Email: gediminas.gaigalas@tfai.vu.lt; pavel.rynkun@tfai.vu.lt;
laima.radziute@tfai.vu.lt
References /
Nuorodos
[1] C. Froese Fischer,
The Hartree-Fock Method for Atoms
(Wiley, New York, 1997)
[2] I.P. Grant,
Relativistic Quantum Theory of Atoms and
Molecules (Springer, New York, 2007),
https://doi.org/10.1007/978-0-387-35069-1
[3] I. Lindgren and J. Morrison,
Atomic Many-body Theory
(Springer-Verlag Berlin Heidelberg, New York, 1982),
https://doi.org/10.1007/978-3-642-96614-9
[4] G. Gaigalas and Z. Rudzikas, On the secondly quantized
theory of the many-electron atom, J. Phys. B
29(15),
3303 (1996),
https://doi.org/10.1088/0953-4075/29/15/007
[5] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, An
efficient approach for spin-angular integrations in atomic
structure calculations, J. Phys. B
30(17), 3747 (1997),
https://doi.org/10.1088/0953-4075/30/17/006
[6] P. Bogdanovich, G. Gaigalas, A. Momkauskaitė, and Z.
Rudzikas, Accounting for admixed configurations in the second
order of perturbation theory for complex atoms, Phys. Scr.
56,
230–239 (1997),
https://doi.org/10.1088/0031-8949/56/3/002
[7] V.A. Dzuba and V.V. Flambaum, Core-valence correlations for
atoms with open shells, Phys. Rev. A
75, 052504 (2007),
https://doi.org/10.1103/PhysRevA.75.052504
[8] C. Froese Fischer, G. Gaigalas, P. Jönsson, and J. Bieroń, G
RASP2018 – A Fortran 95 version of the
General Relativistic Atomic Structure package, Comput. Phys.
Commun.
237, 184–187 (2019),
https://doi.org/10.1016/j.cpc.2018.10.032
[9] G. Merkelis, G. Gaigalas, J. Kaniauskas, and Z. Rudzikas,
Application of the graphical method of the angular momentum
theory to the study of the stationary perturbation series,
Izvest. Acad. Nauk SSSR, Phys. Coll.
50, 1403–1410
(1986) [in Russian]
[10] G. Gaigalas,
Irreducible Tensorial Form of the
Stationary Perturbation Theory for Atoms and Ions with Open
Shells, PhD Thesis (Institute of Physics, Vilnius, 1989)
[in Russian]
[11] G. Gaigalas, A program library for computing pure
spin-angular coefficients for one- and two-particle operators in
relativistic atomic theory, Atoms
10(4), 129 (2022),
https://doi.org/10.3390/atoms10040129
[12] P. Jönsson, G. Gaigalas, J. Bieroń, C. Froese Fischer, and
I.P. Grant, New version: G
RASP2K
relativistic atomic structure package, Comput. Phys. Commun.
184(9),
2197–2203 (2013),
https://doi.org/10.1016/j.cpc.2013.02.016
[13] C. Froese Fischer, M. Godefroid, T. Brage, P. Jönsson, and
G. Gaigalas, Advanced multiconfiguration methods for complex
atoms: I. Energies and wave functions, J. Phys. B
49(18),
182004 (2016),
https://doi.org/10.1088/0953-4075/49/18/182004
[14] P. Jönsson, M. Godefroid, G. Gaigalas, J. Ekman, J. Grumer,
W. Li, J. Li, T. Brage, I.P. Grant, J. Bieroń, and C. Froese
Fischer, An introduction to relativistic theory as implemented
in G
RASP, Atoms
11(1), 7 (2023),
https://doi.org/10.3390/atoms11010007
[15] K.G. Dyall, I.P. Grant, C.T. Johnson, F.A. Parpia, and E.P.
Plummer, G
RASP: A general-purpose
relativistic atomic structure program, Comput. Phys. Commun.
55(3),
425–456 (1989),
https://doi.org/10.1016/0010-4655(89)90136-7
[16] D. Kato, X.M. Tong, H. Watanabe, T. Fukami, T. Kinugawa, C.
