References /
Nuorodos
[1] M. Dyakonov and M. Shur, Shallow water analogy for a
ballistic field effect transistor: New mechanism of plasma wave
generation by dc current, Phys. Rev. Lett.
71, 2465
(1993),
https://doi.org/10.1103/PhysRevLett.71.2465
[2] W. Knap, Y. Deng, S. Rumyantsev, and M. Shur, Resonant
detection of subterahertz and terahertz radiation by plasma
waves in submicron field-effect transistors, Appl. Phys. Lett.
81,
4637–4639 (2002),
https://doi.org/10.1063/1.1525851
[3] J.A. Delgado-Notario, W. Knap, V. Clericò, J.
Salvador-Sánchez, J. Calvo-Gallego, T. Taniguchi, K. Watanabe,
T. Otsuji, V.V. Popov, and D.V. Fateev, Enhanced terahertz
detection of multigate graphene nanostructures, Nanophotonics
11,
519–529 (2022),
https://doi.org/10.1515/nanoph-2021-0573
[4] E. Shaner, M. Lee, M. Wanke, A. Grine, J. Reno, and S.J.
Allen, Single-quantum-well grating-gated terahertz plasmon
detectors, Appl. Phys. Lett.
87, 193507 (2005),
https://doi.org/10.1063/1.2128057
[5] D. Coquillat, S. Nadar, F. Teppe, N. Dyakonova, S.
Boubanga-Tombet, W. Knap, T. Nishimura, T. Otsuji, Y. Meziani,
and G. Tsymbalov, Room temperature detection of sub-terahertz
radiation in double-grating-gate transistors, Opt. Express
18,
6024–6032 (2010),
https://doi.org/10.1364/OE.18.006024
[6] P. Sai, S.O. Potashin, M. Szoła, D. Yavorskiy, G. Cywiński,
P. Prystawko, J. Łusakowski, S.D. Ganichev, S. Rumyantsev, W.
Knap, and V.Y. Kachorovskii, Beatings of ratchet current
magneto-oscillations in GaN-based grating gate structures:
Manifestation of spin-orbit band splitting, Phys. Rev. B
104,
045301 (2021),
https://doi.org/10.1103/PhysRevB.104.045301
[7] T. Onishi, T. Tanigawa, and S. Takigawa, High power
terahertz emission from a single gate AlGaN/GaN field effect
transistor with periodic Ohmic contacts for plasmon coupling,
Appl. Phys. Lett.
97, 092117 (2010),
https://doi.org/10.1063/1.3486473
[8] V.A. Shalygin, M.D. Moldavskaya, M.Y. Vinnichenko, K.V.
Maremyanin, A.A. Artemyev, V.Y. Panevin, L.E. Vorobjev, D.A.
Firsov, V.V. Korotyeyev, A.V. Sakharov, E.E. Zavarin, D.S.
Arteev, W.V. Lundin, A.F. Tsatsulnikov, S. Suihkonen, and C.
Kauppinen, Selective terahertz emission due to electrically
excited 2D plasmons in AlGaN/GaN heterostructure, J. Appl. Phys.
126, 183104 (2019),
https://doi.org/10.1063/1.5118771
[9] S. Boubanga-Tombet, W. Knap, D. Yadav, A. Satou, D.B. But,
V.V. Popov, I.V. Gorbenko, V. Kachorovskii, and T. Otsuji,
Room-temperature amplification of terahertz radiation by
grating-gate graphene structures, Phys. Rev. X
10,
031004 (2020),
https://doi.org/10.1103/PhysRevX.10.031004
[10] V.Y. Kachorovskii and M. Shur, Current-induced terahertz
oscillations in plasmonic crystal, Appl. Phys. Lett.
100,
232108 (2012),
https://doi.org/10.1063/1.4726273
[11] A.S. Petrov, D. Svintsov, V. Ryzhii, and M.S. Shur,
Amplified-reflection plasmon instabilities in grating-gate
plasmonic crystals, Phys. Rev. B
95, 045405 (2017),
https://doi.org/10.1103/PhysRevB.95.045405
[12] S. Allen Jr, D. Tsui, and R. Logan, Observation of the
two-dimensional plasmon in silicon inversion layers, Phys. Rev.
Lett.
38, 980 (1977),
https://doi.org/10.1103/PhysRevLett.38.980
[13] D. Tsui, S. Allen Jr, R. Logan, A. Kamgar, and S.
Coppersmith, High frequency conductivity in silicon inversion
layers: Drude relaxation, 2D plasmons and minigaps in a surface
superlattice, Surf. Sci.
73, 419–433 (1978),
https://doi.org/10.1016/0039-6028(78)90520-4
[14] N. Nader Esfahani, R. Peale, W. Buchwald, C. Fredricksen,
J. Hendrickson, and J. Cleary, Millimeter-wave photoresponse due
to excitation of two-dimensional plasmons in InGaAs/InP
high-electron-mobility transistors, J. Appl. Phys.
114,
033105 (2013),
https://doi.org/10.1063/1.4813511
[15] M. Białek, M. Czapkiewicz, J. Wróbel, V. Umansky, and J.
Łusakowski, Plasmon dispersions in high electron mobility
terahertz detectors, Appl. Phys. Lett.
104, 263514
(2014),
https://doi.org/10.1063/1.4886970
[16] A. Muravjov, D. Veksler, V. Popov, O. Polischuk, N. Pala,
X. Hu, R. Gaska, H. Saxena, R. Peale, and M. Shur, Temperature
dependence of plasmonic terahertz absorption in grating-gate
gallium-nitride transistor structures, Appl. Phys. Lett.
