[PDF]    https://doi.org/10.3952/physics.2024.64.1.1

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 64, 1–10 (2024)

THE XYZ MODEL IN THE MEAN-FIELD APPROXIMATION IN TERMS OF PAULI SPIN MATRICES
Erhan Albayrak
Department of Physics, Erciyes University, 38039 Kayseri, Turkey
Email: albayrak@erciyes.edu.tr

Received 18 May 2023; revised 8 June 2023; accepted 9 June 2023

The mean-field approximation (MFA) of spin-1/2 XYZ model was studied by using the Pauli spin matrices and their exponentials which led to very nice hyperbolic tangent functions in nonlinear form. The magnetization components Mx, My and Mz were obtained for the ferromagnetic (FM) case and then it was modified for the antiferromagnetic (AFM) case by introducing the sublattices. The bilinear exchange interaction parameters Jx, Jy and Jz, and the external magnetic fields Hx, Hy and Hz were considered along the three-dimensions for various coordination numbers q = 3, 4 and 6. The thermal variations of the magnetizations and thus the phase diagrams were obtained to illustrate the behaviours of phase transition lines in the AFM case.
Keywords:spin-1/2, XYZ model, Pauli spin matrices, magnetization, antiferromagnetic, phase diagrams
PACS: 75.10.Hk, 75.30.Kz, 75.50.Gg

