Danielius Lingis, Mindaugas Gaspariūnas, Vitalij Kovalevskij,
Artūras Plukis, and Vidmantas Remeikis
References /
Nuorodos
[1] A.O. Juma, Stoichiometry and local bond configuration of In
2S
3:Cl
thin films by Rutherford backscattering spectrometry, Nucl.
Instrum. Methods Phys. Res. B
385, 84–88 (2016),
https://doi.org/10.1016/j.nimb.2016.09.005
[2] N. Nishikata, K. Kushida, T. Nishimura, T. Mishima, K.
Kuriyama, and T. Nakamura, Evaluation of lattice displacement in
Mg – Implanted GaN by Rutherford backscattering spectroscopy,
Nucl. Instrum. Methods Phys. Res. B
409, 302–304 (2017),
https://doi.org/10.1016/j.nimb.2017.03.125
[3] S. Magalhães, N.P. Barradas, E. Alves, I.M. Watson, and K.
Lorenz, High precision determination of the InN content of Al
1–xIn
xN
thin films by Rutherford backscattering spectrometry, Nucl.
Instrum. Methods Phys. Res. B
273, 105–108 (2012),
https://doi.org/10.1016/j.nimb.2011.07.051
[4] B. Lukasc, Correction of the limited energy resolution in
RBS spectra, Phys. Status Solidi
64(2), 533–538 (1981),
https://doi.org/10.1002/pssa.2210640217
[5] P. Bauer, E. Steinbauer, and J.P. Biersack, The width of an
RBS spectrum: influence of plural and multiple scattering, Nucl.
Instrum. Methods Phys. Res. B
64(1–4), 711–715 (1992),
https://doi.org/10.1016/0168-583X(92)95563-7
[6] J.F. Ziegler, RBS/ERD simulation problems: Stopping powers,
nuclear reactions and detector resolution, Nucl. Instrum.
Methods Phys. Res. B
136–138, 141–146 (1998),
https://doi.org/10.1016/S0168-583X(97)00664-2
[7] E. Kótai, Computer methods for analysis and simulation of
RBS and ERDA spectra, Nucl. Instrum. Methods Phys. Res. B
85(1–4),
588–596 (1994),
https://doi.org/10.1016/0168-583X(94)95888-2
[8] F. Schiettekatte, Fast Monte Carlo for ion beam analysis
simulations, Nucl. Instrum. Methods Phys. Res. B
266(8),
1880–1885 (2008),
https://doi.org/10.1016/j.nimb.2007.11.075
[9] E. Szilágyi and F. Pászti, Theoretical calculation of the
depth resolution of IBA methods, Nucl. Instrum. Methods Phys.
Res. B
85(1–4), 616–620 (1994),
https://doi.org/10.1016/0168-583X(94)95893-9
[10] M. Mayer, SIMNRA, a simulation program for the analysis of
NRA, RBS and ERDA, AIP Conf. Proc.
475(1), 541–544
(1999),
https://doi.org/10.1063/1.59188
[11] C. Jeynes, N.P. Barradas, P.K. Marriott, G. Boudreault, M.
Jenkin, E. Wendler, and R.P. Webb, Elemental thin film depth
profiles by ion beam analysis using simulated annealing – a new
tool, J. Phys. D
36(7), R97 (2003),
https://doi.org/10.1088/0022-3727/36/7/201
[12] D. Lingis, M. Gaspariūnas, V. Kovalevskij, A. Plukis, and
V. Remeikis, A model to simulate large angle Rutherford
backscattering spectra in GEANT4, Comput. Phys. Commun.
271,
108187 (2022),
https://doi.org/10.1016/j.cpc.2021.108187
[13] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H.
Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barr, and F.
Behner, GEANT4 – a simulation toolkit, Nucl. Instrum. Methods
Phys. Res. A
506(3), 250–303 (2003),
https://doi.org/10.1016/S0168-9002(03)01368-8
[14] H.R. Verma,
Atomic and Nuclear Analytical Methods,
Vol. 1 (Springer Berlin Heidelberg, Berlin, 2007) pp. 91–141,
https://doi.org/10.1007/978-3-540-30279-7
[15] M. Kokkoris, S. Dede, K. Kantre, A. Lagoyannis, E. Ntemou,
V. Paneta, K. Preketes-Sigalas, G. Provatas, R. Vlastou, I.
Bogdanović-Radović, Z. Siketić, and N. Obajdin, Benchmarking
the evaluated proton differential cross sections suitable for
the EBS analysis of
natSi and
16O, Nucl.
Instrum. Methods Phys. Res. B
405, 50–60 (2017),
https://doi.org/10.1016/j.nimb.2017.05.021
[16] H.H. Andersen, F. Besenbacher, P. Loftager, and W. Möller,
Large-angle scattering of light ions in the weakly screened
Rutherford region, Phys. Rev. A
21(6), 1891–1901 (1980),
https://doi.org/10.1103/PhysRevA.21.1891
[17] A.F. Gurbich, SigmaCalc recent development and present
status of the evaluated cross-sections for IBA, Nucl. Instrum.
Methods Phys. Res. B
371, 27–32 (2016),
https://doi.org/10.1016/j.nimb.2015.09.035
[18] R. Ankit,
WebPlotDigitizer (Pacifica, California,
USA, 2022),
https://automeris.io/WebPlotDigitizer/index.html
[19] X.A. Aslanoglou, P.A. Assimakopoulos, M. Kokkoris, and E.
Kossionides, Simulations of channeling spectra in the system p+
28Si,
Nucl. Instrum. Methods Phys. Res. B
140(3–4), 294–302
(1998),
https://doi.org/10.1016/S0168-583X(98)00112-8
[20] M. Kokkoris, G. Perdikakis, S. Kossionides, S. Petrovic,
and E. Simoen, On the dechanneling of protons in Si [110], Eur.
Phys. J. B
34(3), 257–263 (2003),
https://doi.org/10.1140/epjb/e2003-00219-Y
[21] X.A. Aslanoglou, A. Karydas, M. Kokkoris, E. Kossionides,
Th. Paradellis, G. Souliotis, and R. Vlastou, Simulations and
comparisons of channeling spectra in the p+
28Si
system in the backscattering geometry, Nucl. Instrum. Methods
Phys. Res. B
161–163, 524–527 (2000),
https://doi.org/10.1016/S0168-583X(99)00781-8
[22] M. Kokkoris, S. Kossionides, R. Vlastou, X.A. Aslanoglou,
R. Grötzschel, B. Nsouli, A. Kuznetsov, S. Petrovic, and Th.
Paradellis, Determination of parameters for channeling of
protons in SiC polytype crystals in the backscattering geometry,
Nucl. Instrum. Methods Phys. Res. B
184(3), 319–326
(2001),
https://doi.org/10.1016/S0168-583X(01)00727-3
[23] M. Kokkoris, R. Vlastou, X.A. Aslanoglou, E. Kossionides,
R. Grötzschel, and T. Paradellis, Determination of the stopping
power of channeled protons in SiO
2 in the
backscattering geometry, Nucl. Instrum. Methods Phys. Res. B
173(4),
411–416 (2001),
https://doi.org/10.1016/S0168-583X(00)00432-8
[24] D. Lingis, M. Gaspariūnas, A. Plukis, and V. Remeikis,
Improvements and validation of particle channeling model in
GEANT4, Nucl. Instrum. Methods Phys. Res. B
525, 1–12
(2022),
https://doi.org/10.1016/j.nimb.2022.05.007