[PDF]    https://doi.org/10.3952/physics.2023.63.4.6

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 241–250 (2023)

SUPERSTRATE-LENS INTEGRATION USING PARAFFIN WAX ON TOP OF SEMICONDUCTOR-BASED THz DETECTOR CHIPS
Hui Yuan, Qamar ul-Islam, and Hartmut G. Roskos
Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
Email: yuan@physik.uni-frankfurt.de; roskos@physik.uni-frankfurt.de

Received 14 November 2023; accepted 15 November 2023

A detector of electromagnetic radiation may benefit – if its sensor area is small – from the application of a substrate lens, which focusses the radiation onto the active sensing area of the device and thus enhances its responsivity. The use of such a lens, attached directly onto the detector backside in order to avoid reflection losses, requires that the detector substrate and backside be transparent to the radiation. However, if this is not the case, one may like to place instead a superstrate lens onto the front side of the detector. It may even be of interest to use both a substrate and a superstrate lens if the detector needs to be illuminated with two beams, e.g. for heterodyne detection, where one beam provides the local-oscillator signal. The use of a superstrate lens is, however, often hindered or impeded by an uneven surface topography or by the presence of bonding wires on the front side of the detector. Here, we address this issue and explore the use of paraffin wax to form or attach superstrate lenses. In the first case, which is the main topic of this contribution, we exploit the surface tension of liquid paraffin, brought onto the detector, to sculpt the wax itself into a lens. In the second case, only addressed conceptually here, we use paraffin to form a thin intermediate layer which also acts as an adhesive for the attachment of a plastic or silicon lens. In both cases, the application of liquid paraffin allows one to fill out an uneven detector surface and to embed wires without breaking them. We investigate the use of wax for the case of CMOS TeraFETs – detectors of terahertz radiation based on field-effect transistors – embedded into antenna structures. We describe the processing steps and analyze the performance of a TeraFET equipped with such a wax superstrate lens for front-side beam coupling.
Keywords: THz detection, THz coupling, heterodyne detection

PAGRINDO-LĘŠIO INTEGRAVIMAS ANT PUSLAIDININKINIŲ TERAHERCINIŲ DETEKTORIŲ LUSTŲ PANAUDOJANT PARAFINO VAŠKĄ
Hui Yuan, Qamar ul-Islam, Hartmut G. Roskos

Frankfurto prie Maino Johano Volfgango Gėtės universiteto Fizikos institutas, Frankfurtas prie Maino, Vokietija


