[PDF]    https://doi.org/10.3952/physics.2024.64.1.3

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 64, 20–39 (2024)

SECOND-ORDER RAYLEIGH–SCHRÖDINGER PERTURBATION THEORY FOR THE GRASP2018 PACKAGE: CORE–VALENCE CORRELATIONS*
Gediminas Gaigalas, Pavel Rynkun, and Laima Kitovienė
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: gediminas.gaigalas@tfai.vu.lt; pavel.rynkun@tfai.vu.lt; laima.radziute@tfai.vu.lt

Received 31 July 2023; accepted 4 August 2023

The General Relativistic Atomic Structure package [GRASP2018, C. Froese Fischer, G. Gaigalas, P. Jönsson, and J. Bieroń, Comput. Phys. Commun. (2019), DOI: 10.1016/j.cpc.2018.10.032] is based on multiconfiguration Dirac–Hartree–Fock and relativistic configuration interaction (RCI) methods for energy structure calculations. The atomic state function used in the program is built from the set of configuration state functions (CSFs). The valence–valence, core–valence and core–core correlations are explicitly included through expansions over CSFs in RCI. We present a combination of RCI and the stationary second-order Rayleigh–Schrödinger many-body perturbation theory in an irreducible tensorial form to account for electron core–valence correlations when an atom or ion has any number of valence electrons. This newly developed method, which offers two ways of use, allows a significant reduction of the CSF space for complex atoms and ions. We also demonstrate how the method and program works for the energy structure calculation of Cl III ion.
Keywords: configuration interaction, configuration state function generators, spin-angular integration, perturbation theory, tensorial algebra, core–valence correlations
PACS: 31.15.-p, 31.15.Ne, 31.30.Jv, 03.65.Pm

* Dedicated to the memory of professor Adolfas Jucys (1904–1974), pioneer of contemporary theoretical physics in Lithuania, initiator of the ‘Lithuanian Physics Collection’, on the occasion of his birth and death anniversaries.

ANTROSIOS EILĖS RELĖJAUS IR ŠRĖDINGERIO TRIKDYMŲ TEORIJA GRASP2018 PROGRAMINIAM PAKETUI: KAMIENO IR VALENTINĖS KORELIACIJOS*
Gediminas Gaigalas, Pavel Rynkun, Laima Kitovienė

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

GRASP programinis paketas [GRASP2018, C. Froese Fischer, G. Gaigalas, P. Jönsson, J. Bieroń, Comput. Phys. Commun. (2019), DOI: 10.1016/j.cpc.2018.10.032] grindžiamas daugiakonfigūraciniu Dirako, Hartrio ir Foko bei reliatyvistiniu konfigūracijų superpozicijos (RCI) metodais, skirtais atomų ir jonų energijos struktūros skaičiavimams. Programoje naudojama atominė būsenos funkcija sudaryta iš konfigūracinių būsenų funkcijų rinkinio. RCI metode valentinės-valentinės, kamieno-valentinės ir kamieno-kamieno koreliacijos yra tiesiogiai įtrauktos į atomo būsenos funkciją per konfigūracinių būsenų funkcijas. Šiame darbe pateiktas naujas efektyvesnis kamieno-valentinių koreliacijų įskaitymo būdas. Jis sukurtas remiantis RCI ir stacionarios daugiadalelės trikdžių teorijos neredukuotinėje tenzorinėje formoje kombinacija. Tai leidžia įskaityti kamieno-valentines koreliacijas, naudojant trikdžių teoriją bet kokiam atomui ir jonui su bet kokiu valentinių elektronų skaičiumi. Šis naujai sukurtas metodas, kurį galima naudoti dviem būdais, leidžia gerokai sumažinti konfigūracinių būsenų funkcijų erdvę sudėtingiems atomams ir jonams, kas daug lengviau leidžia išplėsti GRASP programinio paketo galimybes. Darbe pademonstruota, kaip šis metodas veikia apskaičiuojant Cl III jono energijos struktūrą.

