[PDF]    https://doi.org/10.3952/physics.2023.63.4.2

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 202–209 (2023)

GUIDED MODE RESONANCES FOR ANGULAR AND SPECTRAL FILTERING
Ignas Lukošiūnasa, Julianija Nikitinaa,b, Darius Gailevičiusa, Lina Grinevičiūtėa,b, and Kęstutis Staliūnasa,c,d
a Laser Research Center, Vilnius University Faculty of Physics, Saulėtekio 10, 10223 Vilnius, Lithuania
b Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
c ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
d UPC, Dep. de Fisica, Rambla Sant Nebridi 22, 08222 Terrassa (Barcelona), Spain
Email: ignas.lukosiunas@ff.vu.lt

Received 13 September 2023; accepted 14 September 2023

The development of devices based on compact waveguides is a rapidly evolving field. A unique variation of such devices is the Fano-like resonance dielectric spectral and spatial filtre, made from a dielectric conformal thin film on a surface relief grating. It can be used in a normal (or oblique) angle-of-incidence configuration. This device facilitates directional selectivity, which is useful for transverse-mode cleaning in short optical cavities. It can also be enhanced by using leaky-mode effects to produce even sharper spectral features. However, a perfect spatial filtre should be as invariant as possible in the spectral and enhanced angular domains. Here, we solved the inverse design problem to produce such an effect. Numerically, we tuned the surface profile of the substrate grating, assuming a conformal layer on top. This resulted in trapezoidal relief patterns followed by narrow flat-top angular features. The combination of leaky mode effect and enhanced device topology will enable efficient and useful devices with a bandwidth of 50 nm and even more in the future.
Keywords: nanophotonics, linear photonics, RCWA, Maxwell’s equations, ion beam sputtering

ERDVINIS IR SPEKTRINIS FILTRAVIMAS NAUDOJANT BANGOLAIDINIUS REZONANSUS
Ignas Lukošiūnasa, Julianija Nikitinaa,b, Darius Gailevičiusa, Lina Grinevičiūtėa,b, Kęstutis Staliūnasa,c,d

a Vilniaus universiteto Fizikos fakulteto Lazerinių tyrimų centras, Vilnius, Lietuva
b Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
c Katalonijos mokslinių tyrimų ir pažangiųjų studijų institutas (ICREA), Barselona, Ispanija
d Katalonijos politechnikos universiteto (UPC) Fizikos fakultetas, Terasa (Barselona), Ispanija

Nanofotonika yra sparčiai besivystanti sritis, kurioje nagrinėjama šviesos sąveika su įvairiomis, tarp jų ir bangolaidinėmis, metamedžiagomis. Vienas ryškiausių pavyzdžių yra Fano rezonansu pasižymintys bangolaidiniai komforminiai plonasluoksniai filtrai, kurie gaminami ant periodinių paviršių gardelių pagrindo naudojant jonapluoščio dulkinimo (angl. Ion Beam Sputtering) technologiją. Šiais fotoniniais įtaisais galima atlikti erdvinio filtravimo funkciją pasiekus ištekančio (angl. leaky) modų režimo sąlygą. Jais galima naudotis kaip veidrodžiais, kurie siaurai atspindi kritusią šviesą kampinėje ir plačiai spektrinėje srityse. Šiame darbe buvo išspręstas optimizavimo uždavinys tobulinant trapecinės formos periodinį bangolaidį taip, kad būtų gautas aštrus plokščios viršūnės pavidalo atspindys kampiniame diapazone. Jo plotis spektre yra 46 nm. Siekiant įrodyti teorijos validumą, buvo atliktas tokių darinių gamybos eksperimentas ant trapecinės formos gardelių pagrindo.


