Received 18 May 2023; revised 8 June 2023; accepted 9 June 2023
References /
Nuorodos
[1] R.I. Nepomechie and C. Wang, Boundary energy of the open XXX
chain with a non-diagonal boundary term, J. Phys. A
47,
032001 (2014),
https://doi.org/10.1088/1751-8113/47/3/032001
[2] A. Degenhard, Nonperturbative real-space renormalization
group scheme for the spin-1/2 XXX Heisenberg model, Phys. Rev. B
64, 174408 (2001),
https://doi.org/10.1103/PhysRevB.64.174408
[3] S. Jami and Z. Haqpanah, Magnetic field effects on quantum
correlations for the XXX Heisenberg spin chain, J. Korean Phys.
Soc.
72, 743 (2018),
https://doi.org/10.3938/jkps.72.743
[4] M.A. Neto, J.R. Viana, O.D.R. Salmon, E.B. Filho, and J.R.
de Sousa, Phase transition induced by an external field in a
three-dimensional isotropic Heisenberg antiferromagnet, Mod.
Phys. Lett. B
32, 1850390 (2018),
https://doi.org/10.1142/S0217984918503906
[5] D.F. de Albuquerque, S.R.L. Alves, and A.S. de Arruda,
Critical behavior in a random field classical Heisenberg model
for amorphous systems, Phys. Lett. A
346, 128 (2005),
https://doi.org/10.1016/j.physleta.2005.07.060
[6] Y. Okabe and M. Kikuchi, Quantum Monte Carlo simulation of
the spin-1/2 XXZ model on the square lattice, J. Phys. Soc.
Japan
57, 4351 (1988),
https://doi.org/10.1143/JPSJ.57.4351
[7] M. Kikuchi and Y. Okabe, Exact diagonalization of the
spin-1/2 XXZ model on the 4 × 4 square lattice, J. Phys. Soc.
Japan
58, 679 (1989),
https://doi.org/10.1143/JPSJ.58.679
[8] D.J. Bukman, G. An and J.M.J. van Leeuwen, Cluster-variation
approach to the spin-1/2 XXZ model, Phys. Rev. B
43,
13352 (1991),
https://doi.org/10.1103/PhysRevB.43.13352
[9] M. Kohno and M. Takahashi, Magnetization process of the
spin-1/2 XXZ models on square and cubic lattices, Phys. Rev. B
56,
3212 (1997),
https://doi.org/10.1103/PhysRevB.56.3212
[10] J.R. de Sousa and J.A. Plascak, Phase transition in the
three-dimensional anisotropic Heisenberg antiferromagnetic
model, Phys. Lett. A
237, 66 (1997),
https://doi.org/10.1016/S0375-9601(97)00795-0
[11] D.V. Dmitrieva, V.Ya. Krivnova, A.A. Ovchinnikova, and A.
Langari, One-dimensional anisotropic Heisenberg model in the
transverse magnetic field, Exp. Theor. Phys.
95, 538
(2002),
https://doi.org/10.1134/1.1513828
[12] J.R. de Sousa, N.S. Branco, B. Boechat, and C. Cordeiro,
Quantum spin-1/2 two-dimensional XXZ model: an alternative
quantum renormalization-group approach, Physica A
328,
167 (2003),
https://doi.org/10.1016/S0378-4371(03)00544-2
[13] T. Suzuki, Y. Tomita, and N. Kawashima, Magnetic properties
of the spin-1/2 XXZ model on the Shastry-Sutherland lattice:
Effect of long-range interactions, Phys. Rev. B
80,
180405(R) (2009),
https://doi.org/10.1103/PhysRevB.80.180405
[14] H. Moradmard, M.S. Naseri, and S. Mahdavifar, The 1D
spin-1/2 XXZ model in transverse uniform and staggered magnetic
fields, J. Supercond. Nov. Magn.
27, 1265 (2014),
https://doi.org/10.1007/s10948-013-2429-4
[15] S. Rufo, G. Mendonça, J.A. Plascak, and J.R. de Sousa,
Order-disorder quantum phase transition in the
quasi-one-dimensional spin-1/2 collinear antiferromagnetic
Heisenberg model, Phys. Rev. E
88, 034101 (2013),
https://doi.org/10.1103/PhysRevE.88.034101
[16] Y.-Z. Huang, B. Xi, X. Chen, W. Li, Z.-C. Wang, and G. Su,
Quantum phase transition, universality, and scaling behaviors in
the spin-1/2 Heisenberg model with ferromagnetic and
antiferromagnetic competing interactions on a honeycomb lattice,
Phys. Rev. E
93, 062110 (2016),
https://doi.org/10.1103/PhysRevE.93.062110
[17] K. Morita and T. Tohyama, Magnetization plateau and
supersolid phases in the spin-1/2 antiferromagnetic Heisenberg
model on a tetragonally distorted fcc lattice, Phys. Rev. B
99,
144417 (2019),
https://doi.org/10.1103/PhysRevB.99.144417
[18] W.E.F. Parente, J.T.M. Pacobahyba, I.G. Araújo, M.A. Neto,
J.R. de Sousa, and U. Akinci, Critical and reentrant behavior of
the spin quantum 1/2 anisotropic Heisenberg antiferromagnet
model with Dzyaloshinskii–Moriya interaction in a longitudinal
magnetic field, J. Magn. Magn. Mater.