References / Nuorodos

[1] L. Cheng, W. Zhang, C. Li, Y. Ji, X. Liu, and G. Fang, HE-DETR-DC5 method to rapidly detect objects on passive THz images in human safety inspection, Electron. Lett. 59(2), e12702 (2023),
https://doi.org/10.1049/ell2.12702
[2] T. Amini, F. Jahangiri, Z. Ameri, and M.A. Hemmatian, A review of feasible applications of THz waves in medical diagnostics and treatments, J. Lasers Med. Sci. 12(1), e92 (2021),
https://doi.org/10.34172/jlms.2021.92
[3] M. Karthikeya Sharma, A. Rao, K. Kumar, and T.R. Rao, Terahertz imaging for aerospace applications, in: Proceedings of WiSPNET 2023 – International Conference on Wireless Communications, Signal Processing and Networking (Institute of Electrical and Electronics Engineers Inc., 2023),
https://doi.org/10.1109/WiSPNET57748.2023.10134245
[4] Y. Huang, Y. Shen, and J. Wang, From terahertz imaging to terahertz wireless communications, Engineering 22, 106–124 (2023),
https://doi.org/10.1016/j.eng.2022.06.023
[5] D.J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, Sensor and sensor fusion technology in autonomous vehicles: A review, Sensors 21(6), 2140 (2021),
https://doi.org/10.3390/s21062140
[6] Y. Koyama, Y. Kitazawa, K. Yukimasa, T. Uchida, T. Yoshioka, K. Fujimoto, T. Sato, J. Iba, K. Sakurai, and T. Ichikawa, A high-power terahertz source over 10 mW at 0.45 THz using an active antenna array with integrated patch antennas and resonant-tunneling diodes, IEEE Trans. Terahertz Sci. Technol. 12(5), 510–519 (2022),
https://doi.org/10.1109/TTHZ.2022.3180492
[7] E. Javadi, D.B. But, K. Ikamas, J. Zdanevičius, W. Knap, and A. Lisauskas, Sensitivity of field-effect transistor-based terahertz detectors, Sensors 21(9), 2909 (2021),
https://doi.org/10.3390/s21092909
[8] F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M.D. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, et al., THz active imaging systems with real-time capabilities, IEEE Trans. Terahertz Sci. Technol. 1(1), 183–200 (2011),
https://doi.org/10.1109/TTHZ.2011.2159559
[9] G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H.G. Roskos, Roadmap of terahertz imaging 2021, Sensors 21(12), 4092 (2021),
https://doi.org/10.3390/s21124092
[10] H. Yuan, D. Voß, A. Lisauskas, D. Mundy, and H.G. Roskos, 3D Fourier imaging based on 2D heterodyne detection at THz frequencies, APL Photonics 4(10), 106108 (2019),
 https://doi.org/10.1063/1.5116553
[11] H. Yuan, A. Lisauska, M. Zhang, Q. ul-Islam, D. Erni, and H.G. Roskos, Fourier imaging based on sub-harmonic detection at 600 GHz, in: Proceedings of the 2022 Fifth International Workshop on Mobile Terahertz Systems (IWMTS) (2022) pp. 1–4,
https://doi.org/10.1109/IWMTS54901.2022.9832459
[12] R.I. Stantchev, X. Yu, T. Blu, and E. Pickwell-MacPherson, Real-time terahertz imaging with a single-pixel detector, Nat. Commun. 11(1), 2535 (2020),
https://doi.org/10.1038/s41467-020-16370-x
[13] J. Grzyb and U. Pfeiffer, THz direct detector and heterodyne receiver arrays in silicon nanoscale technologies, J. Infrared Millim. Terahertz Waves 36(10), 998–1032 (2015),
https://doi.org/10.1007/s10762-015-0172-6
[14] D. Glaab, S. Boppel, A. Lisauskas, U. Pfeiffer, E. Öjefors, and H.G. Roskos, Terahertz heterodyne detection with silicon field-effect transistors, Appl. Phys. Lett. 96(4), 042106 (2010),
https://doi.org/10.1063/1.3292016
[15] S. Boppel, A. Lisauskas, A. Max, V. Krozer, and H.G. Roskos, CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging, Opt. Lett. 37(4), 536–538 (2012),
https://doi.org/10.1364/OL.37.000536
[16] H. Yuan, A. Lisauskas, M.D. Thomson, and H.G. Roskos, 600-GHz Fourier imaging based on heterodyne detection at the 2nd sub-harmonic, Opt. Express 31, 40856-40870 (2023),
https://doi.org/10.1364/OE.487888
[17] H. Yuan, A. Lisauskas, M. Zhang, A. Rennings, D. Erni, and H.G. Roskos, Dynamic-range enhancement of heterodyne THz imaging by the use of a soft paraffin-wax substrate lens on the detector, in: Proceedings of the 2019 Photonics & Electromagnetics Research Symposium – Fall (PIERS – Fall) (IEEE, 2019) pp. 2607–2611,
https://doi.org/10.1109/PIERS-Fall48861.2019.9021735
[18] M. Freund and G. Mózes, Paraffin Products: Properties, Technologies, Applications (Elsevier Scientific Pub. Co., 1982)
[19] Q. ul-Islam, F. Meng, M.D. Thomson, and H.G. Roskos, Terahertz photoconductive waveguide emitter with excitation by a tilted optical pulse front, Opt. Express 28(22), 33673–33681 (2020),
https://doi.org/10.1364/OE.403161
[20] W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2010),
https://doi.org/10.1007/978-1-4419-1151-3
[21] P.U. Jepsen, D.G. Cooke, and M. Koch, Terahertz spectroscopy and imaging – Modern techniques and applications, Laser Photon Rev. 5(1), 124–166 (2011),
https://doi.org/10.1002/lpor.201000011
[22] M. Bauer, A. Rämer, S.A. Chevtchenko, K.Y. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H.G. Roskos, A high-sensitivity AlGaN/GaN HEMT terahertz detector with integrated broadband bow-tie antenna, IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019),
https://doi.org/10.1109/TTHZ.2019.2917782
[23] S. Boppel, A. Lisauskas, D. Seliuta, L. Minkevičius, I. Kašalynas, G. Valušis, V. Krozer, and H.G. Roskos, CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz, IEEE Trans. Microw. Theory Tech. 60(12), 3834–3843 (2012),
https://doi.org/10.1109/TMTT.2012.2221732
[24] M. Asada, Theoretical analysis of subharmonic injection locking in resonant-tunneling-diode terahertz oscillators, Jpn. J. Appl. Phys. 59(1), 018001 (2020),
https://doi.org/10.7567/1347-4065/ab600b
[25] Infrared and Millimeter Waves, Volume 10 – Millimeter Components and Techniques Part II, ed. K. J. Button (Academic Press, INC, 1983),
[GoogleBooks]
[26] C. Rønne, L. Thrane, P.O. Åstrand, A. Wallqvist, K.V. Mikkelsen, and S.R. Keiding, Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation, J. Chem. Phys. 107(14), 5319–5331 (1997),
https://doi.org/10.1063/1.474242
[27] A. Lisauskas, S. Boppel, M. Mundt, V. Krozer,band H.G. Roskos, Subharmonic mixing withbfield-effect transistors: Theory and experiment at 639 GHz high above fT, IEEE Sens. J. 13(1), b124–132 (2012),
https://doi.org/10.1109/JSEN.2012.2223668
[28] A. Lisauskas, U. Pfeiffer, E. Öjefors, P. Haring Bolivar, D. Glaab, and H.G. Roskos, Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors, J. Appl. Phys. 105(11), 114511 (2009),
https://doi.org/10.1063/1.3140611
[29] K. Ikamas, D. Čibiraitė, A. Lisauskas, M. Bauer, V. Krozer, and H.G. Roskos, Broadband terahertz power detectors based on 90-nm silicon CMOS transistors with flat responsivity up to 2.2 THz, IEEE Electron Device Lett. 39(9), 1413–1416 (2018),
https://doi.org/10.1109/LED.2018.2859300