References /
Nuorodos
[1] K. Maleckaitė, D. Narkevičius, R. Žilėnaitė, J.
Dodonova-Vaitkūnienė, S. Toliautas, S. Tumkevičius, and A.
Vyšniauskas, Give or take: effects of
electron-accepting/-withdrawing groups in red-fluorescent BODIPY
molecular rotors, Molecules
27(1), 23 (2021),
https://doi.org/10.3390/molecules27010023
[2] M. Kubánková, I. López-Duarte, D. Kiryushko, and M.K.
Kuimova, Molecular rotors report on changes in live cell plasma
membrane microviscosity upon interaction with beta-amyloid
aggregates, Soft Matter
14(46), 9466–9474 (2018),
https://doi.org/10.1039/C8SM01633J
[3] J.E. Chambers, M. Kubánková, R.G. Huber, I. López-Duarte, E.
Avezov, P.J. Bond, S.J. Marciniak, and M.K. Kuimova, An optical
technique for mapping microviscosity dynamics in cellular
organelles, ACS Nano
12(5), 4398–4407 (2018),
https://doi.org/10.1021/acsnano.8b00177
[4] H. Xiao, P. Li, and B. Tang, Small molecular fluorescent
probes for imaging of viscosity in living biosystems, Chem. Eur.
J.
27(23), 6880–6898 (2021),
https://doi.org/10.1002/chem.202004888
[5] M. Homma, Y. Takei, A. Murata, T. Inoue, and S. Takeoka, A
ratiometric fluorescent molecular probe for visualization of
mitochondrial temperature in living cells, Chem. Commun.
51(28),
6194–6197 (2015),
https://doi.org/10.1039/C4CC10349A
[6] M.M. Ogle, A.D. Smith McWilliams, B. Jiang, and A.A. Martí,
Latest trends in temperature sensing by molecular probes,
ChemPhotoChem
4(4), 255–270 (2020),
https://doi.org/10.1002/cptc.201900255
[7] H. Sunahara, Y. Urano, H. Kojima, and T. Nagano, Design and
synthesis of a library of BODIPY-based environmental polarity
sensors utilizing photoinduced electron-transfer-controlled
fluorescence ON/OFF switching, J. Am. Chem. Soc.
129(17),
5597–5604 (2007),
https://doi.org/10.1021/ja068551y
[8] H. Xiao, P. Li, and B. Tang, Recent progresses in
fluorescent probes for detection of polarity, Coord. Chem. Rev.
427, 213582 (2021),
https://doi.org/10.1016/j.ccr.2020.213582
[9] D. Jurgutis, G. Jarockyte, V. Poderys, J.
Dodonova-Vaitkuniene, S. Tumkevicius, A. Vysniauskas, R.
Rotomskis, and V. Karabanovas, Exploring BODIPY-based sensor for
imaging of intracellular microviscosity in human breast cancer
cells, IJMS
23(10), 5687 (2022),
https://doi.org/10.3390/ijms23105687
[10] I.E. Steinmark, A.L. James, P.-H. Chung, P.E. Morton, M.
Parsons, C.A. Dreiss, C.D. Lorenz, G. Yahioglu, and K. Suhling,
Targeted fluorescence lifetime probes reveal responsive
organelle viscosity and membrane fluidity, PLOS ONE
14(2),
e0211165 (2019),
https://doi.org/10.1371/journal.pone.0211165
[11] A.S. Klymchenko, Solvatochromic and fluorogenic dyes as
environment-sensitive probes: design and biological
applications, Acc. Chem. Res.
50(2), 366–375 (2017),
https://doi.org/10.1021/acs.accounts.6b00517
[12] A. Polita, S. Toliautas, R. Žvirblis, and A. Vyšniauskas,
The effect of solvent polarity and macromolecular crowding on
the viscosity sensitivity of a molecular rotor BODIPY-C
10,
Phys. Chem. Chem. Phys.
22(16), 8296–8303 (2020),
https://doi.org/10.1039/C9CP06865A
[13] M.A. Haidekker and E.A. Theodorakis, Molecular
rotors–fluorescent biosensors for viscosity and flow, Org.
Biomol. Chem.
5(11), 1669–1678 (2007),
https://doi.org/10.1039/B618415D
[14] M.K. Kuimova, Mapping viscosity in cells using molecular
rotors, Phys. Chem. Chem. Phys.
14(37), 12671 (2012),
https://doi.org/10.1039/c2cp41674c
[15] A. Vyšniauskas, I. López-Duarte, N. Duchemin, T.-T. Vu, Y.
Wu, E.M. Budynina, Y.A. Volkova, E. Peña Cabrera, D.E.
Ramírez-Ornelas, and M.K. Kuimova, Exploring viscosity, polarity
and temperature sensitivity of BODIPY-based molecular rotors,
Phys. Chem. Chem. Phys.
19(37), 25252–25259 (2017),
https://doi.org/10.1039/C7CP03571C
[16] S. Toliautas, J. Dodonova, A. Žvirblis, I. Čiplys, A.
