References /
Nuorodos
[1] L. Grineviciute, C. Babayigit, D. Gailevicius, M. Peckus, M.
Turduev, T. Tolenis, M. Vengris, H. Kurt, and K. Staliunas,
Nanostructured multilayer coatings for spatial filtering, Adv.
Opt. Mater.
9 (2021),
https://doi.org/10.1002/adom.202001730
[2] Y. He, B. Song, and J. Tang, Optical metalenses:
fundamentals, dispersion manipulation, and applications, Front.
Optoelectron.
15, 24 (2022),
https://doi.org/10.1007/s12200-022-00017-4
[3] G. Martinez-Ponce, T. Petrova, N. Tomova, V. Dragostinova,
T. Todorov, and L. Nikolova, Bifocal-polarization holographic
lens, Opt. Lett.
29, 1001 (2004),
https://doi.org/10.1364/OL.29.001001
[4] L. Grineviciute, J. Nikitina, C. Babayigit, and K.
Staliunas, Fano-like resonances in nanostructured thin films for
spatial filtering, Appl. Phys. Lett.
118, 131114 (2021),
https://doi.org/10.1063/5.0044032
[5] K. Markowski, J. Bojarczuk, P. Araszkiewicz, R. Cybulski, M.
Gaska, and A. Golaszewski, Analysis of the performance of
WDM-CDM Bragg grating interrogation system with high-contrast
grating VCSEL, J. Light. Technol.
41, 2892 (2023),
https://doi.org/10.1109/JLT.2023.3237602
[6] U. Fano, Sullo spettro di assorbimento dei gas nobili presso
il limite dello spettro d’arco, Nuovo Cimento (1924–1942)
12,
154 (1935),
https://doi.org/10.1007/BF02958288
[7] V. Purlys, L. Maigyte, D. Gailevičius, M. Peckus, M.
Malinauskas, and K. Staliunas, Spatial filtering by chirped
photonic crystals, Phys. Rev. A
87, 033805 (2013),
https://doi.org/10.1103/PhysRevA.87.033805
[8] E. Colak, A.O. Cakmak, A.E. Serebryannikov, and E. Ozbay,
Spatial filtering using dielectric photonic crystals at
beam-type excitation, J. Appl. Phys.
108, 113106 (2010),
https://doi.org/10.1063/1.3498810
[9] L. Maigyte, V. Purlys, J. Trull, M. Peckus, C. Cojocaru, D.
Gailevičius, M. Malinauskas, and K. Staliunas, Flat lensing in
the visible frequency range by woodpile photonic crystals, Opt.
Lett.
38, 2376 (2013),
https://doi.org/10.1364/OL.38.002376
[10] K. Staliunas and V.J. Sánchez-Morcillo, Spatial filtering
of light by chirped photonic crystals, Phys. Rev. A
79,
053807 (2009),
https://doi.org/10.1103/PhysRevA.79.053807
[11] R. Picó, V. Sánchez-Morcillo, I. Pérez-Arjona, and K.
Staliunas, Spatial filtering of sound beams by sonic crystals,
Appl. Acoust.
73, 302 (2012),
https://doi.org/10.1016/j.apacoust.2011.09.011
[12] S. Gawali, D. Gailevicius, G. Garre-Werner, V. Purlys, C.
Cojocaru, J. Trull, J. Montiel-Ponsoda, and K. Staliunas,
Photonic crystal spatial filtering in broad aperture diode
laser, Appl. Phys. Lett.
115, 141104 (2019),
https://doi.org/10.1063/1.5113780
[13] D. Gailevicius, V. Koliadenko, V. Purlys, M. Peckus, V.
Taranenko, and K. Staliunas, Photonic crystal microchip laser,
Sci. Rep.
6, 34173 (2016),
https://doi.org/10.1038/srep34173
[14] I. Lukosiunas, L. Grineviciute, J. Nikitina, D.
Gailevicius, and K. Staliunas, Extremely narrow sharply peaked
resonances at the edge of the continuum, Phys. Rev. A
107,
L061501 (2023),
https://doi.org/10.1103/PhysRevA.107.L061501
[15] R. Magnusson, Flat-top resonant reflectors with sharply
delimited angular spectra: an application of the Rayleigh
anomaly, Opt. Lett.
38, 989 (2013),
https://doi.org/10.1364/OL.38.000989
[16] R. Magnusson, Wideband reflectors with zero-contrast
gratings, Opt. Lett.
39 (2014),
https://doi.org/10.1364/OL.39.004337
[17] Y. Ding and R. Magnusson, Resonant leaky-mode spectral-band
engineering and device applications, Opt. Express
12,
5661 (2004),
https://doi.org/10.1364/OPEX.12.005661
[18] H. Keshmiri, F. Armin, K. Elsayad, F. Schreiber, and M.
Moreno-Sereno, Leaky and waveguide modes in biperiodic
holograms, Sci. Rep.
11, 10991 (2021),
https://doi.org/10.1038/s41598-021-89971-1
[19] J.W. Strutt, On the dynamical theory of gratings, Proc.
Math. Phys. Eng. Sci.
79, 399 (1907),
https://doi.org/10.1098/rspa.1907.0051
[20] J. Harvey and R. Pfisterer, Understanding diffraction
grating behavior: including conical diffraction and Rayleigh
anomalies from transmission gratings, Opt. Eng.
58(8), 1
(2019),
https://doi.org/10.1117/1.OE.58.8.087105
[21] M.S. Amin, J.W. Yoon, and R. Magnusson, Optical
transmission filters with coexisting guided-mode resonance and
Rayleigh anomaly, Appl. Phys. Lett.
103, 131106 (2013),
https://doi.org/10.1063/1.4823532
[22] M.G. Moharam, E.B. Grann, D.A. Pommet, and T.K. Gaylord,
Formulation for stable and efficient implementation of the
rigorous coupled-wave analysis of binary gratings, J. Opt. Soc.
Am. A
12(5), 1068 (1995),
https://doi.org/10.1364/JOSAA.12.001068
[23] M.G. Moharam, D.A. Pommet, E.B. Grann, and T.K. Gaylord,
Stable implementation of the rigorous coupled-wave analysis for
surface-relief gratings: enhanced transmittance matrix approach,
J. Opt. Soc. Am. A
12(5), 1077 (1995),
https://doi.org/10.1364/JOSAA.12.001077
[24] D. Gailevičius, V. Purlys, and K. Staliunas, Photonic
crystal spatial filters fabricated by femtosecond pulsed Bessel
beam, Opt. Lett.
44(20), 4969 (2019),
https://doi.org/10.1364/OL.44.004969
[25] L. Grinevičiūtė,
Nanostructured Optical Coatings for
the Manipulation of Laser Radiation, PhD Thesis (Vilnius
University, 2021),
https://doi.org/10.15388/vu.thesis.185
[26] L. Maigyte and K. Staliunas, Spatial filtering with
photonic crystals, Appl. Phys. Rev.
2, 011102 (2015),
https://doi.org/10.1063/1.4907345
[27] S. Gawali, J. Medina, D. Gailevičius, V. Purlys, G.
Garre-Werner, C. Cojocaru, J. Trull, M. Botey, R. Herrero, J.
Montiel-Ponsoda, and K. Staliunas, Spatial filtering in
edge-emitting lasers by intra-cavity chirped photonic crystals,
J. Opt. Soc. Am. B
37(10), 2856 (2020),
https://doi.org/10.1364/JOSAB.397005