[PDF]    https://doi.org/10.3952/physics.2024.64.1.4

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 64, 40–47 (2024)

OPTICAL CHARACTERISTICS OF STRUCTURES WITH SILICON NANOWIRES AND METAL NANOPARTICLES
Oleksandr O. Havryliuk, Olha Tkachuk, Mariia Terebinska, Oleksandr Semchuk, and Anatolii Biliuk
Chuiko Institute of Surface Chemistry NAS of Ukraine, 17 General Naumov Street, 03164 Kyiv, Ukraine
Email: gavrylyuk.oleksandr@gmail.com

Received 11 July 2023; revised 8 October 2023; accepted 9 October 2023

To calculate the optical parameters, the finite difference method in the time domain (FDTD) was used, which can be applied to solve Maxwell’s equations. A large number of combinations of a planar structure with metal nanoparticles and a structure with nanowires and metal nanoparticles (NPs) were calculated. The height of nanowires h varied from 50 to 3000 nm, the period of the structure P was 100–600 nm, and the diameter of metal nanoparticles d was 50–400 nm. The reduction of light reflection was determined by the anti-reflection effect of the Si-NWs array itself and the direct scattering effect of metal nanoparticles. It was shown that all structures gave significantly lower reflection coefficients compared to that of a solid silicon plate.

Keywords: rough nanowire, cylindrical nanowire, finite-difference time-domain method, optical spectra, metal nanoparticle


DARINIŲ SU SILICIO NANOVIELOMIS IR METALO NANODALELĖMIS OPTINĖS CHARAKTERISTIKOS
Oleksandr O. Havryliuk, Olha Tkachuk, Mariia Terebinska, Oleksandr Semchuk, Anatolii Biliuk

  Ukrainos nacionalinės mokslų akademijos O. O. Čiuiko paviršiaus chemijos institutas, Kyjivas, Ukraina


References / Nuorodos

[1] L. Hailong, Y. Shengyi, H. Jinming, Z. Zhenheng, T. Peiyun, J. Yurong, T. Libin, and Z. Bingsuo, Which method is more effcient on enhancing light absorption for silicon nanowires array based solar cells: Plasmonic metal nanoparticles or narrow-bandgap semiconductor quantum dots?, Mater. Sci. Semicond. Process. 14, 106661 (2022),
https://doi.org/10.1016/j.mssp.2022.106661
[2] A.P. Amalathas and M.M Alkaisi, Nanostructures for light trapping in thin film solar cells, Micromachines 10, 619 (2019),
https://doi.org/10.3390/mi10090619
[3] P.K. Parashar, R.P. Sharma, and V.K. Komarala, Plasmonic silicon solar cell comprised of aluminum nanoparticles: Effect of nanoparticles' self-limiting native oxide shell on optical and electrical properties, J. Appl. Phys. 120, 143104 (2016),
https://doi.org/10.1063/1.4964869
[4] S. Amdouni, Y. Coffinier, S. Szunerits, M.A. Zabi, M. Oueslati, and R. Boukherroub, Catalytic activity of silicon nanowires decorated with silver and copper nanoparticles, Semicond. Sci. Technol. 31, 014011 (2016),
https://doi.org/10.1088/0268-1242/31/1/014011
[5] A. Elrashidi, Light harvesting in silicon nanowires solar cells by using graphene layer and plasmonic nanoparticles, Appl. Sci. 12, 2519 (2022),
https://doi.org/10.3390/app12052519
[6] Y. Zhang, B. Cai, and B. Jia, Ultraviolet plasmonic aluminium nanoparticles for highly efficient light incoupling on silicon solar cells, Nanomaterials 6, 95 (2016),
https://doi.org/10.3390/nano6060095
[7] T.L. Temple and D.M. Bagnall, Optical properties of gold and aluminium nanoparticles for silicon solar cell applications, J. Appl. Phys. 109, 084343 (2011),
https://doi.org/10.1063/1.3574657
[8] J. Deng, Y. Su, D. Liu, P. Yang, B. Liu, and C. Liu, Nanowire photoelectrochemistry, Chem. Rev. 119(15), 9221–9259 (2019),
https://doi.org/10.1021/acs.chemrev.9b00232
[9] B. Singh, M.M. Shabat, and D.M. Schaadt, Analytical modeling of power transfer via metallic nanoparticles in a solar cell absorber, J. Quant. Spectrosc. Radiat. Transf. 243, 106807 (2020),
https://doi.org/10.1016/j.jqsrt.2019.106807
[10] F. Parveen, B. Sannakki, M.V. Mandke, and H.M. Pathan, Copper nanoparticles: Synthesis methods and its light harvesting performance, Sol. Energy Mater. Sol. Cells 144, 371–382 (2016),
https://doi.org/10.1016/j.solmat.2015.08.033
[11] A. Pujari and T. Thomas, Aluminium nanoparticles alloyed with other earth-abundant plasmonic metals for light trapping in thin-film a-Si solar cells, Sustain. Mater. Technol. 28, e00250 (2021),
https://doi.org/10.1016/j.susmat.2021.e00250
[12] M.L. de Souza, P. Corioa, and A.G. Brolo, Cu nanoparticles enable plasmonic-improved silicon photovoltaic devices, Phys. Chem. Chem. Phys. 14, 15722–15728 (2012),
https://doi.org/10.1039/c2cp43475j
[13] P. Liu, H. Wang, X. Li, M. Rui, and H. Zeng, Localized surface plasmon resonance of Cu nanoparticles by laser ablation in liquid media, RSC Adv. 5, 79738–79745 (2015),
https://doi.org/10.1039/C5RA14933A
[14] Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells, Appl. Phys. Lett. 100, 151101 (2012),
https://doi.org/10.1063/1.3703121
[15] O. Havryliuk, O. Tkachuk, M. Terebinska, O. Semchuk, and A. Biliuk, Modelling the optical characteristics of cylindrical and rough nanowires with silver nanoparticles, Lith. J. Phys. 63(1), 1–7 (2023),
https://doi.org/10.3952/physics.2023.63.1.1
[16] O.Yu. Semchuk, A.A. Biliuk, O.O. Havryliuk, and A.I. Biliuk, Kinetic theory of electroconductivity of metal nanoparticles in the condition of surface plasmon resonance, Appl. Surf. Sci. Adv. 3, 100057 (2021),
https://doi.org/10.1016/j.apsadv.2021.100057
[17] O. Pylypova, O. Havryliuk, S. Antonin, A. Evtukh, V. Skryshevsky, I. Ivanov, and S. Shmahlii, Influence of nanostructure geometry on light trapping in solar cells, Appl. Nanosci. 12(3), 769–774 (2022),
https://doi.org/10.1007/s13204-021-01699-6
[18] O.O. Havryliuk, A.A. Evtukh, O.V. Pylypova, O.Yu. Semchuk, I.I. Ivanov, and V.F. Zabolotnyi, Plasmonic enhancement of light to improve the parameters of solar cells, Appl. Nanosci. 10(12), 4759–4766 (2020),
https://doi.org/10.1007/s13204-020-01299-w
[19] O.O. Havryliuk and О.Yu. Semchuk, Theoretical evaluation of the temperature field distribution in the silicon periodic nanostructures during thermal annealing, Chem. Phys. Technol. Surf. 8(1), 3–9 (2017),
https://doi.org/10.15407/hftp08.01.003
[20] V. Giannini, A.I. Fernandez-Domínguez, S.C. Heck, and S.A. Maier, Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters, Chem. Rev. 111, 3888–3912 (2011),
https://doi.org/10.1021/cr1002672