[PDF]    https://doi.org/10.3952/physics.2023.63.4.7

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 251–263 (2023)

THz PROPERTIES OF GRATING-GATE PLASMONIC CRYSTALS
Pavlo Saia, Maksym Duba, Vadym Korotyeyeva,b, Serhii Kukhtaruka,b, Grzegorz Cywinskia, and Wojciech Knapa
a CENTERA Laboratories, Institute of High Pressure Physics PAS, 01-142 Warsaw, Poland
b V.Ye. Lashkaryov Institute of Semiconductor Physics (ISP), NASU, 03028 Kyiv, Ukraine
Email: psai@unipress.waw.pl

Received 10 November 2023; accepted 13 November 2023

This study reviews recent advances in the modern field of terahertz plasmonics concerning the control of resonant properties of grating-gate plasmonic crystal structures. Particularly, we conducted both experimental and theoretical investigations of AlGaN/GaN grating-gate structures with a focus on investigations of the resonant structure of transmission spectra associated with plasmon excitations in two-dimensional electron gas at different modulation degree of concentration profiles. Two distinct resonant phases of the plasmonic crystal structure were analyzed. The first one, the delocalized phase, is observed in the case of a small modulation degree of electron gas. In this phase, we found that plasmonic resonant absorption of incident radiation occurs across the entire grating-gate structure, with domination in the gated regions of the electron gas. In contrast, the second phase, the localized one, is realized at a strong modulation of the electron concentration profiles when the gated regions of the electron gas are completely depleted. Here, plasmon resonances are characterized by the spatial localization of absorption of incident radiation exclusively within the ungated regions of the electron gas. Moreover, in the localized phase, we observed the unexpected blue shift of plasmon resonant frequency with an increase of gate voltage. This observation was explained by the result of ‘edge gating effect’ and additional shrinking of the concentration profile of the electron gas in the ungated region. We demonstrate that the correct description of both phases requires rigorous electrodynamic simulations and cannot be achieved solely in the frameworks of simplified single-mode or single-cavity models.
Keywords: plasmonic crystal, plasmon resonance, terahertz spectroscopy, integral equations method

GARDELĖS-UŽTŪROS PLAZMONINIŲ KRISTALŲ TERAHERCINĖS SAVYBĖS
Pavlo Saia, Maksym Duba, Vadym Korotyeyeva,b, Serhii Kukhtaruka,b, Grzegorz Cywinskia, Wojciech Knapa

a Lenkijos MA Aukštojo slėgio fizikos instituto CENTERA laboratorijos, Varšuva, Lenkija
b Ukrainos nacionalinės MA V. Laškariovo puslaidininkių fizikos institutas, Kyjivas, Ukraina

Esant didelei skaitmeninei apertūrai, vieno kadro vaizdinime atsiranda iškraipymų, dėl kurių kokybiškus vaizdus gauti yra sunku, o kartais gal net neįmanoma. Šias kliūtis galima įveikti naudojant vieno pikselio vaizdinimą, kai įvairios strategijos leidžia matyti objektus, pasižyminčius gera skiriamąja geba, kontrastu ir ryškumu. Naujausi plokščiosios fotonikos pasiekimai leido sukurti kompaktiškas neparaksialines vaizdinimo sistemas, kurios yra ypač perspektyvios THz bangų ilgių diapazone bei yra pažangios tokiose srityse kaip komunikacija, medžiagų tikrinimas bei spektroskopija. Šiame darbe nagrinėjama vieno pikselio vaizdinimo problematika: pristatomas bandinio pavyzdys, kuris naudojamas dviejų zoninių plokštelių vaizdinimo sistemos skyrai, kontrastui ir ryškumui nustatyti. Atliekamas neparaksialinis bandinio vaizdinimas ir parodoma, kad geriausio kontrasto ir geriausio ryškio sąlygos yra viena nuo kitos atsietos neparaksialiniame vieno pikselio vaizdinime. Tikintis apeiti šią netikėtą kliūtį, pasinaudota dviem integraliais vaizdo kokybės vertinimo metodais iš skaitmeninių vaizdų teorijos ir jais remiantis įvertinta vaizdo kokybė virtualiame skaitmeniniame THz vaizdinimo scenarijuje. Lokalizuoto vidutinio kvadratinio nuokrypio metrika papildomai neapriboja gero vaizdo kokybės sąlygų, o suminis vidutinis kvadratinis nuokrypis stipriai apriboja galimų vaizdinimo atstumų diapazoną. Taigi, skaitmeniniai integralūs vaizdo kokybės nustatymo metodai patvirtina pagrindinį šio tyrimo teiginį, kad vieno pikselio vaizdo skiriamoji geba yra atsieta nuo vaizdo ryškumo.