XYZ MODELIS VIDUTINIO LAUKO ARTINYJE, NAUDOJANT PAULIO SUKINIO MATRICAS
Erhan Albayrak

Erdžijo universiteto Fizikos fakultetas, Kaiseris, Turkija


References / Nuorodos

[1] R.I. Nepomechie and C. Wang, Boundary energy of the open XXX chain with a non-diagonal boundary term, J. Phys. A 47, 032001 (2014),
https://doi.org/10.1088/1751-8113/47/3/032001
[2] A. Degenhard, Nonperturbative real-space renormalization group scheme for the spin-1/2 XXX Heisenberg model, Phys. Rev. B 64, 174408 (2001),
https://doi.org/10.1103/PhysRevB.64.174408
[3] S. Jami and Z. Haqpanah, Magnetic field effects on quantum correlations for the XXX Heisenberg spin chain, J. Korean Phys. Soc. 72, 743 (2018),
https://doi.org/10.3938/jkps.72.743
[4] M.A. Neto, J.R. Viana, O.D.R. Salmon, E.B. Filho, and J.R. de Sousa, Phase transition induced by an external field in a three-dimensional isotropic Heisenberg antiferromagnet, Mod. Phys. Lett. B 32, 1850390 (2018),
https://doi.org/10.1142/S0217984918503906
[5] D.F. de Albuquerque, S.R.L. Alves, and A.S. de Arruda, Critical behavior in a random field classical Heisenberg model for amorphous systems, Phys. Lett. A 346, 128 (2005),
https://doi.org/10.1016/j.physleta.2005.07.060
[6] Y. Okabe and M. Kikuchi, Quantum Monte Carlo simulation of the spin-1/2 XXZ model on the square lattice, J. Phys. Soc. Japan 57, 4351 (1988),
https://doi.org/10.1143/JPSJ.57.4351
[7] M. Kikuchi and Y. Okabe, Exact diagonalization of the spin-1/2 XXZ model on the 4 × 4 square lattice, J. Phys. Soc. Japan 58, 679 (1989),
https://doi.org/10.1143/JPSJ.58.679
[8] D.J. Bukman, G. An and J.M.J. van Leeuwen, Cluster-variation approach to the spin-1/2 XXZ model, Phys. Rev. B 43, 13352 (1991),
https://doi.org/10.1103/PhysRevB.43.13352
[9] M. Kohno and M. Takahashi, Magnetization process of the spin-1/2 XXZ models on square and cubic lattices, Phys. Rev. B 56, 3212 (1997),
https://doi.org/10.1103/PhysRevB.56.3212
[10] J.R. de Sousa and J.A. Plascak, Phase transition in the three-dimensional anisotropic Heisenberg antiferromagnetic model, Phys. Lett. A 237, 66 (1997),
https://doi.org/10.1016/S0375-9601(97)00795-0
[11] D.V. Dmitrieva, V.Ya. Krivnova, A.A. Ovchinnikova, and A. Langari, One-dimensional anisotropic Heisenberg model in the transverse magnetic field, Exp. Theor. Phys. 95, 538 (2002),
https://doi.org/10.1134/1.1513828
[12] J.R. de Sousa, N.S. Branco, B. Boechat, and C. Cordeiro, Quantum spin-1/2 two-dimensional XXZ model: an alternative quantum renormalization-group approach, Physica A 328, 167 (2003),
https://doi.org/10.1016/S0378-4371(03)00544-2
[13] T. Suzuki, Y. Tomita, and N. Kawashima, Magnetic properties of the spin-1/2 XXZ model on the Shastry-Sutherland lattice: Effect of long-range interactions, Phys. Rev. B 80, 180405(R) (2009),
https://doi.org/10.1103/PhysRevB.80.180405
[14] H. Moradmard, M.S. Naseri, and S. Mahdavifar, The 1D spin-1/2 XXZ model in transverse uniform and staggered magnetic fields, J. Supercond. Nov. Magn. 27, 1265 (2014),
https://doi.org/10.1007/s10948-013-2429-4
[15] S. Rufo, G. Mendonça, J.A. Plascak, and J.R. de Sousa, Order-disorder quantum phase transition in the quasi-one-dimensional spin-1/2 collinear antiferromagnetic Heisenberg model, Phys. Rev. E 88, 034101 (2013),
https://doi.org/10.1103/PhysRevE.88.034101
[16] Y.-Z. Huang, B. Xi, X. Chen, W. Li, Z.-C. Wang, and G. Su, Quantum phase transition, universality, and scaling behaviors in the spin-1/2 Heisenberg model with ferromagnetic and antiferromagnetic competing interactions on a honeycomb lattice, Phys. Rev. E 93, 062110 (2016),
https://doi.org/10.1103/PhysRevE.93.062110
[17] K. Morita and T. Tohyama, Magnetization plateau and supersolid phases in the spin-1/2 antiferromagnetic Heisenberg model on a tetragonally distorted fcc lattice, Phys. Rev. B 99, 144417 (2019),
https://doi.org/10.1103/PhysRevB.99.144417
[18] W.E.F. Parente, J.T.M. Pacobahyba, I.G. Araújo, M.A. Neto, J.R. de Sousa, and U. Akinci, Critical and reentrant behavior of the spin quantum 1/2 anisotropic Heisenberg antiferromagnet model with Dzyaloshinskii–Moriya interaction in a longitudinal magnetic field, J. Magn. Magn. Mater. 355, 235 (2014),
https://doi.org/10.1016/j.jmmm.2013.12.041
[19] W.E.F. Parente, J.T.M. Pacobahyba, M.A. Neto, I.G. Araújo, and J.A. Plascak, Spin-1/2 anisotropic Heisenberg antiferromagnet model with Dzyaloshinskii-Moriya interaction via mean-field approximation, J. Magn. Magn. Mater. 462, 8 (2018),
https://doi.org/10.1016/j.jmmm.2018.04.054
[20] J. Li and S. Lei, Thermodynamic properties of the spin-1/2 ferromagnetic Heisenberg chain with long-range interactions, Phys. Lett. A 372, 4086 (2008),
https://doi.org/10.1016/j.physleta.2008.03.005
[21] S. Sarkar, Quantum phase analysis of an anisotropic (XYZ) Heisenberg spin-1/2 chain under a uniform and staggered magnetic field, Int. J. Mod. Phys. B 23, 3363 (2009),
https://doi.org/10.1142/S0217979209052819
[22] J. Strečka, L. Čanová, and K. Minami, Spin-1/2 Ising-Heisenberg model with the pair XYZ Heisenberg interaction and quartic Ising interactions as the exactly soluble zero-field eight-vertex model, Phys. Rev. E 79, 051103 (2009),
https://doi.org/10.1103/PhysRevE.79.051103
[23] J. Cao, S. Cui, W.-L. Yang, K. Shi, and Y. Wang, Spin-1/2 XYZ model revisit: General solutions via off-diagonal Bethe ansatz, Nucl. Phys. B 886, 185 (2014),
https://doi.org/10.1016/j.nuclphysb.2014.06.026
[24] A.S. Filho, D.F. de Albuquerque, J.B.S. Filho, and T.S.A. Batista, Phase diagram of the classical Heisenberg model in a trimodal random field distribution, Physica A 461, 133 (2016),
https://doi.org/10.1016/j.physa.2016.05.047
[25] Y.H. Su, A.M. Chen, H. Wang, and C. Xiang, Quantum phase transition in the one-dimensional quantum Heisenberg XYZ model with Dzyaloshinskii–Moriya interaction, Eur. Phys. J. B 90, 196 (2017),
https://doi.org/10.1140/epjb/e2017-80077-8
[26] H.A. Zad, A. Zoshki, and M. Sabeti, Magnetic properties of an antiferromagnetic spin-1/2 XYZ model in the presence of different magnetic fields: finite-size effects of inhomogeneity property, Commun. Theor. Phys. 71, 1253 (2019),
https://doi.org/10.1088/0253-6102/71/10/1253
[27] M.H. Ben Chakour, A. El Allati, and Y. Hassouni, Entangled quantum refrigerator based on two anisotropic spin-1/2 Heisenberg XYZ chain with Dzyaloshinskii–Moriya interaction, Eur. Phys. J. D 75, 42 (2021),
https://doi.org/10.1140/epjd/s10053-021-00056-0
[28] A. Hehn, N. van Well, and M. Troyer, High-temperature series expansion for spin-1/2 Heisenberg models, Comp. Phys. Commun. 212, 180 (2017),
https://doi.org/10.1016/j.cpc.2016.09.003
[29] E. Albayrak, Thermal entanglement in the anisotropic Heisenberg model with Dzyaloshinskii-Moriya interaction in an inhomogeneous magnetic field, Eur. Phys. J. B 72, 491 (2009),
https://doi.org/10.1140/epjb/e2009-00387-8
[30] E. Albayrak, Ferrmagnetic Heisenberg model with the Dzyaloshinskii-Moriya interaction, Cond. Matter Phys. 25, 33701 (2022),
https://doi.org/10.5488/CMP.25.33701
[31] E. Albayrak, The XYZ model by the series expansion of exponentials for spin matrices in the mean-field approximation, Eur. Phys. J. Plus 138, 228 (2023),
https://doi.org/10.1140/epjp/s13360-023-03802-y