* Skiriama šiuolaikinės teorinės fizikos Lietuvoje pradininko, „Lietuvos fizikos rinkinio“ iniciatoriaus akad. Adolfo Jucio (1904–1974) gimimo ir mirties sukaktims paminėti.


References / Nuorodos

[1] C. Froese Fischer, The Hartree-Fock Method for Atoms (Wiley, New York, 1997)
[2] I.P. Grant, Relativistic Quantum Theory of Atoms and Molecules (Springer, New York, 2007),
https://doi.org/10.1007/978-0-387-35069-1
[3] I. Lindgren and J. Morrison, Atomic Many-body Theory (Springer-Verlag Berlin Heidelberg, New York, 1982),
https://doi.org/10.1007/978-3-642-96614-9
[4] G. Gaigalas and Z. Rudzikas, On the secondly quantized theory of the many-electron atom, J. Phys. B 29(15), 3303 (1996),
https://doi.org/10.1088/0953-4075/29/15/007
[5] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, An efficient approach for spin-angular integrations in atomic structure calculations, J. Phys. B 30(17), 3747 (1997),
https://doi.org/10.1088/0953-4075/30/17/006
[6] P. Bogdanovich, G. Gaigalas, A. Momkauskaitė, and Z. Rudzikas, Accounting for admixed configurations in the second order of perturbation theory for complex atoms, Phys. Scr. 56, 230–239 (1997),
 https://doi.org/10.1088/0031-8949/56/3/002
[7] V.A. Dzuba and V.V. Flambaum, Core-valence correlations for atoms with open shells, Phys. Rev. A 75, 052504 (2007),
https://doi.org/10.1103/PhysRevA.75.052504
[8] C. Froese Fischer, G. Gaigalas, P. Jönsson, and J. Bieroń, GRASP2018 – A Fortran 95 version of the General Relativistic Atomic Structure package, Comput. Phys. Commun. 237, 184–187 (2019),
https://doi.org/10.1016/j.cpc.2018.10.032
[9] G. Merkelis, G. Gaigalas, J. Kaniauskas, and Z. Rudzikas, Application of the graphical method of the angular momentum theory to the study of the stationary perturbation series, Izvest. Acad. Nauk SSSR, Phys. Coll. 50, 1403–1410 (1986) [in Russian]
[10] G. Gaigalas, Irreducible Tensorial Form of the Stationary Perturbation Theory for Atoms and Ions with Open Shells, PhD Thesis (Institute of Physics, Vilnius, 1989) [in Russian]
[11] G. Gaigalas, A program library for computing pure spin-angular coefficients for one- and two-particle operators in relativistic atomic theory, Atoms 10(4), 129 (2022),
https://doi.org/10.3390/atoms10040129
[12] P. Jönsson, G. Gaigalas, J. Bieroń, C. Froese Fischer, and I.P. Grant, New version: GRASP2K relativistic atomic structure package, Comput. Phys. Commun. 184(9), 2197–2203 (2013),
https://doi.org/10.1016/j.cpc.2013.02.016
[13] C. Froese Fischer, M. Godefroid, T. Brage, P. Jönsson, and G. Gaigalas, Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions, J. Phys. B 49(18), 182004 (2016),
https://doi.org/10.1088/0953-4075/49/18/182004
[14] P. Jönsson, M. Godefroid, G. Gaigalas, J. Ekman, J. Grumer, W. Li, J. Li, T. Brage, I.P. Grant, J. Bieroń, and C. Froese Fischer, An introduction to relativistic theory as implemented in GRASP, Atoms 11(1), 7 (2023),
https://doi.org/10.3390/atoms11010007
[15] K.G. Dyall, I.P. Grant, C.T. Johnson, F.A. Parpia, and E.P. Plummer, GRASP: A general-purpose relativistic atomic structure program, Comput. Phys. Commun. 55(3), 425–456 (1989),
