References /
Nuorodos
[1] G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H.G. Roskos,
Roadmap of Terahertz Imaging 2021, Sensors
21, 4092
(2021),
https://doi.org/10.3390/s21124092
[2]
THz Communications, eds. T. Kürner, D.M. Mittleman
and T. Nagatsuma (Springer International Publishing, Cham,
2022),
https://doi.org/10.1007/978-3-030-73738-2
[3] L. Minkevičius, V. Tamošiunas, K. Madeikis, B. Voisiat, I.
Kašalynas, and G. Valušis, On-chip integration of laser-ablated
zone plates for detection enhancement of InGaAs bow-tie
terahertz detectors, Electron. Lett.
50, 1367–1369
(2014),
https://doi.org/10.1049/el.2014.1893
[4] S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J.
Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T.
Galán, et al., Broadband image sensor array based on
graphene–CMOS integration, Nat. Photonics
11, 366–371
(2017),
https://doi.org/10.1038/nphoton.2017.75
[5] R. Yadav, F. Ludwig, F.R. Faridi, J.M. Klopf, H.G. Roskos,
S. Preu, and A. Penirschke, State-of-the-art room temperature
operable zero-bias Schottky diode-based terahertz detector up to
5.56 THz, Sensors
23, 3469 (2023),
https://doi.org/10.3390/s23073469
[6] C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W.
Tang, W. Lu, and A. Tredicucci, Room-temperature high-gain
long-wavelength photodetector via optical–electrical controlling
of hot carriers in graphene, Adv. Opt. Mater.
6, 1800836
(2018),
https://doi.org/10.1002/adom.201800836
[7] D. Seliuta, J. Vyšniauskas, K. Ikamas, A. Lisauskas, I.
Kašalynas, A. Reklaitis, and G. Valušis, Symmetric bow-tie diode
for terahertz detection based on transverse hot-carrier
transport, J. Phys. D
53, 275106 (2020),
https://doi.org/10.1088/1361-6463/ab831d
[8] A.M. Cowley and H.O. Sorensen, Quantitative comparison of
solid-state microwave detectors, IEEE Trans. Microw. Theory
Tech.
14(12), 588–602 (1966),
https://doi.org/10.1109/TMTT.1966.1126337
[9] A. Sužiedelis, J. Gradauskas, S. Ašmontas, G. Valušis, and
H.G. Roskos, Giga- and terahertz frequency band detector based
on an asymmetrically necked n-n+-GaAs planar structure, J. Appl.
Phys.
93, 3034–3038 (2003),
https://doi.org/10.1063/1.1536024
[10] X. Cai, A.B. Sushkov, R.J. Suess, M.M. Jadidi, G.S.
Jenkins, L.O. Nyakiti, R.L. Myers-Ward, S. Li, J. Yan, D.K.
Gaskill, T.E. Murphy, H.D. Drew, and M.S. Fuhrer, Sensitive
room-temperature terahertz detection via the photothermoelectric
effect in graphene, Nat. Nanotechnol.
9, 814–819 (2014),
https://doi.org/10.1038/nnano.2014.182
[11] L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo,
A.C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A.
Tredicucci, Graphene field-effect transistors as
room-temperature terahertz detectors, Nat. Mater.
11,
865–871 (2012),
https://doi.org/10.1038/nmat3417
[12] R.I. Harrison and J. Zucker, Hot-carrier microwave
detector, Proc. IEEE
54(4), 588–595 (1966),
https://doi.org/10.1109/PROC.1966.4778
[13] D. Seliuta, I. Kašalynas, V. Tamošiunas, S. Balakauskas, Z.
Martunas, S. Ašmontas, G. Valušis, A. Lisauskas, H.G. Roskos,
and K. Köhler, Silicon lens-coupled bow-tie InGaAs-based
broadband terahertz sensor operating at room temperature,
Electron. Lett.
42, 825–827 (2006),
https://doi.org/10.1049/el:20061224
[14] I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis,
and G. Valušis, InGaAs-based bow-tie diode for spectroscopic
terahertz imaging, J. Appl. Phys.
110, 114505 (2011),
https://doi.org/10.1063/1.3658017
[15] I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiunas, K.
Köhler, and G. Valušis, Terahertz imaging with bow-tie
InGaAs-based diode with broken symmetry, Electron. Lett.
45,
833–835 (2009),
https://doi.org/10.1049/el.2009.0336
[16] L. Minkevičius, V. Tamošiunas, I. Kašalynas, D. Seliuta, G.
Valušis, A. Lisauskas, S. Boppel, H.G. Roskos, and K. Köhler,
Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,
Appl. Phys. Lett.
99, 131101 (2011),
https://doi.org/10.1063/1.3641907
[17] D. Seliuta, E. Širmulis, V. Tamošiūnas, S. Balakauskas,
S. Ašmontas, A. Sužiedėlis, J. Gradauskas, G. Valušis, A.
Lisauskas, H.G. Roskos, and K. Köhler, Detection of
terahertz∕sub-terahertz radiation by asymmetrically-shaped 2DEG
layers, Electron. Lett.
40, 631 (2004),
https://doi.org/10.1049/el:20040412
[18] L. Minkevičius, V. Tamošiūnas, M. Kojelis, E. Žąsinas, V.
