References /
Nuorodos
[1] M. Dyakonov and M. Shur, Shallow water analogy for a
ballistic field effect transistor: New mechanism of plasma wave
generation by dc current, Phys. Rev. Lett.
71(15),
2465–2468 (1993),
https://doi.org/10.1103/PhysRevLett.71.2465
[2] M. Dyakonov and M. Shur, Detection, mixing, and frequency
multiplication of terahertz radiation by two-dimensional
electronic fluid, IEEE Trans. Electron Dev.
43(3),
380–387 (1996),
https://doi.org/10.1109/16.485650
[3] M. Dyakonov and M. Shur, Plasma wave electronics: novel
terahertz devices using two dimensional electron fluid, IEEE
Trans. Electron Dev.
43(10), 1640–1645 (1996),
https://doi.org/10.1109/16.536809
[4] A. Lisauskas, U. Pfeiffer, E. Öjefors, P. Haring Bolìvar, D.
Glaab, and H.G. Roskos, Rational design of high-responsivity
detectors of terahertz radiation based on distributed
self-mixing in silicon field-effect transistors, J. Appl. Phys.
105(11), 114511 (2009),
https://doi.org/10.1063/1.3140611
[5] S. Boppel, A. Lisauskas, M. Mundt, D. Seliuta, L.
Minkevičius, I. Kašalynas, G. Valušis, M. Mittendorff, S.
Winnerl, V. Krozer, and H.G. Roskos, CMOS integrated
antenna-coupled field-effect transistors for the detection of
radiation from 0.2 to 4.3 THz, IEEE Trans. Microwave Theory
Tech.
60(12), 3834–3843 (2012),
https://doi.org/10.1109/TMTT.2012.2221732
[6] M. Bauer, A. Rämer, S. Boppel, S. Chevtchenko, A. Lisauskas,
W. Heinrich, V. Krozer, and H.G. Roskos, High-sensitivity
wideband THz detectors based on GaN HEMTs with integrated
bow-tie antennas, in:
Proceedings of the 10th European
Microwave Integrated Circuits Conference (EuMIC) (IEEE,
Paris, 2015) pp. 1–4,
https://doi.org/10.1109/EuMIC.2015.7345053
[7] A. Lisauskas, M. Bauer, A. Rämer, K. Ikamas, J. Matukas, S.
Chevtchenko, W. Heinrich, V. Krozer, and H.G. Roskos, Terahertz
rectification by plasmons and hot carriers in gated 2D electron
gases, in:
Proceedings of the 41st International Conference
on Noise and Fluctuations (ICNF) (IEEE, 2015) pp. 1–5,
https://doi.org/10.1109/ICNF.2015.7288628
[8] J.Y. Park, S.-H. Kim, S.-M. Hong, and K.R. Kim, Physical
analysis and design of resonant plasma-wave transistors for
terahertz emitters, IEEE Trans. Terahertz Sci. Technol.
5(2),
244–250 (2015),
https://doi.org/10.1109/TTHZ.2015.2392630
[9] W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lü,
R. Gaska, M.S. Shur, G. Simin, X. Hu, M.A. Khan, C.A. Saylor,
and L.C. Brunel, Nonresonant detection of terahertz radiation in
field effect transistors, J. Appl. Phys.
91(11),
9346–9353 (2002),
https://doi.org/10.1063/1.1468257
[10] V. Kachorovskii and M. Shur, Field effect transistor as
ultrafast detector of modulated terahertz radiation, Solid State
Electron.
52(2), 182–185 (2008),
https://doi.org/10.1016/j.sse.2007.08.002
[11] A. Gutin, V. Kachorovskii, A. Muraviev, and M. Shur,
Plasmonic terahertz detector response at high intensities, J.
Appl. Phys.
112(1), 014508 (2012),
https://doi.org/10.1063/1.4732138
[12] Y. Byun, K. Lee, and M. Shur, Unified charge control model
and subthreshold current in heterostructure field-effect
transistors, IEEE Electron Device Lett.