https://doi.org/10.1016/0010-4655(89)90136-7
[16] D. Kato, X.M. Tong, H. Watanabe, T. Fukami, T. Kinugawa, C. Yamada, S. Ohtani, and T. Watanabe, Fine-structure in 3d4 states of highly charged Ti-like ions, J. Chin. Chem. Soc. 48(3), 525–529 (2001),
https://doi.org/10.1002/jccs.200100079
[17] A.P. Yutsis, I.B. Levinson, and V.V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum (Israel Program for Scientific Translations Ltd, 1962)
[18] A.P. Jucys and A.A. Bandzaitis, Theory of Angular Momentum in Quantum Mechanics (Mokslas, Vilnius, 1977) [in Russian]
[19] U. Fano and G. Racah, Irreducible Tensorial Sets (Academic Press, 1959),
https://doi.org/10.1063/1.3057072
[20] B.R. Judd, Second Quantization and Atomic Spectroscopy (The Johns Hopkins Press, Baltimore, MD, 1967)
[21] Z. Rudzikas and J. Kaniauskas, Quasispin and Isospin in the Theory of Atom (Mokslas, Vilnius, 1984) [in Russian]
[22] G. Gaigalas, J. Kaniauskas, and Z. Rudzikas, Diagrammatic technique of the angular momentum theory and second quantization, Liet. Fiz. Rink. (Sov. Phys. Coll.) 25, 3–13 (1985) [in Russian]
[23] Z. Rudzikas, Theoretical Atomic Spectroscopy (Cambridge University Press, Cambridge, 1997),
https://doi.org/10.1017/CBO9780511524554
[24] G. Gaigalas, S. Fritzsche, and Z. Rudzikas, Reduced coefficients of fractional parentage and matrix elements of the tensor W(kqkj) in jj-coupling, At. Data Nucl. Data Tables 76(2), 235–269 (2000),
https://doi.org/10.1006/adnd.2000.0844
[25] G. Merkelis, G. Gaigalas, and Z. Rudzikas, Irreducible tensorial form of the effective Hamiltonian of an atom and the diagrammatic representation in the first two orders of the stationary perturbation theory, Liet. Fiz. Rink. (Sov. Phys. Coll.) 25, 14–31 (1985) [in Russian]
[26] P. Jönsson, G. Gaigalas, Ch. F. Fischer, J. Bieroń, I.P. Grant, T. Brage, J. Ekman, M. Godefroid, J. Grumer, J. Li, and W. Li, GRASP manual for users, Atoms, 11, 68 (2023),
https://doi.org/10.3390/atoms11040068
[27] S. Gustafsson, P. Jönsson, C. Froese Fischer, and I.P. Grant, Combining multiconfiguration and perturbation methods: Perturbative estimates of core-core electron correlation contributions to excitation energies in Mg-like iron, Atoms 5(1), 3 (2017),
https://doi.org/10.3390/atoms5010003
[28] P. Jönsson, G. Gaigalas, P. Rynkun, L. Radžiūtė, J. Ekman, S. Gustafsson, H. Hartman, K. Wang, M. Godefroid, C. Froese Fischer, I. Grant, T. Brage, and G. Del Zanna, Multiconfiguration Dirac-Hartree-Fock calculations with spectroscopic accuracy: Applications to astrophysics, Atoms 5, 16 (2017),
https://doi.org/10.3390/atoms5020016
[29] P. Bogdanovich, G. Gaigalas, and A. Momkauskaitė, Accounting for correlation corrections to interconfigurational matrix elements, Lith. J. Phys. 38(5), 443–451 (1998) [in Russian]
[30] R. Karazija, Introduction to the Theory of X-ray and Electronic Spectra of Free Atoms (Plenum Press, New York, 1996),
https://doi.org/10.1007/978-1-4899-1534-4
[31] G. Gaigalas, P. Rynkun, L. Radžiūtė, D. Kato, M. Tanaka, and P. Jönsson, Energy level structure and transition data of Er2+, Astrophys. J. Suppl. Ser. 248(1), 13 (2020),