96,
042105 (2010),
https://doi.org/10.1063/1.3292019
[17] M. Dub, D. But, P. Sai, Y. Ivonyak, M. Słowikowski, M.
Filipiak, G. Cywinski, W. Knap, and S. Rumyantsev, Plasmons in
AlGaN/GaN grating-gate structure probing with 300 K background
illumination, AIP Adv.
13, 095017 (2023),
https://doi.org/10.1063/5.0169635
[18] H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag,
W. Zhu, P. Avouris, and F. Xia, Tunable infrared plasmonic
devices using graphene/insulator stacks, Nat. Nanotechnol.
7,
330–334 (2012),
https://doi.org/10.1038/nnano.2012.59
[19] Y. Li, P. Ferreyra, A.K. Swan, and R. Paiella,
Current-driven terahertz light emission from graphene plasmonic
oscillations, ACS Photonics
6, 2562–2569 (2019),
https://doi.org/10.1021/acsphotonics.9b01037
[20] S.A. Mikhailov, Plasma instability and amplification of
electromagnetic waves in low-dimensional electron systems, Phys.
Rev. B
58, 1517 (1998),
https://doi.org/10.1103/PhysRevB.58.1517
[21] D.V. Fateev, V.V. Popov, and M.S. Shur, Transformation of
the plasmon spectrum in a grating-gate transistor structure with
spatially modulated two-dimensional electron channel,
Semiconductors
44, 1406–1413 (2010),
https://doi.org/10.1134/S1063782610110059
[22] V.V. Popov, Plasmon excitation and plasmonic detection of
terahertz radiation in the grating-gate field-effect-transistor
structures, J. Infrared Millim. Terahertz Waves
32,
1178–1191 (2011),
https://doi.org/10.1007/s10762-011-9813-6
[23] Y.M. Lyaschuk and V. Korotyeyev, Theory of detection of
terahertz radiation in hybrid plasmonic structures with drifting
electron gas, Ukr. J. Phys.
62, 889–889 (2017),
https://doi.org/10.15407/ujpe62.10.0889
[24] Y.M. Lyaschuk, S.M. Kukhtaruk, V. Janonis, and V.V.
Korotyeyev, Modified rigorous coupled-wave analysis for
grating-based plasmonic structures with a delta-thin conductive
channel: far-and near-field study, JOSA A
38, 157–167
(2021),
https://doi.org/10.1364/JOSAA.410857
[25] V. Korotyeyev and V. Kochelap, Plasma wave oscillations in
a nonequilibrium two-dimensional electron gas: electric field
induced plasmon instability in the terahertz frequency range,
Phys. Rev. B
101, 235420 (2020),
https://doi.org/10.1103/PhysRevB.101.235420
[26] V.V. Korotyeyev, V.A. Kochelap, V.V. Kaliuzhnyi, and A.E.
Belyaev, High-frequency conductivity and temperature dependence
of electron effective mass in AlGaN/GaN heterostructures, Appl.
Phys. Lett.
120, 252103 (2022),
https://doi.org/10.1063/5.0093292
[27] P. Sai, V.V. Korotyeyev, M. Dub, M. Słowikowski, M.
Filipiak, D.B. But, Y. Ivonyak, M. Sakowicz, Y.M. Lyaschuk, S.M.
Kukhtaruk, G. Cywiński, and W. Knap, Electrical tuning of
terahertz plasmonic crystal phases, Phys. Rev. X
13,
041003 (2023),
https://doi.org/10.1103/PhysRevX.13.041003
[28] A. Chaplik, Possible crystallization of charge carriers in
low-density inversion layers, Sov. Phys. JETP
35, 395
(1972)
[29] N. Okisu, Y. Sambe, and T. Kobayashi, Far‐infrared emission
from two‐dimensional plasmons in AlGaAs/GaAs heterointerfaces,
Appl. Phys. Lett.
48, 776–778 (1986),
https://doi.org/10.1063/1.96718
[30] V. Ryzhii, T. Otsuji, and M. Shur, Graphene based
plasma-wave devices for terahertz applications, Appl. Phys.
Lett.
116, 140501 (2020),
https://doi.org/10.1063/1.5140712
[31] W. Schaich, Analysis of a special model for a grating
coupler, Phys. Rev. B
62, 2721 (2000),
https://doi.org/10.1103/PhysRevB.62.2721
[32] T.L. Zinenko, A. Matsushima, and A.I. Nosich,
Surface-plasmon, grating-mode, and slab-mode resonances in the
H- and E-polarized THz wave scattering by a graphene strip
grating embedded into a dielectric slab, IEEE J. Sel. Top.
Quantum Electron.
23, 1–9 (2017),
https://doi.org/10.1109/JSTQE.2017.2684082
[33] G. Cywiński, I. Yahniuk, P. Kruszewski, M. Grabowski, K.
Nowakowski-Szkudlarek, P. Prystawko, P. Sai, W. Knap, G. Simin,
and S. Rumyantsev, Electrically controlled wire-channel
GaN/AlGaN transistor for terahertz plasma applications, Appl.
Phys. Lett.
112, 133502 (2018),
https://doi.org/10.1063/1.5023391
[34] P. Sai, D. But, I. Yahniuk, M. Grabowski, M. Sakowicz, P.
Kruszewski, P. Prystawko, A. Khachapuridze, K.
Nowakowski-Szkudlarek, and J. Przybytek, AlGaN/GaN field effect
transistor with two lateral Schottky barrier gates towards
resonant detection in sub-mm range, Semicond. Sci. Technol.
34,
024002 (2019),
https://doi.org/10.1088/1361-6641/aaf4a7