėme diodus su didele srovės ir įtampos (IV) charakteristikų asimetrija, kuri buvo tuo ryškesnė, kuo mažesnis kakliuko plotis, parodant didelį diodų jautrumą THz bangoms. Krūvininkų kaitinimas metalizuotame diodo lapelyje buvo išskirtas kaip pagrindinis mechanizmas, lemiantis THz bangų lyginimą BT diode. Jautris ir triukšmo ekvivalentinė galia (NEP) ties pagrindiniu antenos dažniu 150 GHz siekė iki 4 V/W ir atitinkamai 2 nW/√Hz. Toks didelis BT diodų jautrumas leido mums pirmą kartą išmatuoti asimetrinės BT antenos dažninę charakteristiką, stebint pagrindinį ir aukštesnės eilės antenos rezonansus, parodant gerą sutapimą su baigtinių skirtumų laiko skalėje atliktais modeliavimo rezultatais plačiame dažnių ruože. Išsamus AlGaN/GaN BT diodų žemo ir aukšto dažnio triukšmo charakteristikų tyrimas atskleidė, kad nenaudojant įtampos postūmio reikia atsižvelgti tik į šiluminį triukšmą, kurio vertė buvo santykinai maža dėl didelio 2DEG tankio, lemiančio nedidelę diodo varžą. Taip pat nustatėme, kad BT diodo jautrumas netiesiniu dėsniu priklauso nuo jo varžos, dėl to diodo kakliuko siaurinimas žemiau kelių mikronų vertės gali būti mažai veiksmingas, kai tikimasi mažų NEP verčių.


References / Nuorodos

[1] G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H.G. Roskos, Roadmap of Terahertz Imaging 2021, Sensors 21, 4092 (2021),
https://doi.org/10.3390/s21124092
[2] THz Communications, eds. T. Kürner, D.M. Mittleman and T. Nagatsuma (Springer International Publishing, Cham, 2022),
https://doi.org/10.1007/978-3-030-73738-2
[3] L. Minkevičius, V. Tamošiunas, K. Madeikis, B. Voisiat, I. Kašalynas, and G. Valušis, On-chip integration of laser-ablated zone plates for detection enhancement of InGaAs bow-tie terahertz detectors, Electron. Lett. 50, 1367–1369 (2014),
https://doi.org/10.1049/el.2014.1893
[4] S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, et al., Broadband image sensor array based on graphene–CMOS integration, Nat. Photonics 11, 366–371 (2017),
https://doi.org/10.1038/nphoton.2017.75
[5] R. Yadav, F. Ludwig, F.R. Faridi, J.M. Klopf, H.G. Roskos, S. Preu, and A. Penirschke, State-of-the-art room temperature operable zero-bias Schottky diode-based terahertz detector up to 5.56 THz, Sensors 23, 3469 (2023),
https://doi.org/10.3390/s23073469
[6] C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, Room-temperature high-gain long-wavelength photodetector via optical–electrical controlling of hot carriers in graphene, Adv. Opt. Mater. 6, 1800836 (2018),
https://doi.org/10.1002/adom.201800836
[7] D. Seliuta, J. Vyšniauskas, K. Ikamas, A. Lisauskas, I. Kašalynas, A. Reklaitis, and G. Valušis, Symmetric bow-tie diode for terahertz detection based on transverse hot-carrier transport, J. Phys. D 53, 275106 (2020),
https://doi.org/10.1088/1361-6463/ab831d
[8] A.M. Cowley and H.O. Sorensen, Quantitative comparison of solid-state microwave detectors, IEEE Trans. Microw. Theory Tech. 14(12), 588–602 (1966),
https://doi.org/10.1109/TMTT.1966.1126337
[9] A. Sužiedelis, J. Gradauskas, S. Ašmontas, G. Valušis, and H.G. Roskos, Giga- and terahertz frequency band detector based on an asymmetrically necked n-n+-GaAs planar structure, J. Appl. Phys. 93, 3034–3038 (2003),
https://doi.org/10.1063/1.1536024
[10] X. Cai, A.B. Sushkov, R.J. Suess, M.M. Jadidi, G.S. Jenkins, L.O. Nyakiti, R.L. Myers-Ward, S. Li, J. Yan, D.K. Gaskill, T.E. Murphy, H.D. Drew, and M.S. Fuhrer, Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene, Nat. Nanotechnol. 9, 814–819 (2014),
https://doi.org/10.1038/nnano.2014.182
[11] L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, Graphene field-effect transistors as room-temperature terahertz detectors, Nat. Mater. 11, 865–871 (2012),
https://doi.org/10.1038/nmat3417
[12] R.I. Harrison and J. Zucker, Hot-carrier microwave detector, Proc. IEEE 54(4), 588–595 (1966),
https://doi.org/10.1109/PROC.1966.4778
[13] D. Seliuta, I. Kašalynas, V. Tamošiunas, S. Balakauskas, Z. Martunas, S. Ašmontas, G. Valušis, A. Lisauskas, H.G. Roskos, and K. Köhler, Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature, Electron. Lett. 42, 825–827 (2006),
https://doi.org/10.1049/el:20061224
[14] I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis, and G. Valušis, InGaAs-based bow-tie diode for spectroscopic terahertz imaging, J. Appl. Phys. 110, 114505 (2011),
https://doi.org/10.1063/1.3658017
[15] I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiunas, K. Köhler, and G. Valušis, Terahertz imaging with bow-tie InGaAs-based diode with broken symmetry, Electron. Lett. 45, 833–835 (2009),
