[PDF]    https://doi.org/10.3952/physics.2023.63.4.8

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 264–272 (2023)

EFFECTS OF PARABOLIC BARRIER DESIGN FOR MULTIPLE GaAsBi/AlGaAs QUANTUM WELL STRUCTURES
Monika Jokubauskaitėa,b, Gustas Petrusevičiusa,b, Aivaras Špokasa,b, Bronislovas Čechavičiusa, Evelina Dudutienėa, and Renata Butkutėa,b
a Center for Physical Sciences and Technologies, Saulėtekio 3, Vilnius, Lithuania
b Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, Vilnius, Lithuania
Email: evelina.dudutiene@ftmc.lt

Received 23 October 2023; accepted 24 October 2023

The results of a comparative study on how the design of multiple quantum structures containing a parabolic barrier profile affects optical properties are presented. All quantum well (QW) structures were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs substrates. The investigated samples consisted of (i) double parabolic quantum wells (type A) or (ii) multiple (two or three) rectangular quantum wells surrounded by parabolic barriers (type B). The optical quality of samples was characterized performing room-temperature (RT-PL) and temperature-dependent photoluminescence (TD-PL) measurements. The investigation aimed at the optimization of a multiple quantum well (MQW) structure design for application in the gain region of near infrared (NIR) laser diodes (LDs) revealed benefits of both double parabolic quantum wells and a mixed design (rectangular MQW with parabolic barriers). The PL band position for all samples was registered in the vicinity around 1.19 eV, which corresponds to the Bi content in QW of ~4.4%. It was shown that all structures of type A exhibit an intense emission, while the intensity of photoluminescence measured for the samples of type B depends on the number of QWs. The weaker intensity of the PL signal from two QWs inserted between parabolic barriers was explained by a larger point defect density at low temperature grown inner GaAs barriers. The room-temperature PL intensity of the structure with three GaAsBi QWs embedded in one parabolic AlGaAs barrier was the highest one. The shift of PL peak position to lower energies (1.16 eV) was attributed to the slightly higher bismuth concentration, 4.9%.
Keywords: GaAsBi, parabolic quantum wells, molecular beam epitaxy, photoluminescence, laser diode, near infrared

PARABOLINIO BARJERO DIZAINO POVEIKIS DAUGYBINĖMS GaAsBi/AlGaAs KVANTINĖMS DUOBĖMS
Monika Jokubauskaitėa,b, Gustas Petrusevičiusa,b, Aivaras Špokasa,b, Bronislovas Čechavičiusa, Evelina Dudutienėa, Renata Butkutėa,b

a Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
b Vilniaus universiteto Fotonikos ir nanotechnologijų institutas, Vilnius, Lietuva

Pristatomi daugybinių GaAsBi kvantinių duobių su skirtingais parabolinių barjerų dizainais tyrimų rezultatai. Molekulinių pluoštelių epitaksijos metodu ant pusiau izoliuojančių GaAs padėklų buvo užaugintos GaAsBi daugybinės kvantinės duobės su paraboliniais barjerais. Pastarasis dizainas turi tokius privalumus: geresnis optinių savybių atsikartojamumas, stipresnė krūvininkų lokalizacija bei geresnis krūvininkų sugavimo efektyvumas. Pasirinkti trys skirtingi parabolinių barjerų dizainai: dvi GaAsBi kvantinės duobės apgaubtos AlGaAs paraboliniais barjerais bei dvi arba trys GaAsBi stačiakampės duobės įterptos tarp išorinių parabolinių AlGaAs barjerų. Užaugintų struktūrų optinės savybės buvo tiriamos matuojant kambario temperatūros liuminescensiją ir fotoliuminescencijos priklausomybę nuo temperatūros. Tyrimų rezultatai parodė, kad kelios kvantinės duobės, apribotos paraboliniais barjerais, gali pasiekti panašų emisijos intensyvumą palyginti su daugybiniais paraboliniais barjerais, ribojančiais po vieną kvantinę duobę.


