[PDF]    https://doi.org/10.3952/physics.2023.63.4.4

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 218–232 (2023)

TWO-DIMENSIONAL HYDRODYNAMIC MODELLING OF AlGaN/GaN TRANSISTOR-BASED THz DETECTORS
Juozas Vyšniauskasa, Kęstutis Ikamasa,b, Domantas Vizbarasa, and Alvydas Lisauskasa
a Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
b Research Group on Logistics and Defense Technology Management, General Jonas Žemaitis Military Academy of Lithuania, Šilo 5A, 10322 Vilnius, Lithuania
Email: alvydas.lisauskas@ff.vu.lt

Received 7 October 2023; accepted 9 October 2023

Here, we report on numerical modelling of AlGaN/GaN HEMT terahertz detectors using a two-dimensional solver based on three Boltzmann transport equation (BTE) moments and the Poisson equation. We use the Synopsys TCAD Sentaurus program package, which offers a wide material database and the possibility to include traps and polarization charges for the formation of the channel without any doping. The implications of different levels of model simplifications are addressed both analytically and numerically. We calculated the current responsivity ℜI to THz radiation on the drain voltage in the frequency range 0.01–3.0 THz for three AlGaN layer thicknesses d = 15, 20 and 25 nm and different gate lengths. We demonstrate that only a hydrodynamic model can reproduce the change in the sign in current responsivity at the gate voltage UG0 (ℜI = 0 at UG = UG0). The energy flux factor in the energy balance equation determines this effect. For the simulated structures, we find that the noise equivalent power may be as low as 0.1 pW/√Hz at 0.04 THz and 10 pW/√Hz at 3.0 THz.
Keywords: power detectors, field effect transistor (FET), gallium-nitride, terahertz (THz), hydrodynamic modelling, TCAD

AlGaN/GaN TRANZISTORINIŲ THz DAŽNIŲ DETEKTORIŲ DVIMATIS HIDRODINAMINIS MODELIAVIMAS
Juozas Vyšniauskasa, Kęstutis Ikamasa,b, Domantas Vizbarasa, Alvydas Lisauskasa

a Vilniaus universiteto Fizikos fakulteto Taikomosios elektrodinamikos ir telekomunikacijų institutas, Vilnius, Lietuva
b Generolo Jono Žemaičio Lietuvos karo akademijos Logistikos ir gynybos technologijų valdymo tyrimų grupė, Vilnius, Lietuva

Pateikiami AlGaN/GaN didelio judrio lauko tranzistoriais paremtų terahercų dažnių juostos detektorių skaitmeninio modeliavimo rezultatai. Sprendimo būdas pagrįstas trijų Bolcmano pernašos lygties (BTE) momentų bei Puasono lygties sprendimu dvimatėje erdvėje. Tam tikslui buvo panaudota „Synopsys TCAD Sentaurus“ programinė įranga. Joje įdiegta išsami medžiagų duomenų bazė bei suteiktos galimybės įskaityti pagavimo būsenas bei poliarizacijos reiškinį, ir tai leidžia suformuoti modelyje laidų kanalą nenaudojant legiravimo. Dažniausiai naudojamų modelių prielaidos buvo nagrinėjamos ir analitiškai, ir skaitmeniškai. Pateikiamos apskaičiuotos srovės jautrio ℜI verčių priklausomybės nuo santakos įtampos 0,01–3,0 THz dažnių ruože trims AlGaN sluoksnių storiams d = 15, 20, 25 nm ir skirtingiems užtūros ilgiams. Mes parodome, kad tik hidrodinaminis modelis gali atkurti srovės jautrumo ženklo pasikeitimą ties užtūros įtampa UG0 (ℜI = 0 ties UG = UG0). Šį reiškinį nulemia energijos srauto koeficientas energijos balanso lygtyje. Modeliuotoms struktūroms gaunama ekvivalentinė triukšmo galia gali siekti 0,1 pW/√Hz ties 0,04 THz ir 10 pW/√Hz ties 3,0 THz.