Yamada, S. Ohtani, and T. Watanabe, Fine-structure in 3d
4
states of highly charged Ti-like ions, J. Chin. Chem. Soc.
48(3),
525–529 (2001),
https://doi.org/10.1002/jccs.200100079
[17] A.P. Yutsis, I.B. Levinson, and V.V. Vanagas,
Mathematical
Apparatus of the Theory of Angular Momentum (Israel
Program for Scientific Translations Ltd, 1962)
[18] A.P. Jucys and A.A. Bandzaitis,
Theory of Angular
Momentum in Quantum Mechanics (Mokslas, Vilnius, 1977) [in
Russian]
[19] U. Fano and G. Racah,
Irreducible Tensorial Sets
(Academic Press, 1959),
https://doi.org/10.1063/1.3057072
[20] B.R. Judd,
Second Quantization and Atomic Spectroscopy
(The Johns Hopkins Press, Baltimore, MD, 1967)
[21] Z. Rudzikas and J. Kaniauskas,
Quasispin and Isospin in
the Theory of Atom (Mokslas, Vilnius, 1984) [in Russian]
[22] G. Gaigalas, J. Kaniauskas, and Z. Rudzikas, Diagrammatic
technique of the angular momentum theory and second
quantization, Liet. Fiz. Rink. (Sov. Phys. Coll.)
25,
3–13 (1985) [in Russian]
[23] Z. Rudzikas,
Theoretical Atomic Spectroscopy
(Cambridge University Press, Cambridge, 1997),
https://doi.org/10.1017/CBO9780511524554
[24] G. Gaigalas, S. Fritzsche, and Z. Rudzikas, Reduced
coefficients of fractional parentage and matrix elements of the
tensor
W(kqkj)
in
jj-coupling, At. Data Nucl. Data Tables
76(2),
235–269 (2000),
https://doi.org/10.1006/adnd.2000.0844
[25] G. Merkelis, G. Gaigalas, and Z. Rudzikas, Irreducible
tensorial form of the effective Hamiltonian of an atom and the
diagrammatic representation in the first two orders of the
stationary perturbation theory, Liet. Fiz. Rink. (Sov. Phys.
Coll.)
25, 14–31 (1985) [in Russian]
[26] P. Jönsson, G. Gaigalas, Ch. F. Fischer, J. Bieroń, I.P.
Grant, T. Brage, J. Ekman, M. Godefroid, J. Grumer, J. Li, and
W. Li, G
RASP manual for users, Atoms,
11,
68 (2023),
https://doi.org/10.3390/atoms11040068
[27] S. Gustafsson, P. Jönsson, C. Froese Fischer, and I.P.
Grant, Combining multiconfiguration and perturbation methods:
Perturbative estimates of core-core electron correlation
contributions to excitation energies in Mg-like iron, Atoms
5(1),
3 (2017),
https://doi.org/10.3390/atoms5010003
[28] P. Jönsson, G. Gaigalas, P. Rynkun, L. Radžiūtė, J. Ekman,
S. Gustafsson, H. Hartman, K. Wang, M. Godefroid, C. Froese
Fischer, I. Grant, T. Brage, and G. Del Zanna,
Multiconfiguration Dirac-Hartree-Fock calculations with
spectroscopic accuracy: Applications to astrophysics, Atoms
5,
16 (2017),
https://doi.org/10.3390/atoms5020016
[29] P. Bogdanovich, G. Gaigalas, and A. Momkauskaitė,
Accounting for correlation corrections to interconfigurational
matrix elements, Lith. J. Phys.
38(5), 443–451 (1998)
[in Russian]
[30] R. Karazija,
Introduction to the Theory of X-ray and
Electronic Spectra of Free Atoms (Plenum Press, New York,
1996),
https://doi.org/10.1007/978-1-4899-1534-4
[31] G. Gaigalas, P. Rynkun, L. Radžiūtė, D. Kato, M. Tanaka,
and P. Jönsson, Energy level structure and transition data of Er
2+,
Astrophys. J. Suppl. Ser.
