[PDF]    https://doi.org/10.3952/physics.2023.63.4.3

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 210–217 (2023)

ON NONPARAXIAL SINGLE-PIXEL IMAGING OF SEMITRANSPARENT OBJECTS USING FLAT DIFFRACTIVE OPTICS
Paulius Kizevičiusa, Sergej Orlova, Karolis Mundrysa, Vytautas Juknaa, Linas Minkevičiusb, and Gintaras Valušisb
a Department of Fundamental Research, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
b Department of Optoelectronics, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: sergejus.orlovas@ftmc.lt

Received 28 September 2023; accepted 2 October 2023

High numerical apertures can result in distortions appearing in a single-shot image, rendering the acquisition of usable images challenging, if not outright impossible. However, in the realm of single-pixel imaging, various strategies can be employed to effectively inspect objects with an excellent resolution, contrast and brightness. Recent advancements in flat photonic components have facilitated the development of compact nonparaxial imaging systems, which show great promise, particularly in the THz range of wavelengths. These innovations hold the potential to advance fields such as communication, material inspection and spectroscopy. In this study, we delve into the imaging of semi-transparent objects with varying levels of detail. Furthermore, we introduce a nonparaxial design for a flat hyperbolical lens and evaluate its performance in these imaging scenarios, comparing it to structured illumination techniques involving Airy, Bessel, and common thin lens configurations. We present findings regarding potential improvements in imaging attributable to the nonparaxial hyperbolical lens.
Keywords: nonparaxial imaging, single-pixel imaging, contrast, resolution

NEPARAKSIALINIS VIENO PIKSELIO PUSIAU PERMATOMŲ OBJEKTŲ VAIZDINIMAS NAUDOJANT PLOKŠČIĄ DIFRAKCINĘ OPTIKĄ
Paulius Kizevičiusa, Sergej Orlova, Karolis Mundrysa, Vytautas Juknaa, Linas Minkevičiusb, and Gintaras Valušisb

a Fizinių ir technologijos mokslų centro Fundamentinių tyrimų skyrius, Vilnius, Lietuva
b Fizinių ir technologijos mokslų centro Optoelektronikos skyrius, Vilnius, Lietuva

Didelės skaitinės apertūros lęšiai gali sukelti iškraipymus tradiciniame vaizdinime, todėl aukštos kokybės vaizdų gavimas gali būti sudėtingas ar net neįmanomas. Tačiau vieno taško vaizdinime ši problema minimizuojama pasitelkus įvairias vaizdo apšvietimo ir spinduliuotės surinkimo strategijas. Todėl įmanoma registruoti objektus su puikia skiriamąja geba, kontrastu ir ryškiu. Naujausi plokštieji fotoniniai elementai palengvino kompaktiškų neparaksialinių vaizdinimo sistemų kūrimą, kurie gali būti plačiai panaudoti optiniame diapazone. Ypač patrauklu juos naudoti THz bangų ilgių vaizdinime. Šios naujovės suteikia galimybę tobulėti tokiose srityse kaip komunikacija, medžiagų tikrinimas ir spektroskopija. Šiuo straipsniu pristatome pusiau skaidrių skirtingo detalumo objektų vieno taško vaizdinimą THz diapazone. Aprašome neparaksialinio plokščio hiperbolinio lęšio fazės skirstinį ir įvertiname jo veikimą įvairiuose vaizdinimo scenarijuose, lygindami jį su struktūrinio apšvietimo metodais, apimančiais Airy, Beselio ir plonojo lęšio konfigūracijas. Pateikiame išvadas apie galimus vaizdinimo patobulinimus siekiant geriausios vaizdinimo kokybės.