11(1), 50–53
(1990),
https://doi.org/10.1109/55.46928
[13] C.-K. Park, C.-Y. Lee, K. Lee, B.-J. Moon, Y.H. Byun, and
M. Shur, A unified current-voltage model for long-channel
nMOSFETs, IEEE Trans. Electron Dev.
38(2), 399–406
(1991),
https://doi.org/10.1109/16.69923
[14] B. Moon, C. Park, K. Rho, K. Lee, M. Shur, and T. Fjeldly,
Analytical model for p-channel MOSFETs, IEEE Trans. Electron
Dev.
38(12), 2632–2646 (1991),
https://doi.org/10.1109/16.158685
[15] M. Shur, T.A. Fjeldly, T. Ytterdal, and K. Lee, Unified
MOSFET model, Solid State Electron.
35(12), 1795–1802
(1992),
https://doi.org/10.1016/0038-1101(92)90263-C
[16] P. Nouvel, H. Marinchio, J. Torres, C. Palermo, D. Gasquet,
L. Chusseau, L. Varani, P. Shiktorov, E. Starikov, and V.
Gružinskis, Terahertz spectroscopy of plasma waves in high
electron mobility transistors, J. Appl. Phys.
106(1),
013717 (2009),
https://doi.org/10.1063/1.3159032
[17] H. Marinchio, C. Palermo, G. Sabatini, L. Varani, P.
Shiktorov, E. Starikov, and V. Gružinskis,
Pseudo-two-dimensional Poisson equation for the modeling of
field-effect transistors, J. Comput. Electron.
9(3–4),
141–145 (2010),
https://doi.org/10.1007/s10825-010-0333-8
[18] S.-M. Hong and J.-H. Jang, Numerical simulation of plasma
oscillation in 2-D electron gas using a periodic steady-state
solver, IEEE Trans. Electron Dev.
62(12), 4192–4198
(2015),
https://doi.org/10.1109/TED.2015.2489220
[19] D. Scharfetter and H. Gummel, Large-signal analysis of a
silicon Read diode oscillator, IEEE Trans. Electron Dev.
16(1),
64–77 (1969),
https://doi.org/10.1109/T-ED.1969.16566
[20] C. Jungemann, T. Linn, K. Bittner, and H.-G. Brachtendorf,
Numerical investigation of plasma effects in silicon MOSFETs for
THz-wave detection, Solid State Electron.
128, 129–134
(2017),
https://doi.org/10.1016/j.sse.2016.10.030
[21] G. Leuzzi and V. Stornelli, A frequency- and space-domain
series-expansion approach for efficient numerical modeling of
semiconductor devices, IEEE Trans. Electron Dev.
55(12),
3525–3531 (2008),
https://doi.org/10.1109/TED.2008.2006740
[22] S. Rudin, Temperature dependence of the nonlinear plasma
resonance in gated two-dimensional semiconductor conduction
channels, Appl. Phys. Lett.
96(25), 252101 (2010),
https://doi.org/10.1063/1.3455993
[23] S. Rudin, Non-linear plasma oscillations in semiconductor
and graphene channels and application to the detection of
terahertz signals, Int. J. High Speed Electron. Syst.
20(03),
567–582 (2011),
https://doi.org/10.1142/S0129156411006866
[24] S. Rudin, G. Rupper, A. Gutin, and M. Shur, Theory and
measurement of plasmonic terahertz detector response to large
signals, J. Appl. Phys.
115(6), 064503 (2014),
https://doi.org/10.1063/1.4862808
[25] G. Rupper, S. Rudin, and M. Shur, Response of plasmonic
terahertz detectors to amplitude modulated signals, Solid State
Electron.
111, 76–79 (2015),
https://doi.org/10.1016/j.sse.2015.05.035
[26] G. Rupper, S. Rudin, and F.J. Crowne, Effects of oblique
wave propagation on the nonlinear plasma resonance in the
two-dimensional channel of the Dyakonov–Shur detector, Solid
State Electron.