References / Nuorodos

[1] L. Grineviciute, C. Babayigit, D. Gailevicius, M. Peckus, M. Turduev, T. Tolenis, M. Vengris, H. Kurt, and K. Staliunas, Nanostructured multilayer coatings for spatial filtering, Adv. Opt. Mater. 9 (2021),
https://doi.org/10.1002/adom.202001730
[2] Y. He, B. Song, and J. Tang, Optical metalenses: fundamentals, dispersion manipulation, and applications, Front. Optoelectron. 15, 24 (2022),
https://doi.org/10.1007/s12200-022-00017-4
[3] G. Martinez-Ponce, T. Petrova, N. Tomova, V. Dragostinova, T. Todorov, and L. Nikolova, Bifocal-polarization holographic lens, Opt. Lett. 29, 1001 (2004),
https://doi.org/10.1364/OL.29.001001
[4] L. Grineviciute, J. Nikitina, C. Babayigit, and K. Staliunas, Fano-like resonances in nanostructured thin films for spatial filtering, Appl. Phys. Lett. 118, 131114 (2021),
https://doi.org/10.1063/5.0044032
[5] K. Markowski, J. Bojarczuk, P. Araszkiewicz, R. Cybulski, M. Gaska, and A. Golaszewski, Analysis of the performance of WDM-CDM Bragg grating interrogation system with high-contrast grating VCSEL, J. Light. Technol. 41, 2892 (2023),
https://doi.org/10.1109/JLT.2023.3237602
[6] U. Fano, Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d’arco, Nuovo Cimento (1924–1942) 12, 154 (1935),
https://doi.org/10.1007/BF02958288
[7] V. Purlys, L. Maigyte, D. Gailevičius, M. Peckus, M. Malinauskas, and K. Staliunas, Spatial filtering by chirped photonic crystals, Phys. Rev. A 87, 033805 (2013),
https://doi.org/10.1103/PhysRevA.87.033805
[8] E. Colak, A.O. Cakmak, A.E. Serebryannikov, and E. Ozbay, Spatial filtering using dielectric photonic crystals at beam-type excitation, J. Appl. Phys. 108, 113106 (2010),
https://doi.org/10.1063/1.3498810
[9] L. Maigyte, V. Purlys, J. Trull, M. Peckus, C. Cojocaru, D. Gailevičius, M. Malinauskas, and K. Staliunas, Flat lensing in the visible frequency range by woodpile photonic crystals, Opt. Lett. 38, 2376 (2013),
https://doi.org/10.1364/OL.38.002376
[10] K. Staliunas and V.J. Sánchez-Morcillo, Spatial filtering of light by chirped photonic crystals, Phys. Rev. A 79, 053807 (2009),
https://doi.org/10.1103/PhysRevA.79.053807
[11] R. Picó, V. Sánchez-Morcillo, I. Pérez-Arjona, and K. Staliunas, Spatial filtering of sound beams by sonic crystals, Appl. Acoust. 73, 302 (2012),
https://doi.org/10.1016/j.apacoust.2011.09.011
[12] S. Gawali, D. Gailevicius, G. Garre-Werner, V. Purlys, C. Cojocaru, J. Trull, J. Montiel-Ponsoda, and K. Staliunas, Photonic crystal spatial filtering in broad aperture diode laser, Appl. Phys. Lett. 115, 141104 (2019),
https://doi.org/10.1063/1.5113780
[13] D. Gailevicius, V. Koliadenko, V. Purlys, M. Peckus, V. Taranenko, and K. Staliunas, Photonic crystal microchip laser, Sci. Rep. 6, 34173 (2016),
https://doi.org/10.1038/srep34173
[14] I. Lukosiunas, L. Grineviciute, J. Nikitina, D. Gailevicius, and K. Staliunas, Extremely narrow sharply peaked resonances at the edge of the continuum, Phys. Rev. A 107, L061501 (2023),
https://doi.org/10.1103/PhysRevA.107.L061501
[15] R. Magnusson, Flat-top resonant reflectors with sharply delimited angular spectra: an application of the Rayleigh anomaly, Opt. Lett. 38, 989 (2013),
https://doi.org/10.1364/OL.38.000989
[16] R. Magnusson, Wideband reflectors with zero-contrast gratings, Opt. Lett. 39 (2014),
https://doi.org/10.1364/OL.39.004337
[17] Y. Ding and R. Magnusson, Resonant leaky-mode spectral-band engineering and device applications, Opt. Express 12, 5661 (2004),
https://doi.org/10.1364/OPEX.12.005661
[18] H. Keshmiri, F. Armin, K. Elsayad, F. Schreiber, and M. Moreno-Sereno, Leaky and waveguide modes in biperiodic holograms, Sci. Rep. 11, 10991 (2021),
https://doi.org/10.1038/s41598-021-89971-1
[19] J.W. Strutt, On the dynamical theory of gratings, Proc. Math. Phys. Eng. Sci. 79, 399 (1907),
https://doi.org/10.1098/rspa.1907.0051
[20] J. Harvey and R. Pfisterer, Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings, Opt. Eng. 58(8), 1 (2019),
https://doi.org/10.1117/1.OE.58.8.087105
[21] M.S. Amin, J.W. Yoon, and R. Magnusson, Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly, Appl. Phys. Lett. 103, 131106 (2013),
https://doi.org/10.1063/1.4823532
[22] M.G. Moharam, E.B. Grann, D.A. Pommet, and T.K. Gaylord, Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings, J. Opt. Soc. Am. A 12(5), 1068 (1995),
https://doi.org/10.1364/JOSAA.12.001068
[23] M.G. Moharam, D.A. Pommet, E.B. Grann, and T.K. Gaylord, Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach, J. Opt. Soc. Am. A 12(5), 1077 (1995),
https://doi.org/10.1364/JOSAA.12.001077
[24] D. Gailevičius, V. Purlys, and K. Staliunas, Photonic crystal spatial filters fabricated by femtosecond pulsed Bessel beam, Opt. Lett. 44(20), 4969 (2019),
https://doi.org/10.1364/OL.44.004969
[25] L. Grinevičiūtė, Nanostructured Optical Coatings for the Manipulation of Laser Radiation, PhD Thesis (Vilnius University, 2021),
https://doi.org/10.15388/vu.thesis.185
[26] L. Maigyte and K. Staliunas, Spatial filtering with photonic crystals, Appl. Phys. Rev. 2, 011102 (2015),
https://doi.org/10.1063/1.4907345
[27] S. Gawali, J. Medina, D. Gailevičius, V. Purlys, G. Garre-Werner, C. Cojocaru, J. Trull, M. Botey, R. Herrero, J. Montiel-Ponsoda, and K. Staliunas, Spatial filtering in edge-emitting lasers by intra-cavity chirped photonic crystals, J. Opt. Soc. Am. B 37(10), 2856 (2020),
https://doi.org/10.1364/JOSAB.397005