References /
Nuorodos
[1] A. Leitenstorfer, A.S. Moskalenko, T. Kampfrath, J. Kono, E.
Castro-Camus, K. Peng, N. Qureshi, D. Turchinovich, K. Tanaka,
A. Markelz, et al., The 2023 terahertz science and technology
roadmap, J. Phys. D
56(22), 223001 (2023),
https://doi.org/10.1088/1361-6463/acbe4c
[2] G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H.G. Roskos,
Roadmap of terahertz imaging 2021, Sensors
21(12), 4092
(2021),
https://doi.org/10.3390/s21124092
[3] J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F.
Oliveira, and D. Zimdarset, THz imaging and sensing for security
applications – explosives, weapons and drugs, Semicond. Sci.
Technol.
20(7), S266 (2005),
https://doi.org/10.1088/0268-1242/20/7/018
[4] M. Wan, J.J. Healy, and J.T. Sheridan, Terahertz phase
imaging and biomedical applications, Opt. Laser Technol.
122,
105859 (2020),
https://doi.org/10.1016/j.optlastec.2019.105859
[5] K. Ahi and M. Anwar, Advanced terahertz techniques for
quality control and counterfeit detection, Proc. SPIE
9856,
98560G (2016),
https://doi.org/10.1117/12.2228684
[6] R. Ivaškevičiūtė-Povilauskienė, P. Kizevičius, E. Nacius, D.
Jokubauskis, K. Ikamas, A. Lisauskas, N. Alexeeva, I.
Matulaitienė, V. Jukna, S. Orlov, L. Minkevičius, and G.
Valušis, Terahertz structured light: nonparaxial Airy imaging
using silicon diffractive optics, Light Sci. Appl.
11(1),
326 (2022),
https://doi.org/10.1038/s41377-022-01007-z
[7] J.R. Middendorf, D.A. LeMaster, M. Zarepoor, and E.R. Brown,
Design of multi-order diffractive THz lenses, in:
Proceedings
of the 2012 37th International Conference on Infrared,
Millimetre, and Terahertz Waves (IEEE, 2012) pp. 1–2,
https://doi.org/10.1109/IRMMW-THz.2012.6380211
[8] M. Naftaly and A. Gregory, Terahertz and microwave optical
properties of single‐crystal quartz and vitreous silica and the
behaviour of the boson peak, Appl. Sci.
11(15), 6733
(2021),
https://doi.org/10.3390/app11156733
[9] R. Ivaškevičiūtė-Povilauskienė, V. Čižas, E. Nacius, I.
Grigelionis, K. Redeckas, M. Bernatonis, S. Orlov, G. Valušis,
and L. Minkevičius, Flexible terahertz optics: light beam
profile engineering via C-shaped metallic metasurface, Front.
Phys.
11, 1196726 (2023),
https://doi.org/10.3389/fphy.2023.1196726
[10] H. Yuan, A. Lisauskas, M. Zhang, A. Rennings, D. Erni, and
H.G. Roskos, Dynamic-range enhancement of heterodyne THz imaging
by the use of a soft paraffin-wax substrate lens on the
detector, in:
Proceedings of the 2019 Photonics and
Electromagnetics Research Symposium (Institute of
Electrical and Electronics Engineers Inc., 2019) pp. 2607–2611,
https://doi.org/10.1109/PIERS-Fall48861.2019.9021735
[11] A. Siemion, M. Surma, P. Komorowski, I. Ducin, and P.
Sobotka, Terahertz diffractive optics: different way of
thinking, Proc. SPIE
11499, 114990C (2020),
https://doi.org/10.1117/12.2568849
[12] A. Siemion, M. Suma, P. Komorowski, P. Zagrajek, M.
Walczhakowski, A. Melaniuk, I. Ducin, P. Sobotka, and E.
Czerwińska, Paraffin diffractive lens for subterahertz range –
simple and cost efficient solution, IEEE Trans. Terahertz Sci.
Technol.
11(4), 396–401 (2021),
https://doi.org/10.1109/TTHZ.2021.3063809
[13] V. Tamošiūnas, L. Minkevičius, I. Bučius, D. Jokubauskis,
K. Redeckas, and G. Valušis, Design and performance of
extraordinary low-cost compact terahertz imaging system based on
electronic components and paraffin wax optics, Sensors
22(21),
8485 (2022),
https://doi.org/10.3390/s22218485
[14] A.D. Squires and R.A. Lewis, Feasibility and
characterization of common and exotic filaments for use in 3D
printed terahertz devices, J. Infrared Millim. Terahertz Waves
39(7),
614–635 (2018),
https://doi.org/10.1007/s10762-018-0498-y
[15] J.A. Byford, Z. Purtill, and P. Chahal, Fabrication of
terahertz components using 3D printed templates, in:
Proceedings
of the Electronic Components and Technology Conference
(Institute of Electrical and Electronics Engineers Inc., 2016)
pp. 817–822,
https://doi.org/10.1109/ECTC.2016.193
[16] A. Shevchik-Shekera, Designing and manufacturing aspherical
polystyrene lenses for the terahertz region, Semicond. Phys.
Quantum Electron. Optoelectron.
21(1), 83–88 (2018),
https://doi.org/10.15407/spqeo21.01.083
[17] S.F. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst,
and M. Koch, Optical properties of 3D printable plastics in the
THz regime and their application for 3D printed THz optics, J.
Infrared Millim. Terahertz Waves
35(12), 993–997 (2014),
https://doi.org/10.1007/s10762-014-0113-9
[18] A. Siemion, A. Melaniuk, P. Zagrajek, P. Komorowski, M.
Walczakowski, M. Surma, P. Sobotka, I. Ducin, and E. Czerwińska,
THz diffractive lens manufactured using 3D printer working for
0.6 THz, in:
Proceedings of the International Microwave and
Radar Conference (MIKON) (2020),
https://doi.org/10.23919/MIKON48703.2020.9253821
[19] I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F.
Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A.
Švigelj, and J. Trontelj, Spectroscopic terahertz imaging at
room temperature employing microbolometer terahertz sensors and
its application to the study of carcinoma tissues, Sensors
16(4),
432 (2016),
https://doi.org/10.3390/s16040432
[20] R. Peng, X. Fu, J.H. Mendez, P.S. Randolph, B.E. Bammes,
and S.M. Stagg, Characterizing the resolution and throughput of
the Apollo direct electron detector, J. Struct. Biol. X
7,
100080 (2023),
https://doi.org/10.1016/j.yjsbx.2022.100080
[21] F. Vilaplana, A. Ribes-Greus, and S. Karlsson, Degradation
of recycled high-impact polystyrene. Simulation by reprocessing
and thermo-oxidation, Polym. Degrad. Stab.
91(9),
2163–2170 (2006),
https://doi.org/10.1016/j.polymdegradstab.2006.01.007