78, 102–108 (2012),
https://doi.org/10.1016/j.sse.2012.05.052
[27] S. Rudin and G. Rupper, Plasma instability and wave
propagation in gate-controlled GaN conduction channels, Jpn. J.
Appl. Phys.
52(8S), 08JN25 (2013),
https://doi.org/10.7567/JJAP.52.08JN25
[28] S. Rudin, G. Rupper, and M. Shur, Ultimate response time of
high electron mobility transistors, J. Appl. Phys.
117(17),
174502 (2015),
https://doi.org/10.1063/1.4919706
[29] K.S. Kim, M.W. Ryu, J.S. Lee, and K.R. Kim, Accurate
analysis and characterization of silicon field effect
transistor-based terahertz wave detector with quasi-plasma
two-dimensional electron gas, J. Nanosci. Nanotechnol.
16(5),
4746–4752 (2016),
https://doi.org/10.1166/jnn.2016.12241
[30] J. Vyšniauskas, A. Lisauskas, M. Bauer, D. Čibiraitė, J.
Matukas, and H.G. Roskos, Hydrodynamic modelling of terahertz
rectification in AlGaN/GaN high electron mobility transistors,
J. Phys. Conf. Ser.
906(1), 012023 (2017),
https://doi.org/10.1088/1742-6596/906/1/012023
[31] Z.-Y. Liu, L.-Y. Liu, J. Yang, and N.-J. Wu, A CMOS fully
integrated 860-GHz terahertz sensor, IEEE Trans. Terahertz Sci.
Technol.
7(4), 455–465 (2017),
https://doi.org/10.1109/TTHZ.2017.2692040
[32] J. Delgado-Notario, J. Velazquez-Perez, Y. Meziani, and K.
Fobelets, Sub-THz imaging using nonresonant HEMT detectors,
Sensors
18(2), 543 (2018),
https://doi.org/10.3390/s18020543
[33] X. Liu and M. Shur, An efficient TCAD model for TeraFET
detectors, in:
Proceedings of the 2019 IEEE Radio and
Wireless Symposium (RWS) (IEEE, Orlando, FL, USA, 2019)
pp. 1–4,
https://doi.org/10.1109/RWS.2019.8714400
[34] X. Liu and M.S. Shur, TCAD model for TeraFET detectors
operating in a large dynamic range, IEEE Trans. Terahertz Sci.
Technol.
10(1), 15–20 (2020),
https://doi.org/10.1109/TTHZ.2019.2952248
[35] T. Linn, Z. Kargar, and C. Jungemann, Investigation of
moments-based transport models applied to plasma waves and the
Dyakonov–Shur instability, Semicond. Sci. Technol.
34(1),
014002 (2019),
https://doi.org/10.1088/1361-6641/aaf27a
[36] V. Gružinskis, P. Shiktorov, E. Starikov, H. Marinchio, C.
Palermo, J. Torres, and L. Varani, Stepped current-voltage
relation and THz oscillations in GaN MOSFET due to optical
phonon emission: Monte Carlo simulation, J. Phys. Conf. Ser.
647,
012034 (2015),
https://doi.org/10.1088/1742-6596/647/1/012034
[37] C. Palermo, J. Torres, L. Varani, V. Gružinskis, E.
Starikov, P. Shiktorov, S. Ašmontas, and A. Sužiedelis, Monte
Carlo simulation of THz radiation detection in GaN MOSFET n
+nn
+
channel with uncentered gate in n-region, J. Phys. Conf. Ser.
906,
012013 (2017),
https://doi.org/10.1088/1742-6596/906/1/012013
[38] J. Mateos and T. Gonzalez, Plasma enhanced terahertz
rectification and noise in InGaAs HEMTs, IEEE Trans. Terahertz
Sci. Technol.
2(5), 562–569 (2012),
https://doi.org/10.1109/TTHZ.2012.2209970
[39] H. Lin, N. Goldsman, and I. Mayergoyz, Device modeling by
deterministic self-consistent solution of Poisson and Boltzmann
transport equations, Solid State Electron.