References / Nuorodos

[1] M. Dyakonov and M. Shur, Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current, Phys. Rev. Lett. 71(15), 2465–2468 (1993),
https://doi.org/10.1103/PhysRevLett.71.2465
[2] M. Dyakonov and M. Shur, Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid, IEEE Trans. Electron Dev. 43(3), 380–387 (1996),
https://doi.org/10.1109/16.485650
[3] M. Dyakonov and M. Shur, Plasma wave electronics: novel terahertz devices using two dimensional electron fluid, IEEE Trans. Electron Dev. 43(10), 1640–1645 (1996),
https://doi.org/10.1109/16.536809
[4] A. Lisauskas, U. Pfeiffer, E. Öjefors, P. Haring Bolìvar, D. Glaab, and H.G. Roskos, Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors, J. Appl. Phys. 105(11), 114511 (2009),
https://doi.org/10.1063/1.3140611
[5] S. Boppel, A. Lisauskas, M. Mundt, D. Seliuta, L. Minkevičius, I. Kašalynas, G. Valušis, M. Mittendorff, S. Winnerl, V. Krozer, and H.G. Roskos, CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz, IEEE Trans. Microwave Theory Tech. 60(12), 3834–3843 (2012),
https://doi.org/10.1109/TMTT.2012.2221732
[6] M. Bauer, A. Rämer, S. Boppel, S. Chevtchenko, A. Lisauskas, W. Heinrich, V. Krozer, and H.G. Roskos, High-sensitivity wideband THz detectors based on GaN HEMTs with integrated bow-tie antennas, in: Proceedings of the 10th European Microwave Integrated Circuits Conference (EuMIC) (IEEE, Paris, 2015) pp. 1–4,
https://doi.org/10.1109/EuMIC.2015.7345053
[7] A. Lisauskas, M. Bauer, A. Rämer, K. Ikamas, J. Matukas, S. Chevtchenko, W. Heinrich, V. Krozer, and H.G. Roskos, Terahertz rectification by plasmons and hot carriers in gated 2D electron gases, in: Proceedings of the 41st International Conference on Noise and Fluctuations (ICNF) (IEEE, 2015) pp. 1–5,
https://doi.org/10.1109/ICNF.2015.7288628
[8] J.Y. Park, S.-H. Kim, S.-M. Hong, and K.R. Kim, Physical analysis and design of resonant plasma-wave transistors for terahertz emitters, IEEE Trans. Terahertz Sci. Technol. 5(2), 244–250 (2015),
https://doi.org/10.1109/TTHZ.2015.2392630
[9] W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lü, R. Gaska, M.S. Shur, G. Simin, X. Hu, M.A. Khan, C.A. Saylor, and L.C. Brunel, Nonresonant detection of terahertz radiation in field effect transistors, J. Appl. Phys. 91(11), 9346–9353 (2002),
https://doi.org/10.1063/1.1468257
[10] V. Kachorovskii and M. Shur, Field effect transistor as ultrafast detector of modulated terahertz radiation, Solid State Electron. 52(2), 182–185 (2008),
https://doi.org/10.1016/j.sse.2007.08.002
[11] A. Gutin, V. Kachorovskii, A. Muraviev, and M. Shur, Plasmonic terahertz detector response at high intensities, J. Appl. Phys. 112(1), 014508 (2012),
https://doi.org/10.1063/1.4732138
[12] Y. Byun, K. Lee, and M. Shur, Unified charge control model and subthreshold current in heterostructure field-effect transistors, IEEE Electron Device Lett. 11(1), 50–53 (1990),
https://doi.org/10.1109/55.46928
[13] C.-K. Park, C.-Y. Lee, K. Lee, B.-J. Moon, Y.H. Byun, and M. Shur, A unified current-voltage model for long-channel nMOSFETs, IEEE Trans. Electron Dev. 38(2), 399–406 (1991),
https://doi.org/10.1109/16.69923
[14] B. Moon, C. Park, K. Rho, K. Lee, M. Shur, and T. Fjeldly, Analytical model for p-channel MOSFETs, IEEE Trans. Electron Dev. 38(12), 2632–2646 (1991),
https://doi.org/10.1109/16.158685
[15] M. Shur, T.A. Fjeldly, T. Ytterdal, and K. Lee, Unified MOSFET model, Solid State Electron. 35(12), 1795–1802 (1992),
https://doi.org/10.1016/0038-1101(92)90263-C
[16] P. Nouvel, H. Marinchio, J. Torres, C. Palermo, D. Gasquet, L. Chusseau, L. Varani, P. Shiktorov, E. Starikov, and V. Gružinskis, Terahertz spectroscopy of plasma waves in high electron mobility transistors, J. Appl. Phys. 106(1), 013717 (2009),
https://doi.org/10.1063/1.3159032
[17] H. Marinchio, C. Palermo, G. Sabatini, L. Varani, P. Shiktorov, E. Starikov, and V. Gružinskis, Pseudo-two-dimensional Poisson equation for the modeling of field-effect transistors, J. Comput. Electron. 9(3–4), 141–145 (2010),