Polita, A. Devižis, S. Tumkevičius, J. Šulskus, and A.
Vyšniauskas, Enhancing the viscosity-sensitive range of a BODIPY
molecular rotor by two orders of magnitude, Eur. J. Chem.
25(44),
10342–10349 (2019),
https://doi.org/10.1002/chem.201901315
[17] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys.
Rev.
136(3B), B864 (1964),
https://doi.org/10.1103/PhysRev.136.B864
[18] W. Kohn and L.J. Sham, Self-consistent equations including
exchange and correlation effects, Phys. Rev.
140(4A),
A1133 (1965),
https://doi.org/10.1103/PhysRev.140.A1133
[19] L.W. Chung, W.M.C. Sameera, R. Ramozzi, A.J. Page, M.
Hatanaka, G.P. Petrova, T.V. Harris, X. Li, Z. Ke, F. Liu, H.B.
Li, L. Ding, and K. Morokuma, The ONIOM method and its
applications, Chem. Rev.
115(12), 5678–5796 (2015),
https://doi.org/10.1021/cr5004419
[20] D.A. Case, H.M. Aktulga, K. Belfon, I.Y. Ben-Shalom, S.R.
Brozell, D.S. Cerutti, T.E. Cheatham, V.W.D. Cruzeiro, T.A.
Darden, R.E. Duke, et al.,
Amber 2021 (University of
California, San Francisco, 2021),
https://ambermd.org/
[21] L. Martínez, R. Andrade, E.G. Birgin, and J.M. Martínez,
PACKMOL: A package for building initial configurations for
molecular dynamics simulations, J. Comput. Chem.
30(13),
2157–2164 (2009),
https://doi.org/10.1002/jcc.21224
[22] Y. Zhao and D.G. Truhlar, The M06 suite of density
functionals for main group thermochemistry, thermochemical
kinetics, noncovalent interactions, excited states, and
transition elements: two new functionals and systematic testing
of four M06-class functionals and 12 other functionals, Theor.
Chem. Account.
120(1–3), 215–241 (2008),
https://doi.org/10.1007/s00214-007-0310-x
[23] M.R. Momeni and A. Brown, Why do TD-DFT excitation energies
of BODIPY/aza-BODIPY families largely deviate from experiment?
Answers from electron correlated and multireference methods, J.
Chem. Theory Comput.
11(6), 2619–2632 (2015),
https://doi.org/10.1021/ct500775r
[24] T.H. Dunning, Gaussian basis sets for use in correlated
molecular calculations. I. The atoms boron through neon and
hydrogen, Chem. Phys.
90(2), 1007–1023 (1998),
https://doi.org/10.1063/1.456153
[25] A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard, and
W.M. Skiff, UFF, a full periodic table force field for molecular
mechanics and molecular dynamics simulations, J. Am. Chem. Soc.
114(25), 10024–10035 (1992),
https://doi.org/10.1021/ja00051a040
[26] V. Barone and M. Cossi, Quantum calculation of molecular
energies and energy gradients in solution by a conductor solvent
model, J. Phys. Chem. A
102(11), 1995–2001 (1998),
https://doi.org/10.1021/jp9716997
[27] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,
M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A.
Petersson, H. Nakatsuji, et al.,
Gaussian 16, Revision C.01
(Gaussian Inc., Wallingford CT, 2016),
https://gaussian.com/gaussian16/
[28] A. Schlachter, A. Fleury, K. Tanner, A. Soldera, B.
Habermeyer, R. Guilard, and P.D. Harvey, The TDDFT excitation
energies of the BODIPYs; The DFT and TDDFT challenge continues,
Molecules
26(6), 1780 (2021),
https://doi.org/10.3390/molecules26061780
[29] F. Li, S.I. Yang, Y. Ciringh, J. Seth, C.H. Martin, D.L.
Singh, D. Kim, R.R. Birge, D.F. Bocian, D. Holten, and J.S.
Lindsey, Design, synthesis, and photodynamics of
light-harvesting arrays comprised of a porphyrin and one, two,
or eight boron-dipyrrin accessory pigments, J. Am. Chem. Soc.
120(39),
10001–10017 (1998),
https://doi.org/10.1021/ja9812047
[30] H. Akima, A new method of interpolation and smooth curve
fitting based on local procedures, J. ACM
17(4), 589–602
(1970),
https://doi.org/10.1145/321607.321609
[31] J.J.P. Stewart, Optimization of parameters for
semiempirical methods V: Modification of NDDO approximations and
application to 70 elements, J. Mol. Model.
13(12),
1173–1213 (2007),
https://doi.org/10.1007/s00894-007-0233-4
[32] A. Prlj, L. Vannay, and C. Corminboeuf, Fluorescence
quenching in BODIPY dyes: the role of intramolecular
interactions and charge transfer, Helv. Chim. Acta
100(6),
e1700093 (2017),
https://doi.org/10.1002/hlca.201700093