Hui Yuan, Qamar ul-Islam, and Hartmut G. Roskos
Email: yuan@physik.uni-frankfurt.de;
roskos@physik.uni-frankfurt.de
References /
Nuorodos
[1] L. Cheng, W. Zhang, C. Li, Y. Ji, X. Liu, and G. Fang,
HE-DETR-DC5 method to rapidly detect objects on passive THz
images in human safety inspection, Electron. Lett.
59(2),
e12702 (2023),
https://doi.org/10.1049/ell2.12702
[2] T. Amini, F. Jahangiri, Z. Ameri, and M.A. Hemmatian, A
review of feasible applications of THz waves in medical
diagnostics and treatments, J. Lasers Med. Sci.
12(1),
e92 (2021),
https://doi.org/10.34172/jlms.2021.92
[3] M. Karthikeya Sharma, A. Rao, K. Kumar, and T.R. Rao,
Terahertz imaging for aerospace applications, in:
Proceedings
of WiSPNET 2023 – International Conference on Wireless
Communications, Signal Processing and Networking
(Institute of Electrical and Electronics Engineers Inc., 2023),
https://doi.org/10.1109/WiSPNET57748.2023.10134245
[4] Y. Huang, Y. Shen, and J. Wang, From terahertz imaging to
terahertz wireless communications, Engineering
22,
106–124 (2023),
https://doi.org/10.1016/j.eng.2022.06.023
[5] D.J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh,
Sensor and sensor fusion technology in autonomous vehicles: A
review, Sensors
21(6), 2140 (2021),
https://doi.org/10.3390/s21062140
[6] Y. Koyama, Y. Kitazawa, K. Yukimasa, T. Uchida, T. Yoshioka,
K. Fujimoto, T. Sato, J. Iba, K. Sakurai, and T. Ichikawa, A
high-power terahertz source over 10 mW at 0.45 THz using an
active antenna array with integrated patch antennas and
resonant-tunneling diodes, IEEE Trans. Terahertz Sci. Technol.
12(5),
510–519 (2022),
https://doi.org/10.1109/TTHZ.2022.3180492
[7] E. Javadi, D.B. But, K. Ikamas, J. Zdanevičius, W. Knap, and
A. Lisauskas, Sensitivity of field-effect transistor-based
terahertz detectors, Sensors
21(9), 2909 (2021),
https://doi.org/10.3390/s21092909
[8] F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M.D.
Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil,
et al., THz active imaging systems with real-time capabilities,
IEEE Trans. Terahertz Sci. Technol.
1(1), 183–200
(2011),
https://doi.org/10.1109/TTHZ.2011.2159559
[9] G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H.G. Roskos,
Roadmap of terahertz imaging 2021, Sensors
21(12), 4092
(2021),
https://doi.org/10.3390/s21124092
[10] H. Yuan, D. Voß, A. Lisauskas, D. Mundy, and H.G. Roskos,
3D Fourier imaging based on 2D heterodyne detection at THz
frequencies, APL Photonics
4(10), 106108 (2019),
https://doi.org/10.1063/1.5116553
[11] H. Yuan, A. Lisauska, M. Zhang, Q. ul-Islam, D. Erni, and
H.G. Roskos, Fourier imaging based on sub-harmonic detection at
600 GHz, in:
Proceedings of the 2022 Fifth International
Workshop on Mobile Terahertz Systems (IWMTS) (2022) pp.
1–4,
https://doi.org/10.1109/IWMTS54901.2022.9832459
[12] R.I. Stantchev, X. Yu, T. Blu, and E. Pickwell-MacPherson,
Real-time terahertz imaging with a single-pixel detector, Nat.
Commun.
11(1), 2535 (2020),
https://doi.org/10.1038/s41467-020-16370-x
[13] J. Grzyb and U. Pfeiffer, THz direct detector and
heterodyne receiver arrays in silicon nanoscale technologies, J.
Infrared Millim. Terahertz Waves
36(10), 998–1032
(2015),
https://doi.org/10.1007/s10762-015-0172-6
[14] D. Glaab, S. Boppel, A. Lisauskas, U. Pfeiffer, E. Öjefors,
and H.G. Roskos, Terahertz heterodyne detection with silicon
field-effect transistors, Appl. Phys. Lett.
96(4),
042106 (2010),
https://doi.org/10.1063/1.3292016
[15] S. Boppel, A. Lisauskas, A. Max, V. Krozer, and H.G.
Roskos, CMOS detector arrays in a virtual 10-kilopixel camera
for coherent terahertz real-time imaging, Opt. Lett.