35(6),
769–778 (1992),
https://doi.org/10.1016/0038-1101(92)90277-J
[40] S.-M. Hong and C. Jungemann, A fully coupled scheme for a
Boltzmann-Poisson equation solver based on a spherical harmonics
expansion, J. Comput. Electron.
8(3–4), 225–241 (2009),
https://doi.org/10.1007/s10825-009-0294-y
[41] S.-M. Hong, G. Matz, and C. Jungemann, A deterministic
Boltzmann equation solver based on a higher order spherical
harmonics expansion with full-band effects, IEEE Trans. Electron
Dev.
57(10), 2390–2397 (2010),
https://doi.org/10.1109/TED.2010.2062519
[42] D. Ruić and C. Jungemann, Numerical aspects of noise
simulation in MOSFETs by a Langevin–Boltzmann solver, J. Comput.
Electron.
14(1), 21–36 (2015),
https://doi.org/10.1007/s10825-014-0642-4
[43] Z. Kargar, T. Linn, D. Ruic, and C. Jungemann,
Investigation of transport modeling for plasma waves in THz
devices, IEEE Trans. Electron Dev.
63(11), 4402–4408
(2016),
https://doi.org/10.1109/TED.2016.2608422
[44] Z. Kargar, T. Linn, and C. Jungemann, Investigation of the
Dyakonov–Shur instability for THz wave generation based on the
Boltzmann transport equation, Semicond. Sci. Technol.
33(10),
104001 (2018),
https://doi.org/10.1088/1361-6641/aad956
[45] S. Cha and S.-M. Hong, Theoretical study of electron
transport properties in GaN-based HEMTs using a deterministic
multi-subband Boltzmann transport equation solver, IEEE Trans.
Electron Dev.
66(9), 3740–3747 (2019),
https://doi.org/10.1109/TED.2019.2926857
[46] P. Földesy, Terahertz responsivity of field-effect
transistors under arbitrary biasing conditions, J. Appl. Phys.
114(11),
114501 (2013),
https://doi.org/10.1063/1.4821250
[47] S. Boppel, M. Ragauskas, A. Hajo, M. Bauer, A. Lisauskas,
S. Chevtchenko, A. Rämer, I. Kašalynas, G. Valušis, H.J. Würfl,
W. Heinrich, G. Tränkle, V. Krozer, and H.G. Roskos, 0.25-μm GaN
TeraFETs optimized as THz power detectors and intensity-gradient
sensors, IEEE Trans. Terahertz Sci. Technol.
6(2),
348–350 (2016),
https://doi.org/10.1109/TTHZ.2016.2520202
[48] K. Ikamas, A. Lisauskas, S. Massabeau, M. Bauer, M.
Burakevič, J. Vyšniauskas, D. Čibiraitė, V. Krozer, A. Rämer, S.
Shevchenko, W. Heinrich, J. Tignon, S. Dhillon, J. Mangeney, and
H.G. Roskos, Sub-picosecond pulsed THz FET detector
characterization in plasmonic detection regime based on
autocorrelation technique, Semicond. Sci. Technol.
33(12),
124013 (2018),
https://doi.org/10.1088/1361-6641/aae905
[49] M. Bauer, A. Rämer, S.A. Chevtchenko, K.Y. Osipov, D.
Čibiraitė, S. Pralgauskaitė, K. Ikamas, A. Lisauskas, W.
Heinrich, V. Krozer, and H.G. Roskos, A high-sensitivity
AlGaN/GaN HEMT terahertz detector with integrated broadband
bow-tie antenna, IEEE Trans. Terahertz Sci. Technol.
9(4),
430–444 (2019),
https://doi.org/10.1109/TTHZ.2019.2917782
[50] Y. Zhu, Q. Ding, L. Xiang, J. Zhang, X. Li, L. Jin, Y.
Shangguan, J. Sun, and H. Qin, 0.2–4.0 THz broadband terahertz
detector based on antenna-coupled AlGaN/GaN HEMTs arrayed in a
bow-tie pattern, Opt. Express
31(6), 10720–10731 (2023),
https://doi.org/10.1364/OE.483605