References / Nuorodos

[1] M. Dyakonov and M. Shur, Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current, Phys. Rev. Lett. 71, 2465 (1993),
https://doi.org/10.1103/PhysRevLett.71.2465
[2] W. Knap, Y. Deng, S. Rumyantsev, and M. Shur, Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors, Appl. Phys. Lett. 81, 4637–4639 (2002),
https://doi.org/10.1063/1.1525851
[3] J.A. Delgado-Notario, W. Knap, V. Clericò, J. Salvador-Sánchez, J. Calvo-Gallego, T. Taniguchi, K. Watanabe, T. Otsuji, V.V. Popov, and D.V. Fateev, Enhanced terahertz detection of multigate graphene nanostructures, Nanophotonics 11, 519–529 (2022),
https://doi.org/10.1515/nanoph-2021-0573
[4] E. Shaner, M. Lee, M. Wanke, A. Grine, J. Reno, and S.J. Allen, Single-quantum-well grating-gated terahertz plasmon detectors, Appl. Phys. Lett. 87, 193507 (2005),
https://doi.org/10.1063/1.2128057
[5] D. Coquillat, S. Nadar, F. Teppe, N. Dyakonova, S. Boubanga-Tombet, W. Knap, T. Nishimura, T. Otsuji, Y. Meziani, and G. Tsymbalov, Room temperature detection of sub-terahertz radiation in double-grating-gate transistors, Opt. Express 18, 6024–6032 (2010),
https://doi.org/10.1364/OE.18.006024
[6] P. Sai, S.O. Potashin, M. Szoła, D. Yavorskiy, G. Cywiński, P. Prystawko, J. Łusakowski, S.D. Ganichev, S. Rumyantsev, W. Knap, and V.Y. Kachorovskii, Beatings of ratchet current magneto-oscillations in GaN-based grating gate structures: Manifestation of spin-orbit band splitting, Phys. Rev. B 104, 045301 (2021),
https://doi.org/10.1103/PhysRevB.104.045301
[7] T. Onishi, T. Tanigawa, and S. Takigawa, High power terahertz emission from a single gate AlGaN/GaN field effect transistor with periodic Ohmic contacts for plasmon coupling, Appl. Phys. Lett. 97, 092117 (2010),
https://doi.org/10.1063/1.3486473
[8] V.A. Shalygin, M.D. Moldavskaya, M.Y. Vinnichenko, K.V. Maremyanin, A.A. Artemyev, V.Y. Panevin, L.E. Vorobjev, D.A. Firsov, V.V. Korotyeyev, A.V. Sakharov, E.E. Zavarin, D.S. Arteev, W.V. Lundin, A.F. Tsatsulnikov, S. Suihkonen, and C. Kauppinen, Selective terahertz emission due to electrically excited 2D plasmons in AlGaN/GaN heterostructure, J. Appl. Phys. 126, 183104 (2019),
https://doi.org/10.1063/1.5118771
[9] S. Boubanga-Tombet, W. Knap, D. Yadav, A. Satou, D.B. But, V.V. Popov, I.V. Gorbenko, V. Kachorovskii, and T. Otsuji, Room-temperature amplification of terahertz radiation by grating-gate graphene structures, Phys. Rev. X 10, 031004 (2020),
https://doi.org/10.1103/PhysRevX.10.031004
[10] V.Y. Kachorovskii and M. Shur, Current-induced terahertz oscillations in plasmonic crystal, Appl. Phys. Lett. 100, 232108 (2012),
https://doi.org/10.1063/1.4726273
[11] A.S. Petrov, D. Svintsov, V. Ryzhii, and M.S. Shur, Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals, Phys. Rev. B 95, 045405 (2017),
https://doi.org/10.1103/PhysRevB.95.045405
[12] S. Allen Jr, D. Tsui, and R. Logan, Observation of the two-dimensional plasmon in silicon inversion layers, Phys. Rev. Lett. 38, 980 (1977),
https://doi.org/10.1103/PhysRevLett.38.980
[13] D. Tsui, S. Allen Jr, R. Logan, A. Kamgar, and S. Coppersmith, High frequency conductivity in silicon inversion layers: Drude relaxation, 2D plasmons and minigaps in a surface superlattice, Surf. Sci. 73, 419–433 (1978),
https://doi.org/10.1016/0039-6028(78)90520-4
[14] N. Nader Esfahani, R. Peale, W. Buchwald, C. Fredricksen, J. Hendrickson, and J. Cleary, Millimeter-wave photoresponse due to excitation of two-dimensional plasmons in InGaAs/InP high-electron-mobility transistors, J. Appl. Phys. 114, 033105 (2013),
https://doi.org/10.1063/1.4813511
[15] M. Białek, M. Czapkiewicz, J. Wróbel, V. Umansky, and J. Łusakowski, Plasmon dispersions in high electron mobility terahertz detectors, Appl. Phys. Lett. 104, 263514 (2014),
https://doi.org/10.1063/1.4886970
[16] A. Muravjov, D. Veksler, V. Popov, O. Polischuk, N. Pala, X. Hu, R. Gaska, H. Saxena, R. Peale, and M. Shur, Temperature dependence of plasmonic terahertz absorption in grating-gate gallium-nitride transistor structures, Appl. Phys. Lett. 96, 042105 (2010),
https://doi.org/10.1063/1.3292019