355, 235 (2014),
https://doi.org/10.1016/j.jmmm.2013.12.041
[19] W.E.F. Parente, J.T.M. Pacobahyba, M.A. Neto, I.G. Araújo,
and J.A. Plascak, Spin-1/2 anisotropic Heisenberg
antiferromagnet model with Dzyaloshinskii-Moriya interaction via
mean-field approximation, J. Magn. Magn. Mater.
462, 8
(2018),
https://doi.org/10.1016/j.jmmm.2018.04.054
[20] J. Li and S. Lei, Thermodynamic properties of the spin-1/2
ferromagnetic Heisenberg chain with long-range interactions,
Phys. Lett. A
372, 4086 (2008),
https://doi.org/10.1016/j.physleta.2008.03.005
[21] S. Sarkar, Quantum phase analysis of an anisotropic (XYZ)
Heisenberg spin-1/2 chain under a uniform and staggered magnetic
field, Int. J. Mod. Phys. B
23, 3363 (2009),
https://doi.org/10.1142/S0217979209052819
[22] J. Strečka, L. Čanová, and K. Minami, Spin-1/2
Ising-Heisenberg model with the pair XYZ Heisenberg interaction
and quartic Ising interactions as the exactly soluble zero-field
eight-vertex model, Phys. Rev. E
79, 051103 (2009),
https://doi.org/10.1103/PhysRevE.79.051103
[23] J. Cao, S. Cui, W.-L. Yang, K. Shi, and Y. Wang, Spin-1/2
XYZ model revisit: General solutions via off-diagonal Bethe
ansatz, Nucl. Phys. B
886, 185 (2014),
https://doi.org/10.1016/j.nuclphysb.2014.06.026
[24] A.S. Filho, D.F. de Albuquerque, J.B.S. Filho, and T.S.A.
Batista, Phase diagram of the classical Heisenberg model in a
trimodal random field distribution, Physica A
461, 133
(2016),
https://doi.org/10.1016/j.physa.2016.05.047
[25] Y.H. Su, A.M. Chen, H. Wang, and C. Xiang, Quantum phase
transition in the one-dimensional quantum Heisenberg XYZ model
with Dzyaloshinskii–Moriya interaction, Eur. Phys. J. B
90,
196 (2017),
https://doi.org/10.1140/epjb/e2017-80077-8
[26] H.A. Zad, A. Zoshki, and M. Sabeti, Magnetic properties of
an antiferromagnetic spin-1/2 XYZ model in the presence of
different magnetic fields: finite-size effects of inhomogeneity
property, Commun. Theor. Phys.
71, 1253 (2019),
https://doi.org/10.1088/0253-6102/71/10/1253
[27] M.H. Ben Chakour, A. El Allati, and Y. Hassouni, Entangled
quantum refrigerator based on two anisotropic spin-1/2
Heisenberg XYZ chain with Dzyaloshinskii–Moriya interaction,
Eur. Phys. J. D
75, 42 (2021),
https://doi.org/10.1140/epjd/s10053-021-00056-0
[28] A. Hehn, N. van Well, and M. Troyer, High-temperature
series expansion for spin-1/2 Heisenberg models, Comp. Phys.
Commun.
212, 180 (2017),
https://doi.org/10.1016/j.cpc.2016.09.003
[29] E. Albayrak, Thermal entanglement in the anisotropic
Heisenberg model with Dzyaloshinskii-Moriya interaction in an
inhomogeneous magnetic field, Eur. Phys. J. B
72, 491
(2009),
https://doi.org/10.1140/epjb/e2009-00387-8
[30] E. Albayrak, Ferrmagnetic Heisenberg model with the
Dzyaloshinskii-Moriya interaction, Cond. Matter Phys.
25,
33701 (2022),
https://doi.org/10.5488/CMP.25.33701
[31] E. Albayrak, The XYZ model by the series expansion of
exponentials for spin matrices in the mean-field approximation,
Eur. Phys. J. Plus
138, 228 (2023),
https://doi.org/10.1140/epjp/s13360-023-03802-y