References / Nuorodos

[1] T.B. Pittman, Y. Shih, D. Strekalov, and A.V. Sergienko, Optical imaging by means of two-photon quantum entanglement, Phys. Rev. A 52, R3429 (1995),
https://doi.org/10.1103/PhysRevA.52.R3429
[2] J.H. Shapiro, Computational ghost imaging, Phys. Rev. A 78, 061802 (2008),
https://doi.org/10.1103/PhysRevA.78.061802
[3] M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, T. Sun, K.F. Kelly, and R.G. Baraniuk, Single-pixel imaging via compressive sampling, IEEE Signal Process. Mag. 25, 83 (2008),
https://doi.org/10.1109/MSP.2007.914730
[4] M.P. Edgar, G.M. Gibson, and M.J. Padgett, Principles and prospects for single-pixel imaging, Nat. Photonics 13, 13 (2019),
https://doi.org/10.1038/s41566-018-0300-7
[5] M.-J. Sun and J.-M. Zhang, Single-pixel imaging and its application in three-dimensional reconstruction: a brief review, Sensors 19, 732 (2019),
https://doi.org/10.3390/s19030732
[6] C.A. Osorio Quero, D. Durini, J. Rangel-Magdaleno, and J. Martinez-Carranza, Single-pixel imaging: An overview of different methods to be used for 3D space reconstruction in harsh environments, Rev. Sci. Instrum. 92, 111501 (2021),
https://doi.org/10.1063/5.0050358
[7] R.F. Lyon, A brief history of 'pixel', in: Digital Photography II, Proc. SPIE 6069 (SPIE, 2006) p. 606901,
https://doi.org/10.1117/12.644941
[8] B.J. Logie, Apparatus for Transmitting Views or Images to a Distance, US Patent 1,699,270 (1929),
[PDF]
[9] P. Mertz and F. Gray, A theory of scanning and its relation to the characteristics of the transmitted signal in telephotography and television, Bell Syst. Tech. J. 13, 464 (1934),
https://doi.org/10.1002/j.1538-7305.1934.tb00675.x
[10] H. Rubinsztein-Dunlop, A. Forbes, M.V. Berry, M.R. Dennis, D.L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, et al., Roadmap on structured light, J. Opt. 19, 013001 (2016),
https://doi.org/10.1088/2040-8978/19/1/013001
[11] M. Mazilu, D.J. Stevenson, F. Gunn-Moore, and K. Dholakia, Light beats the spread: "nondiffracting" beams, Laser Photonics Rev. 4, 529 (2010),
https://doi.org/10.1002/lpor.200910019
[12] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities, Light Sci. Appl. 8, 90 (2019),
https://doi.org/10.1038/s41377-019-0194-2
[13] L. Minkevičius, D. Jokubauskis, I. Kašalynas, S. Orlov, A. Urbas, and G. Valušis, Bessel terahertz imaging with enhanced contrast realized by silicon multi-phase diffractive optics, Opt. Express 27, 36358 (2019),
https://doi.org/10.1364/OE.27.036358
[14] R. Ivaškevičiūtė-Povilauskienė, P. Kizevičius, E. Nacius, D. Jokubauskis, K. Ikamas, A. Lisauskas, N. Alexeeva, I. Matulaitienė, V. Jukna, S. Orlov, et al., Terahertz structured light: nonparaxial Airy imaging using silicon diffractive optics, Light Sci. Appl. 11, 326 (2022),
https://doi.org/10.1038/s41377-022-01007-z
[15] K. Mundrys, S. Orlov, P. Kizevičius, L. Minkevičius, and G. Valušis, On evaluation of image quality in nonparaxial single-pixel imaging, Lith. J. Phys. 63, 113 (2023),
https://doi.org/10.3952/physics.2023.63.3.1
[16] K. Iizuka, Engineering Optics, Springer Series in Optical Sciences, Vol. 35 (Springer, 2008),
https://doi.org/10.1007/978-3-540-36808-3
[17] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013),
https://www.sciencedirect.com/book/9780080264820/principles-of-optics
[18] W.J. Smith, Modern Optical Engineering: The Design of Optical Systems (McGraw-Hill Education, 2008),
https://www.accessengineeringlibrary.com/content/book/9780071476874