https://doi.org/10.1007/s10825-010-0333-8
[18] S.-M. Hong and J.-H. Jang, Numerical simulation of plasma oscillation in 2-D electron gas using a periodic steady-state solver, IEEE Trans. Electron Dev. 62(12), 4192–4198 (2015),
https://doi.org/10.1109/TED.2015.2489220
[19] D. Scharfetter and H. Gummel, Large-signal analysis of a silicon Read diode oscillator, IEEE Trans. Electron Dev. 16(1), 64–77 (1969),
https://doi.org/10.1109/T-ED.1969.16566
[20] C. Jungemann, T. Linn, K. Bittner, and H.-G. Brachtendorf, Numerical investigation of plasma effects in silicon MOSFETs for THz-wave detection, Solid State Electron. 128, 129–134 (2017),
https://doi.org/10.1016/j.sse.2016.10.030
[21] G. Leuzzi and V. Stornelli, A frequency- and space-domain series-expansion approach for efficient numerical modeling of semiconductor devices, IEEE Trans. Electron Dev. 55(12), 3525–3531 (2008),
https://doi.org/10.1109/TED.2008.2006740
[22] S. Rudin, Temperature dependence of the nonlinear plasma resonance in gated two-dimensional semiconductor conduction channels, Appl. Phys. Lett. 96(25), 252101 (2010),
https://doi.org/10.1063/1.3455993
[23] S. Rudin, Non-linear plasma oscillations in semiconductor and graphene channels and application to the detection of terahertz signals, Int. J. High Speed Electron. Syst. 20(03), 567–582 (2011),
https://doi.org/10.1142/S0129156411006866
[24] S. Rudin, G. Rupper, A. Gutin, and M. Shur, Theory and measurement of plasmonic terahertz detector response to large signals, J. Appl. Phys. 115(6), 064503 (2014),
https://doi.org/10.1063/1.4862808
[25] G. Rupper, S. Rudin, and M. Shur, Response of plasmonic terahertz detectors to amplitude modulated signals, Solid State Electron. 111, 76–79 (2015),
https://doi.org/10.1016/j.sse.2015.05.035
[26] G. Rupper, S. Rudin, and F.J. Crowne, Effects of oblique wave propagation on the nonlinear plasma resonance in the two-dimensional channel of the Dyakonov–Shur detector, Solid State Electron. 78, 102–108 (2012),
https://doi.org/10.1016/j.sse.2012.05.052
[27] S. Rudin and G. Rupper, Plasma instability and wave propagation in gate-controlled GaN conduction channels, Jpn. J. Appl. Phys. 52(8S), 08JN25 (2013),
https://doi.org/10.7567/JJAP.52.08JN25
[28] S. Rudin, G. Rupper, and M. Shur, Ultimate response time of high electron mobility transistors, J. Appl. Phys. 117(17), 174502 (2015),
https://doi.org/10.1063/1.4919706
[29] K.S. Kim, M.W. Ryu, J.S. Lee, and K.R. Kim, Accurate analysis and characterization of silicon field effect transistor-based terahertz wave detector with quasi-plasma two-dimensional electron gas, J. Nanosci. Nanotechnol. 16(5), 4746–4752 (2016),
https://doi.org/10.1166/jnn.2016.12241
[30] J. Vyšniauskas, A. Lisauskas, M. Bauer, D. Čibiraitė, J. Matukas, and H.G. Roskos, Hydrodynamic modelling of terahertz rectification in AlGaN/GaN high electron mobility transistors, J. Phys. Conf. Ser. 906(1), 012023 (2017),
https://doi.org/10.1088/1742-6596/906/1/012023
[31] Z.-Y. Liu, L.-Y. Liu, J. Yang, and N.-J. Wu, A CMOS fully integrated 860-GHz terahertz sensor, IEEE Trans. Terahertz Sci. Technol. 7(4), 455–465 (2017),
https://doi.org/10.1109/TTHZ.2017.2692040
[32] J. Delgado-Notario, J. Velazquez-Perez, Y. Meziani, and K. Fobelets, Sub-THz imaging using nonresonant HEMT detectors, Sensors 18(2), 543 (2018),
https://doi.org/10.3390/s18020543
[33] X. Liu and M. Shur, An efficient TCAD model for TeraFET detectors, in: Proceedings of the 2019 IEEE Radio and Wireless Symposium (RWS) (IEEE, Orlando, FL, USA, 2019) pp. 1–4,
https://doi.org/10.1109/RWS.2019.8714400
[34] X. Liu and M.S. Shur, TCAD model for TeraFET detectors operating in a large dynamic range, IEEE Trans. Terahertz Sci. Technol. 10(1), 15–20 (2020),
https://doi.org/10.1109/TTHZ.2019.2952248
[35] T. Linn, Z. Kargar, and C. Jungemann, Investigation of moments-based transport models applied to plasma waves and the Dyakonov–Shur instability, Semicond. Sci. Technol. 34(1), 014002 (2019),
https://doi.org/10.1088/1361-6641/aaf27a