37(4),
536–538 (2012),
https://doi.org/10.1364/OL.37.000536
[16] H. Yuan, A. Lisauskas, M.D. Thomson, and H.G. Roskos,
600-GHz Fourier imaging based on heterodyne detection at the 2nd
sub-harmonic, Opt. Express
31, 40856-40870 (2023),
https://doi.org/10.1364/OE.487888
[17] H. Yuan, A. Lisauskas, M. Zhang, A. Rennings, D. Erni, and
H.G. Roskos, Dynamic-range enhancement of heterodyne THz imaging
by the use of a soft paraffin-wax substrate lens on the
detector, in:
Proceedings of the 2019 Photonics &
Electromagnetics Research Symposium – Fall (PIERS – Fall)
(IEEE, 2019) pp. 2607–2611,
https://doi.org/10.1109/PIERS-Fall48861.2019.9021735
[18] M. Freund and G. Mózes,
Paraffin Products: Properties,
Technologies, Applications (Elsevier Scientific Pub. Co.,
1982)
[19] Q. ul-Islam, F. Meng, M.D. Thomson, and H.G. Roskos,
Terahertz photoconductive waveguide emitter with excitation by a
tilted optical pulse front, Opt. Express
28(22),
33673–33681 (2020),
https://doi.org/10.1364/OE.403161
[20] W. Cai and V. Shalaev,
Optical Metamaterials:
Fundamentals and Applications (Springer, New York, 2010),
https://doi.org/10.1007/978-1-4419-1151-3
[21] P.U. Jepsen, D.G. Cooke, and M. Koch, Terahertz
spectroscopy and imaging – Modern techniques and applications,
Laser Photon Rev.
5(1), 124–166 (2011),
https://doi.org/10.1002/lpor.201000011
[22] M. Bauer, A. Rämer, S.A. Chevtchenko, K.Y. Osipov, D.
Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W.
Heinrich, V. Krozer, and H.G. Roskos, A high-sensitivity
AlGaN/GaN HEMT terahertz detector with integrated broadband
bow-tie antenna, IEEE Trans. Terahertz Sci. Technol.
9(4),
430–444 (2019),
https://doi.org/10.1109/TTHZ.2019.2917782
[23] S. Boppel, A. Lisauskas, D. Seliuta, L. Minkevičius, I.
Kašalynas, G. Valušis, V. Krozer, and H.G. Roskos, CMOS
integrated antenna-coupled field-effect transistors for the
detection of radiation from 0.2 to 4.3 THz, IEEE Trans. Microw.
Theory Tech.
60(12), 3834–3843 (2012),
https://doi.org/10.1109/TMTT.2012.2221732
[24] M. Asada, Theoretical analysis of subharmonic injection
locking in resonant-tunneling-diode terahertz oscillators, Jpn.
J. Appl. Phys. 59(1), 018001 (2020),
https://doi.org/10.7567/1347-4065/ab600b
[25]
Infrared and Millimeter Waves, Volume 10 – Millimeter
Components and Techniques Part II, ed. K. J. Button
(Academic Press, INC, 1983),
[GoogleBooks]
[26] C. Rønne, L. Thrane, P.O. Åstrand, A. Wallqvist, K.V.
Mikkelsen, and S.R. Keiding, Investigation of the temperature
dependence of dielectric relaxation in liquid water by THz
reflection spectroscopy and molecular dynamics simulation, J.
Chem. Phys.
107(14), 5319–5331 (1997),
https://doi.org/10.1063/1.474242
[27] A. Lisauskas, S. Boppel, M. Mundt, V. Krozer,band H.G.
Roskos, Subharmonic mixing withbfield-effect transistors: Theory
and experiment at 639 GHz high above
fT, IEEE
Sens. J.
13(1), b124–132 (2012),
https://doi.org/10.1109/JSEN.2012.2223668
[28] A. Lisauskas, U. Pfeiffer, E. Öjefors, P. Haring Bolivar,
D. Glaab, and H.G. Roskos, Rational design of high-responsivity
detectors of terahertz radiation based on distributed
self-mixing in silicon field-effect transistors, J. Appl. Phys.
105(11), 114511 (2009),
https://doi.org/10.1063/1.3140611
[29] K. Ikamas, D. Čibiraitė, A. Lisauskas, M. Bauer, V. Krozer,
and H.G. Roskos, Broadband terahertz power detectors based on
90-nm silicon CMOS transistors with flat responsivity up to 2.2
THz, IEEE Electron Device Lett.
39(9), 1413–1416 (2018),
https://doi.org/10.1109/LED.2018.2859300