References / Nuorodos

[1] A.K. East, M.Y. Lucero, and J. Chan, New directions of activity-based sensing for in vivo NIR imaging, Chem. Sci. 12(10), 3393–3405 (2021),
https://doi.org/10.1039/D0SC03096A
[2] M. Usman, C.A. Broderick, A. Lindsay, and E.P. O’Reilly, Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs, Phys. Rev. B 84, 245202 (2011),
https://doi.org/10.1103/PhysRevB.84.245202
[3] S. Francoeur, M.J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, Band gap of GaAs1–xBix, 0 < x < 3.6%, Appl. Phys. Lett. 82(22), 3874–3876 (2003),
https://doi.org/10.1063/1.1581983
[4] P.K. Patil, E. Luna, T. Matsuda, K. Yamada, K. Kamiya, F. Ishikawa, and S. Shimomura, GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique, Nanotechnology 28, 105702 (2017),
https://doi.org/10.1088/1361-6528/aa596c
[5] C.J. Hunter, F. Bastiman, A.R. Mohmad, R. Richards, J.S. Ng, S.J. Sweeney, and J.P.R. David, Absorption characteristics of GaAs1–xBix/GaAs diodes in the near-infrared, IEEE Photonics Technol. Lett. 24(23), 2191–2194 (2012),
https://doi.org/10.1109/LPT.2012.2225420
[6] P. Ludewig, Growth and characterization of dilute bismide GaAs based alloys for high efficiency infra red laser diodes, Doctoral Thesis (Philipps-Universität Marburg, 2014),
https://doi.org/10.17192/z2015.0050
[7] K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S.P. Watkins, C.X. Wang, X. Liu, Y.-J. Cho, and J. Furdyn, Valence-band anticrossing in mismatched III–V semiconductor alloys, Phys. Rev. B 75(4), 045203 (2007),
https://doi.org/10.1103/PhysRevB.75.045203
[8] Y. Tominaga, K. Oe, and M. Yoshimoto, Low temperature dependence of oscillation wavelength in GaAs1–xBix laser by photo-pumping, Appl. Phys. Express 3(6), 062201 (2010),
https://doi.org/10.1143/APEX.3.062201
[9] R.N. Kini, L. Bhusal, A.J. Ptak, R. France, and A. Mascarenhas, Electron hall mobility in GaAsBi, J. Appl. Phys. 106(4), 043705 (2009),
https://doi.org/10.1063/1.3204670
[10] W.T. Tsang, A graded-index waveguide separate-confinement laser with very low threshold and a narrow Gaussian beam, Appl. Phys. Lett. 39(2), 134–137 (1981),
https://doi.org/10.1063/1.92658
[11] S. Pūkienė, M. Karaliūnas, A. Jasinskas, E. Dudutienė, B. Čechavičius, J. Devenson, R. Butkutė, A. Udal, and G. Valušis, Enhancement of photoluminescence of GaAsBi quantum wells by parabolic design of AlGaAs barriers, Nanotechnology 30(45), 455001 (2019),
https://doi.org/10.1088/1361-6528/ab36f3
[12] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates with a fundamental transverse mode, Jpn. J. Appl. Phys. 37(9A), L1020 (1998),
https://doi.org/10.1143/JJAP.37.L1020
[13] S. Nakamura, M. Senoh, S.I. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, Blue InGaN-based laser diodes with an emission wavelength of 450 nm, Appl. Phys. Lett. 76(1), 22–24 (2000),
https://doi.org/10.1063/1.125643
[14] M. Karaliūnas, E. Dudutienė, A. Čerškus, J. Pagalys, S. Pūkienė, A. Udal, R. Butkutė, and G. Valušis, High precision parabolic quantum wells grown using pulsed analog alloy grading technique: Photoluminescence probing and fractional-dimensional space approach, J. Lumin. 239, 118321 (2021),
https://doi.org/10.1016/j.jlumin.2021.118321
[15] P.G. Eliseev, P. Perlin, J. Lee, and M. Osiński, “Blue” temperature-induced shift and band-tail emission in InGaN-based light sources, Appl. Phys. Lett. 71(5), 569 (1998),
https://doi.org/10.1063/1.119797
[16] R. Butkutė, A. Geižutis, V. Pačebutas, B. Čechavičius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth, Electron. Lett. 50(16), 1155–1157 (2014),
https://doi.org/10.1049/el.2014.1741
[17] E. Dudutienė, A. Jasinskas, B. Čechavičius, R. Nedzinskas, M. Jokubauskaitė, A. Bičiūnas, V. Bukauskas, G. Valušis, and R. Butkutė, Photoluminescence properties of GaAsBi single quantum wells with 10% of Bi, Lith. J. Phys. 61, 142–150 (2021),
https://doi.org/10.3952/physics.v61i2.4442
[18] I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys. 89(11), 5815–5875 (2001),
https://doi.org/10.1063/1.1368156