[36] V. Gružinskis, P. Shiktorov, E. Starikov, H. Marinchio, C. Palermo, J. Torres, and L. Varani, Stepped current-voltage relation and THz oscillations in GaN MOSFET due to optical phonon emission: Monte Carlo simulation, J. Phys. Conf. Ser. 647, 012034 (2015),
https://doi.org/10.1088/1742-6596/647/1/012034
[37] C. Palermo, J. Torres, L. Varani, V. Gružinskis, E. Starikov, P. Shiktorov, S. Ašmontas, and A. Sužiedelis, Monte Carlo simulation of THz radiation detection in GaN MOSFET n+nn+ channel with uncentered gate in n-region, J. Phys. Conf. Ser. 906, 012013 (2017),
https://doi.org/10.1088/1742-6596/906/1/012013
[38] J. Mateos and T. Gonzalez, Plasma enhanced terahertz rectification and noise in InGaAs HEMTs, IEEE Trans. Terahertz Sci. Technol. 2(5), 562–569 (2012),
https://doi.org/10.1109/TTHZ.2012.2209970
[39] H. Lin, N. Goldsman, and I. Mayergoyz, Device modeling by deterministic self-consistent solution of Poisson and Boltzmann transport equations, Solid State Electron. 35(6), 769–778 (1992),
https://doi.org/10.1016/0038-1101(92)90277-J
[40] S.-M. Hong and C. Jungemann, A fully coupled scheme for a Boltzmann-Poisson equation solver based on a spherical harmonics expansion, J. Comput. Electron. 8(3–4), 225–241 (2009),
https://doi.org/10.1007/s10825-009-0294-y
[41] S.-M. Hong, G. Matz, and C. Jungemann, A deterministic Boltzmann equation solver based on a higher order spherical harmonics expansion with full-band effects, IEEE Trans. Electron Dev. 57(10), 2390–2397 (2010),
https://doi.org/10.1109/TED.2010.2062519
[42] D. Ruić and C. Jungemann, Numerical aspects of noise simulation in MOSFETs by a Langevin–Boltzmann solver, J. Comput. Electron. 14(1), 21–36 (2015),
https://doi.org/10.1007/s10825-014-0642-4
[43] Z. Kargar, T. Linn, D. Ruic, and C. Jungemann, Investigation of transport modeling for plasma waves in THz devices, IEEE Trans. Electron Dev. 63(11), 4402–4408 (2016),
 https://doi.org/10.1109/TED.2016.2608422
[44] Z. Kargar, T. Linn, and C. Jungemann, Investigation of the Dyakonov–Shur instability for THz wave generation based on the Boltzmann transport equation, Semicond. Sci. Technol. 33(10), 104001 (2018),
https://doi.org/10.1088/1361-6641/aad956
[45] S. Cha and S.-M. Hong, Theoretical study of electron transport properties in GaN-based HEMTs using a deterministic multi-subband Boltzmann transport equation solver, IEEE Trans. Electron Dev. 66(9), 3740–3747 (2019),
https://doi.org/10.1109/TED.2019.2926857
[46] P. Földesy, Terahertz responsivity of field-effect transistors under arbitrary biasing conditions, J. Appl. Phys. 114(11), 114501 (2013),
https://doi.org/10.1063/1.4821250
[47] S. Boppel, M. Ragauskas, A. Hajo, M. Bauer, A. Lisauskas, S. Chevtchenko, A. Rämer, I. Kašalynas, G. Valušis, H.J. Würfl, W. Heinrich, G. Tränkle, V. Krozer, and H.G. Roskos, 0.25-μm GaN TeraFETs optimized as THz power detectors and intensity-gradient sensors, IEEE Trans. Terahertz Sci. Technol. 6(2), 348–350 (2016),
https://doi.org/10.1109/TTHZ.2016.2520202
[48] K. Ikamas, A. Lisauskas, S. Massabeau, M. Bauer, M. Burakevič, J. Vyšniauskas, D. Čibiraitė, V. Krozer, A. Rämer, S. Shevchenko, W. Heinrich, J. Tignon, S. Dhillon, J. Mangeney, and H.G. Roskos, Sub-picosecond pulsed THz FET detector characterization in plasmonic detection regime based on autocorrelation technique, Semicond. Sci. Technol. 33(12), 124013 (2018),
https://doi.org/10.1088/1361-6641/aae905
[49] M. Bauer, A. Rämer, S.A. Chevtchenko, K.Y. Osipov, D. Čibiraitė, S. Pralgauskaitė, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H.G. Roskos, A high-sensitivity AlGaN/GaN HEMT terahertz detector with integrated broadband bow-tie antenna, IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019),
https://doi.org/10.1109/TTHZ.2019.2917782
[50] Y. Zhu, Q. Ding, L. Xiang, J. Zhang, X. Li, L. Jin, Y. Shangguan, J. Sun, and H. Qin, 0.2–4.0 THz broadband terahertz detector based on antenna-coupled AlGaN/GaN HEMTs arrayed in a bow-tie pattern, Opt. Express 31(6), 10720–10731 (2023),
https://doi.org/10.1364/OE.483605