https://doi.org/10.1049/el.2009.0336
[16] L. Minkevičius, V. Tamošiunas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H.G. Roskos, and K. Köhler, Terahertz heterodyne imaging with InGaAs-based bow-tie diodes, Appl. Phys. Lett. 99, 131101 (2011),
https://doi.org/10.1063/1.3641907
[17] D. Seliuta, E. Širmulis, V. Tamošiūnas, S. Balakauskas, S. Ašmontas, A. Sužiedėlis, J. Gradauskas, G. Valušis, A. Lisauskas, H.G. Roskos, and K. Köhler, Detection of terahertz∕sub-terahertz radiation by asymmetrically-shaped 2DEG layers, Electron. Lett. 40, 631 (2004),
https://doi.org/10.1049/el:20040412
[18] L. Minkevičius, V. Tamošiūnas, M. Kojelis, E. Žąsinas, V. Bukauskas, A. Šetkus, R. Butkutė, I. Kašalynas, and G. Valušis, Influence of field effects on the performance of InGaAs-based terahertz radiation detectors, J. Infrared Millim. Terahertz Waves 38, 689–707 (2017),
https://doi.org/10.1007/s10762-017-0382-1
[19] S. Ašmontas, M. Anbinderis, A. Čerškus, J. Gradauskas, A. Sužiedėlis, A. Šilėnas, E. Širmulis, and V. Umansky, Gated bow-tie diode for microwave to sub-terahertz detection, Sensors 20, 829 (2020),
https://doi.org/10.3390/s20030829
[20] H. Ito and T. Ishibashi, Low-noise terahertz-wave detection by InP/InGaAs Fermi-level managed barrier diode, Appl. Phys. Express 9, 092401 (2016),
https://doi.org/10.7567/APEX.9.092401
[21] Y. Qu, W. Zhou, J. Tong, N. Yao, X. Xu, T. Hu, Z. Huang, and J. Chu, High sensitivity of room-temperature sub-terahertz photodetector based on In0.53Ga0.47As material, Appl. Phys. Express 11, 112201 (2018),
https://doi.org/10.7567/APEX.11.112201
[22] S. Nadar, M. Zaknoune, X. Wallart, C. Coinon, E. Peytavit, G. Ducournau, F. Gamand, M. Thirault, M. Werquin, S. Jonniau, N. Thouvenin, C. Gaquiere, N. Vellas, and J.-F. Lampin, High performance heterostructure low barrier diodes for sub-THz detection, IEEE Trans. Terahertz Sci. Technol. 7, 780–788 (2017),
https://doi.org/10.1109/TTHZ.2017.2755503
[23] M. Lee, L.N. Pfeiffer, and K.W. West, Ballistic cooling in a wideband two-dimensional electron gas bolometric mixer, Appl. Phys. Lett. 81, 1243–1245 (2002),
https://doi.org/10.1063/1.1500429
[24] V. Palenskis, L. Minkevičius, J. Matukas, D. Jokubauskis, S. Pralgauskaitė, D. Seliuta, B. Čechavičius, R. Butkutė, and G. Valušis, InGaAs diodes for terahertz sensing–effect of molecular beam epitaxy growth conditions, Sensors 18, 1–15 (2018),
https://doi.org/10.3390/s18113760
[25] D. Pashnev, V.V. Korotyeyev, J. Jorudas, A. Urbanowicz, P. Prystawko, V. Janonis, and I. Kasalynas, Investigation of electron effective mass in AlGaN/GaN heterostructures by THz spectroscopy of Drude conductivity, IEEE Trans. Electron Devices 69, 3636–3640 (2022),
https://doi.org/10.1109/TED.2022.3177388
[26] J.K. Choi, V. Mitin, R. Ramaswamy, V.A. Pogrebnyak, M.P. Pakmehr, A. Muravjov, M.S. Shur, J. Gill, I. Mehdi, B.S. Karasik, and A.V. Sergeev, THz hot-electron micro-bolometer based on low-mobility 2-DEG in GaN heterostructure, IEEE Sens. J. 13, 80–88 (2013),
https://doi.org/10.1109/JSEN.2012.2224334
[27] E. Šermukšnis, J. Jorudas, A. Šimukovič, V. Kovalevskij, and I. Kašalynas, Self-heating of annealed Ti/Al/Ni/Au contacts to two-dimensional electron gas in AlGaN/GaN heterostructures, Appl. Sci. 12, 11079 (2022),
https://doi.org/10.3390/app122111079
[28] J. Jorudas, J. Malakauskaite, L. Subacius, V. Janonis, V. Jakstas, V. Kovalevskij, and I. Kasalynas, Development of the planar AlGaN/GaN bow-tie diodes for terahertz detection, in: Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2019) pp. 1–2,
https://doi.org/10.1109/IRMMW-THz.2019.8873816
[29] J. Jorudas and I. Kasalynas, Terahertz responsivity of AlGaN/GaN bow-tie diode detectors at the temperatures of 295 K and 80 K, in: Proceedings of the 2022 47th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2022) pp. 1–2,
https://doi.org/10.1109/IRMMW-THz50927.2022.9895472
[30] S. Pralgauskaitė, J. Matukas, E. Kažukauskas, I. Kašalynas, V. Janonis, and P. Prystawko, Low frequency noise spectroscopy of GaN bow-tie THz detectors, in: Proceedings of the 25th International Conference on Noise Fluctuations (ICNF 2019), ed. C. Enz (ICLAB, Neuchâtel, Switzerland, 2019),
https://doi.org/10.5075/epfl-ICLAB-ICNF-269187
[31] M. Bauer, A. Ramer, S.A. Chevtchenko, K.Y. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H.G. Roskos, A high-sensitivity AlGaN/GaN HEMT terahertz detector with integrated broadband bow-tie antenna, IEEE Trans. Terahertz Sci. Technol. 9, 430–444 (2019),
https://doi.org/10.1109/TTHZ.2019.2917782