248(1), 13 (2020),
https://doi.org/10.3847/1538-4365/ab881a
[32] G. Gaigalas, P. Rynkun, L. Radžiūtė, P. Jönsson, and K.
Wang, Energy and transition data computations for P-like ions:
As, Kr, Sr, Zr, Mo, and W, At. Data Nucl. Data Tables
141,
101428 (2021),
https://doi.org/10.1016/j.adt.2021.101428
[33] Y.T. Li, K. Wang, R. Si, M. Godefroid, G. Gaigalas, Ch.Y.
Chen, and P. Jönsson, Reducing the computational load – atomic
multiconfiguration calculations based on configuration state
function generators, Comput. Phys. Commun.
283, 108562
(2023),
https://doi.org/10.1016/j.cpc.2022.108562
[34] P. Bogdanovich and R. Kisielius, Theoretical energy level
spectra and transition data for 4p
64d, 4p
64f
and 4p
54d
2 configurations of W
37+
ion, At. Data Nucl. Data Tables
98(4), 557–565 (2012),
https://doi.org/10.1016/j.adt.2011.11.004
[35] P. Bogdanovich and R. Kisielius, Theoretical energy level
spectra and transition data for 4p
64d
2, 4p
64d4f,
and 4p
54d
3 configurations of W
36+,
At. Data Nucl. Data Tables
99(5), 580–594 (2013),
https://doi.org/10.1016/j.adt.2012.11.001
[36] R. Karpuškienė and R. Kisielius, Theoretical level energies
and transition data for 4p64d8, 4p
54d
9 and
4p
64d
74f configurations of W
30+
ion, At. Data Nucl. Data Tables
143, 101478 (2022),
https://doi.org/10.1016/j.adt.2021.101478
[37] R. Kisielius, V.P. Kulkarni, G.J. Ferland, P. Bogdanovich,
D. Som, and M.L. Lykins, Atomic data for Zn II: Improving
spectral diagnostics of chemical evolution in high-redshift
galaxies, Astrophys. J.
804(1), 76 (2015),
https://doi.org/10.1088/0004-637X/804/1/76
[38] P. Bogdanovich, Modern methods of multiconfiguration
studies of many-electron highly charged ions, Nucl. Instrum.
Methods Phys. Res. B
235(1–4), 92–99 (2005),
https://doi.org/10.1016/j.nimb.2005.03.152
[39] P. Bogdanovich, R. Karpuškienė, and Z. Rudzikas,
Calculation of electronic transitions in S IX, Phys. Scr.
T80B,
474–475 (1999),
https://doi.org/10.1238/Physica.Topical.080a00474
[40] R. Karpuškienė, P. Bogdanovich, and R. Kisielius,
Significance of
M2 and
E3 transitions for 4
p54
dN+1-
and 4
p64
dN–14
f-configuration
metastable-level lifetimes, Phys. Rev. A
88, 022519
(2013),
https://doi.org/10.1103/PhysRevA.88.022519
[41] K.M. Aggarwal, P. Bogdanovich, F.P. Keenan, and R.
Kisielius, Energy levels and radiative rates for Cr-like Cu VI
and Zn VII, At. Data Nucl. Data Tables
111–112, 280–345
(2016),
https://doi.org/10.1016/j.adt.2016.03.001
[42] R. Karpuškienė, P. Bogdanovich, and A. Udris,
Ab initio
oscillator strengths and radiative lifetimes for Ca IX, J. Phys.
B
37(10), 2067 (2004),
https://doi.org/10.1088/0953-4075/37/10/006
[43] P. Bogdanovich, R. Karpuškienė, and I. Martinson,
Theoretical calculation of transition probabilities and
lifetimes of levels of the 4
d95
p
configuration of Cd III, Opt. Spectrosc.
90(1), 4–7
(2001),
https://doi.org/10.1134/1.1343537
[44] P. Rynkun, G. Gaigalas, and P. Jönsson, Theoretical
investigation of energy levels and transition data for S II, Cl
III, Ar IV, Astron. Astrophys.
623, A155 (2019),
https://doi.org/10.1051/0004-6361/201834931