High numerical apertures can result in
distortions appearing in a single-shot image, rendering the
acquisition of usable images challenging, if not outright
impossible. However, in the realm of single-pixel imaging,
various strategies can be employed to effectively inspect
objects with an excellent resolution, contrast and brightness.
Recent advancements in flat photonic components have
facilitated the development of compact nonparaxial imaging
systems, which show great promise, particularly in the THz
range of wavelengths. These innovations hold the potential to
advance fields such as communication, material inspection and
spectroscopy. In this study, we delve into the imaging of
semi-transparent objects with varying levels of detail.
Furthermore, we introduce a nonparaxial design for a flat
hyperbolical lens and evaluate its performance in these
imaging scenarios, comparing it to structured illumination
techniques involving Airy, Bessel, and common thin lens
configurations. We present findings regarding potential
improvements in imaging attributable to the nonparaxial
hyperbolical lens.
Keywords: nonparaxial imaging, single-pixel imaging,
contrast, resolution
References /
Nuorodos
[1] T.B. Pittman, Y. Shih, D. Strekalov, and A.V. Sergienko,
Optical imaging by means of two-photon quantum entanglement,
Phys. Rev. A
52, R3429 (1995),
https://doi.org/10.1103/PhysRevA.52.R3429
[2] J.H. Shapiro, Computational ghost imaging, Phys. Rev. A
78,
061802 (2008),
https://doi.org/10.1103/PhysRevA.78.061802
[3] M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, T. Sun,
K.F. Kelly, and R.G. Baraniuk, Single-pixel imaging via
compressive sampling, IEEE Signal Process. Mag.
25, 83
(2008),
https://doi.org/10.1109/MSP.2007.914730
[4] M.P. Edgar, G.M. Gibson, and M.J. Padgett, Principles and
prospects for single-pixel imaging, Nat. Photonics
13,
13 (2019),
https://doi.org/10.1038/s41566-018-0300-7
[5] M.-J. Sun and J.-M. Zhang, Single-pixel imaging and its
application in three-dimensional reconstruction: a brief review,
Sensors
19, 732 (2019),
https://doi.org/10.3390/s19030732
[6] C.A. Osorio Quero, D. Durini, J. Rangel-Magdaleno, and J.
Martinez-Carranza, Single-pixel imaging: An overview of
different methods to be used for 3D space reconstruction in
harsh environments, Rev. Sci. Instrum.
92, 111501
(2021),
https://doi.org/10.1063/5.0050358
[7] R.F. Lyon, A brief history of 'pixel', in:
Digital
Photography II, Proc. SPIE
6069 (SPIE, 2006) p.
606901,
https://doi.org/10.1117/12.644941
[8] B.J. Logie, Apparatus for Transmitting Views or Images to a
Distance, US Patent 1,699,270 (1929),
[PDF]
[9] P. Mertz and F. Gray, A theory of scanning and its relation
to the characteristics of the transmitted signal in
telephotography and television, Bell Syst. Tech. J.
13,
464 (1934),
https://doi.org/10.1002/j.1538-7305.1934.tb00675.x
[10] H. Rubinsztein-Dunlop, A. Forbes, M.V. Berry, M.R. Dennis,
D.L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T.
Bauer, et al., Roadmap on structured light, J. Opt.
19,
013001 (2016),
https://doi.org/10.1088/2040-8978/19/1/013001
[11] M. Mazilu, D.J. Stevenson, F. Gunn-Moore, and K. Dholakia,
Light beats the spread: "nondiffracting" beams, Laser Photonics
Rev.
4, 529 (2010),
https://doi.org/10.1002/lpor.200910019
[12] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong,
and X. Yuan, Optical vortices 30 years on: OAM manipulation from
topological charge to multiple singularities, Light Sci. Appl.
8,
90 (2019),
https://doi.org/10.1038/s41377-019-0194-2
[13] L. Minkevičius, D. Jokubauskis, I. Kašalynas, S. Orlov, A.
Urbas, and G. Valušis, Bessel terahertz imaging with enhanced
contrast realized by silicon multi-phase diffractive optics,
Opt. Express
27, 36358 (2019),
https://doi.org/10.1364/OE.27.036358
[14] R. Ivaškevičiūtė-Povilauskienė, P. Kizevičius, E. Nacius,
D. Jokubauskis, K. Ikamas, A. Lisauskas, N. Alexeeva, I.
Matulaitienė, V. Jukna, S. Orlov, et al., Terahertz structured
light: nonparaxial Airy imaging using silicon diffractive
optics, Light Sci. Appl.
11, 326 (2022),
https://doi.org/10.1038/s41377-022-01007-z
[15] K. Mundrys, S. Orlov, P. Kizevičius, L. Minkevičius, and G.
Valušis, On evaluation of image quality in nonparaxial
single-pixel imaging, Lith. J. Phys.
63, 113 (2023),
https://doi.org/10.3952/physics.2023.63.3.1
[16] K. Iizuka,
Engineering Optics, Springer Series in
Optical Sciences, Vol. 35 (Springer, 2008),
https://doi.org/10.1007/978-3-540-36808-3
[17] M. Born and E. Wolf,
Principles of Optics:
Electromagnetic Theory of Propagation, Interference and
Diffraction of Light (Elsevier, 2013),
https://www.sciencedirect.com/book/9780080264820/principles-of-optics
[18] W.J. Smith,
Modern Optical Engineering: The Design of
Optical Systems (McGraw-Hill Education, 2008),
https://www.accessengineeringlibrary.com/content/book/9780071476874