[17] M. Dub, D. But, P. Sai, Y. Ivonyak, M. Słowikowski, M. Filipiak, G. Cywinski, W. Knap, and S. Rumyantsev, Plasmons in AlGaN/GaN grating-gate structure probing with 300 K background illumination, AIP Adv. 13, 095017 (2023),
https://doi.org/10.1063/5.0169635
[18] H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, Tunable infrared plasmonic devices using graphene/insulator stacks, Nat. Nanotechnol. 7, 330–334 (2012),
https://doi.org/10.1038/nnano.2012.59
[19] Y. Li, P. Ferreyra, A.K. Swan, and R. Paiella, Current-driven terahertz light emission from graphene plasmonic oscillations, ACS Photonics 6, 2562–2569 (2019),
https://doi.org/10.1021/acsphotonics.9b01037
[20] S.A. Mikhailov, Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems, Phys. Rev. B 58, 1517 (1998),
https://doi.org/10.1103/PhysRevB.58.1517
[21] D.V. Fateev, V.V. Popov, and M.S. Shur, Transformation of the plasmon spectrum in a grating-gate transistor structure with spatially modulated two-dimensional electron channel, Semiconductors 44, 1406–1413 (2010),
https://doi.org/10.1134/S1063782610110059
[22] V.V. Popov, Plasmon excitation and plasmonic detection of terahertz radiation in the grating-gate field-effect-transistor structures, J. Infrared Millim. Terahertz Waves 32, 1178–1191 (2011),
https://doi.org/10.1007/s10762-011-9813-6
[23] Y.M. Lyaschuk and V. Korotyeyev, Theory of detection of terahertz radiation in hybrid plasmonic structures with drifting electron gas, Ukr. J. Phys. 62, 889–889 (2017),
https://doi.org/10.15407/ujpe62.10.0889
[24] Y.M. Lyaschuk, S.M. Kukhtaruk, V. Janonis, and V.V. Korotyeyev, Modified rigorous coupled-wave analysis for grating-based plasmonic structures with a delta-thin conductive channel: far-and near-field study, JOSA A 38, 157–167 (2021),
https://doi.org/10.1364/JOSAA.410857
[25] V. Korotyeyev and V. Kochelap, Plasma wave oscillations in a nonequilibrium two-dimensional electron gas: electric field induced plasmon instability in the terahertz frequency range, Phys. Rev. B 101, 235420 (2020),
https://doi.org/10.1103/PhysRevB.101.235420
[26] V.V. Korotyeyev, V.A. Kochelap, V.V. Kaliuzhnyi, and A.E. Belyaev, High-frequency conductivity and temperature dependence of electron effective mass in AlGaN/GaN heterostructures, Appl. Phys. Lett. 120, 252103 (2022),
https://doi.org/10.1063/5.0093292
[27] P. Sai, V.V. Korotyeyev, M. Dub, M. Słowikowski, M. Filipiak, D.B. But, Y. Ivonyak, M. Sakowicz, Y.M. Lyaschuk, S.M. Kukhtaruk, G. Cywiński, and W. Knap, Electrical tuning of terahertz plasmonic crystal phases, Phys. Rev. X 13, 041003 (2023),
https://doi.org/10.1103/PhysRevX.13.041003
[28] A. Chaplik, Possible crystallization of charge carriers in low-density inversion layers, Sov. Phys. JETP 35, 395 (1972)
[29] N. Okisu, Y. Sambe, and T. Kobayashi, Far‐infrared emission from two‐dimensional plasmons in AlGaAs/GaAs heterointerfaces, Appl. Phys. Lett. 48, 776–778 (1986),
https://doi.org/10.1063/1.96718
[30] V. Ryzhii, T. Otsuji, and M. Shur, Graphene based plasma-wave devices for terahertz applications, Appl. Phys. Lett. 116, 140501 (2020),
https://doi.org/10.1063/1.5140712
[31] W. Schaich, Analysis of a special model for a grating coupler, Phys. Rev. B 62, 2721 (2000),
https://doi.org/10.1103/PhysRevB.62.2721
[32] T.L. Zinenko, A. Matsushima, and A.I. Nosich, Surface-plasmon, grating-mode, and slab-mode resonances in the H- and E-polarized THz wave scattering by a graphene strip grating embedded into a dielectric slab, IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017),
https://doi.org/10.1109/JSTQE.2017.2684082
[33] G. Cywiński, I. Yahniuk, P. Kruszewski, M. Grabowski, K. Nowakowski-Szkudlarek, P. Prystawko, P. Sai, W. Knap, G. Simin, and S. Rumyantsev, Electrically controlled wire-channel GaN/AlGaN transistor for terahertz plasma applications, Appl. Phys. Lett. 112, 133502 (2018),
https://doi.org/10.1063/1.5023391
[34] P. Sai, D. But, I. Yahniuk, M. Grabowski, M. Sakowicz, P. Kruszewski, P. Prystawko, A. Khachapuridze, K. Nowakowski-Szkudlarek, and J. Przybytek, AlGaN/GaN field effect transistor with two lateral Schottky barrier gates towards resonant detection in sub-mm range, Semicond. Sci. Technol. 34, 024002 (2019),
https://doi.org/10.1088/1361-6641/aaf4a7