https://doi.org/10.3847/1538-4365/ab881a
[32] G. Gaigalas, P. Rynkun, L. Radžiūtė, P. Jönsson, and K. Wang, Energy and transition data computations for P-like ions: As, Kr, Sr, Zr, Mo, and W, At. Data Nucl. Data Tables 141, 101428 (2021),
https://doi.org/10.1016/j.adt.2021.101428
[33] Y.T. Li, K. Wang, R. Si, M. Godefroid, G. Gaigalas, Ch.Y. Chen, and P. Jönsson, Reducing the computational load – atomic multiconfiguration calculations based on configuration state function generators, Comput. Phys. Commun. 283, 108562 (2023),
https://doi.org/10.1016/j.cpc.2022.108562
[34] P. Bogdanovich and R. Kisielius, Theoretical energy level spectra and transition data for 4p64d, 4p64f and 4p54d2 configurations of W37+ ion, At. Data Nucl. Data Tables 98(4), 557–565 (2012),
https://doi.org/10.1016/j.adt.2011.11.004
[35] P. Bogdanovich and R. Kisielius, Theoretical energy level spectra and transition data for 4p64d2, 4p64d4f, and 4p54d3 configurations of W36+, At. Data Nucl. Data Tables 99(5), 580–594 (2013),
https://doi.org/10.1016/j.adt.2012.11.001
[36] R. Karpuškienė and R. Kisielius, Theoretical level energies and transition data for 4p64d8, 4p54d9 and 4p64d74f configurations of W30+ ion, At. Data Nucl. Data Tables 143, 101478 (2022),
https://doi.org/10.1016/j.adt.2021.101478
[37] R. Kisielius, V.P. Kulkarni, G.J. Ferland, P. Bogdanovich, D. Som, and M.L. Lykins, Atomic data for Zn II: Improving spectral diagnostics of chemical evolution in high-redshift galaxies, Astrophys. J. 804(1), 76 (2015),
https://doi.org/10.1088/0004-637X/804/1/76
[38] P. Bogdanovich, Modern methods of multiconfiguration studies of many-electron highly charged ions, Nucl. Instrum. Methods Phys. Res. B 235(1–4), 92–99 (2005),
https://doi.org/10.1016/j.nimb.2005.03.152
[39] P. Bogdanovich, R. Karpuškienė, and Z. Rudzikas, Calculation of electronic transitions in S IX, Phys. Scr. T80B, 474–475 (1999),
https://doi.org/10.1238/Physica.Topical.080a00474
[40] R. Karpuškienė, P. Bogdanovich, and R. Kisielius, Significance of M2 and E3 transitions for 4p54dN+1- and 4p64dN–14f-configuration metastable-level lifetimes, Phys. Rev. A 88, 022519 (2013),
https://doi.org/10.1103/PhysRevA.88.022519
[41] K.M. Aggarwal, P. Bogdanovich, F.P. Keenan, and R. Kisielius, Energy levels and radiative rates for Cr-like Cu VI and Zn VII, At. Data Nucl. Data Tables 111–112, 280–345 (2016),
https://doi.org/10.1016/j.adt.2016.03.001
[42] R. Karpuškienė, P. Bogdanovich, and A. Udris, Ab initio oscillator strengths and radiative lifetimes for Ca IX, J. Phys. B 37(10), 2067 (2004),
https://doi.org/10.1088/0953-4075/37/10/006
[43] P. Bogdanovich, R. Karpuškienė, and I. Martinson, Theoretical calculation of transition probabilities and lifetimes of levels of the 4d95p configuration of Cd III, Opt. Spectrosc. 90(1), 4–7 (2001),
https://doi.org/10.1134/1.1343537
[44] P. Rynkun, G. Gaigalas, and P. Jönsson, Theoretical investigation of energy levels and transition data for S II, Cl III, Ar IV, Astron. Astrophys. 623, A155 (2019),
https://doi.org/10.1051/0004-6361/201834931