Bukauskas, A. Šetkus, R. Butkutė, I. Kašalynas, and G. Valušis,
Influence of field effects on the performance of InGaAs-based
terahertz radiation detectors, J. Infrared Millim. Terahertz
Waves
38, 689–707 (2017),
https://doi.org/10.1007/s10762-017-0382-1
[19] S. Ašmontas, M. Anbinderis, A. Čerškus, J. Gradauskas, A.
Sužiedėlis, A. Šilėnas, E. Širmulis, and V. Umansky, Gated
bow-tie diode for microwave to sub-terahertz detection, Sensors
20, 829 (2020),
https://doi.org/10.3390/s20030829
[20] H. Ito and T. Ishibashi, Low-noise terahertz-wave detection
by InP/InGaAs Fermi-level managed barrier diode, Appl. Phys.
Express
9, 092401 (2016),
https://doi.org/10.7567/APEX.9.092401
[21] Y. Qu, W. Zhou, J. Tong, N. Yao, X. Xu, T. Hu, Z. Huang,
and J. Chu, High sensitivity of room-temperature sub-terahertz
photodetector based on In
0.53Ga
0.47As
material, Appl. Phys. Express
11, 112201 (2018),
https://doi.org/10.7567/APEX.11.112201
[22] S. Nadar, M. Zaknoune, X. Wallart, C. Coinon, E. Peytavit,
G. Ducournau, F. Gamand, M. Thirault, M. Werquin, S. Jonniau, N.
Thouvenin, C. Gaquiere, N. Vellas, and J.-F. Lampin, High
performance heterostructure low barrier diodes for sub-THz
detection, IEEE Trans. Terahertz Sci. Technol.
7,
780–788 (2017),
https://doi.org/10.1109/TTHZ.2017.2755503
[23] M. Lee, L.N. Pfeiffer, and K.W. West, Ballistic cooling in
a wideband two-dimensional electron gas bolometric mixer, Appl.
Phys. Lett.
81, 1243–1245 (2002),
https://doi.org/10.1063/1.1500429
[24] V. Palenskis, L. Minkevičius, J. Matukas, D. Jokubauskis,
S. Pralgauskaitė, D. Seliuta, B. Čechavičius, R. Butkutė, and G.
Valušis, InGaAs diodes for terahertz sensing–effect of molecular
beam epitaxy growth conditions, Sensors
18, 1–15 (2018),
https://doi.org/10.3390/s18113760
[25] D. Pashnev, V.V. Korotyeyev, J. Jorudas, A. Urbanowicz, P.
Prystawko, V. Janonis, and I. Kasalynas, Investigation of
electron effective mass in AlGaN/GaN heterostructures by THz
spectroscopy of Drude conductivity, IEEE Trans. Electron Devices
69, 3636–3640 (2022),
https://doi.org/10.1109/TED.2022.3177388
[26] J.K. Choi, V. Mitin, R. Ramaswamy, V.A. Pogrebnyak, M.P.
Pakmehr, A. Muravjov, M.S. Shur, J. Gill, I. Mehdi, B.S.
Karasik, and A.V. Sergeev, THz hot-electron micro-bolometer
based on low-mobility 2-DEG in GaN heterostructure, IEEE Sens.
J.
13, 80–88 (2013),
https://doi.org/10.1109/JSEN.2012.2224334
[27] E. Šermukšnis, J. Jorudas, A. Šimukovič, V. Kovalevskij,
and I. Kašalynas, Self-heating of annealed Ti/Al/Ni/Au contacts
to two-dimensional electron gas in AlGaN/GaN heterostructures,
Appl. Sci.
12, 11079 (2022),
https://doi.org/10.3390/app122111079
[28] J. Jorudas, J. Malakauskaite, L. Subacius, V. Janonis, V.
Jakstas, V. Kovalevskij, and I. Kasalynas, Development of the
planar AlGaN/GaN bow-tie diodes for terahertz detection, in:
Proceedings
of the 2019 44th International Conference on Infrared,
Millimeter, and Terahertz Waves (IEEE, 2019) pp. 1–2,
https://doi.org/10.1109/IRMMW-THz.2019.8873816
[29] J. Jorudas and I. Kasalynas, Terahertz responsivity of
AlGaN/GaN bow-tie diode detectors at the temperatures of 295 K
and 80 K, in:
Proceedings of the 2022 47th International
Conference on Infrared, Millimeter, and Terahertz Waves
(IEEE, 2022) pp. 1–2,
https://doi.org/10.1109/IRMMW-THz50927.2022.9895472
[30] S. Pralgauskaitė, J. Matukas, E. Kažukauskas, I. Kašalynas,
V. Janonis, and P. Prystawko, Low frequency noise spectroscopy
of GaN bow-tie THz detectors, in:
Proceedings of the 25th
International Conference on Noise Fluctuations (ICNF 2019),
ed. C. Enz (ICLAB, Neuchâtel, Switzerland, 2019),
https://doi.org/10.5075/epfl-ICLAB-ICNF-269187
[31] M. Bauer, A. Ramer, S.A. Chevtchenko, K.Y. Osipov, D.
Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W.
Heinrich, V. Krozer, and H.G. Roskos, A high-sensitivity
AlGaN/GaN HEMT terahertz detector with integrated broadband
bow-tie antenna, IEEE Trans. Terahertz Sci. Technol.
9,
430–444 (2019),
https://doi.org/10.1109/TTHZ.2019.2917782