[PDF]    https://doi.org/10.3952/physics.2024.64.2.1

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 64, 73–81 (2024)

SECOND-ORDER RAYLEIGH–SCHRÖDINGER PERTURBATION THEORY FOR THE GRASP2018 PACKAGE: CORE CORRELATIONS*
Gediminas Gaigalas, Pavel Rynkun, and Laima Kitovienė
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: gediminas.gaigalas@tfai.vu.lt; pavel.rynkun@tfai.vu.lt; laima.radziute@tfai.vu.lt

Received 19 February 2024; accepted 27 March 2024

The paper presents a further development of the method presented in G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: core–valence correlations, Lith. J. Phys. 64(1), 20–39 (2024) (https://doi.org/10.3952/physics.2024.64.1.3), based on a combination of the relativistic configuration interaction method and on the stationary second-order Rayleigh–Schrödinger many-body perturbation theory in an irreducible tensorial form. In this extension, the perturbation theory accounts for both electron core–valence and core correlations when an atom or ion has any number of valence electrons, while the relativistic configuration interaction accounts for the rest of correlations. This allows a significant reduction of the space of the configuration state functions for complex atoms and ions. We also demonstrate how this method works for the energy structure calculation of Fe XV ion.
Keywords: configuration interaction, spin-angular integration, perturbation theory, tensorial algebra, core–valence correlations, core correlations

* Dedicated to the memory of professor Adolfas Jucys (1904–1974), pioneer of contemporary theoretical physics in Lithuania, initiator of the ‘Lithuanian Physics Collection’, on the occasion of his birth and death anniversaries.

ANTROSIOS EILĖS RELĖJAUS IR ŠRĖDINGERIO TRIKDYMŲ TEORIJA GRASP2018 PROGRAMINIAM PAKETUI: KAMIENO KORELIACIJOS*
Gediminas Gaigalas, Pavel Rynkun, Laima Kitovienė

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Darbe pateiktas tolesnis metodo – G. Gaigalas, P. Rynkun, L. Kitovienė, Second-order of Rayleigh-Schrödinger perturbation theory for the GRASP2018 package: core-valence correlations, Lithuanian Journal of Physics 64(1), 20–39 (2024), https://doi.org/10.3952/physics.2024.64.1.3 – vystymas, pagrįstas reliatyvistiniu konfigūracijų superpozicijos (RCI) ir neredukuotine tenzorine forma išreikštos stacionariosios Relėjaus ir Šrėdingerio daugiadalelės trikdymų teorijos (RSMBPT) metodų deriniu. Ši nauja metodo versija leidžia įtraukti ankstesniame darbe minėtas kamieno–valentines ir šiame darbe pridėtas kamieno koreliacijas atomui ar jonui su bet kokiu atvirų sluoksnių skaičiumi, randamas pasinaudojus antrąja trikdymų teorijos eile. O likusios koreliacijos (kamieno–kamieno ir valentinės–valentinės) įtraukiamos įprastai, t. y. konfigūracijų superpozicijos metodu. Tai leidžia gerokai sumažinti sudėtingiems atomams ir jonams konfigūracinių būsenų erdvę ir kartu palengvina skaičiavimus, paremtus vien tiktai daugiakonfigūraciniu Dirako, Hartrio ir Foko bei reliatyvistiniu konfigūracijų superpozicijos metodais. Taip pat parodyta, kaip šis metodas veikia apskaičiuojant Fe XV energijos struktūrą.

* Skiriama šiuolaikinės teorinės fizikos Lietuvoje pradininko, „Lietuvos fizikos rinkinio“ iniciatoriaus akad. Adolfo Jucio (1904–1974) gimimo ir mirties sukaktims paminėti.


References / Nuorodos

[1] I. Lindgren and J. Morrison, Atomic Many-body Theory (Springer-Verlag Berlin Heidelberg, New York, 1982),
https://doi.org/10.1007/978-3-642-96614-9
[2] I. Hubač and S. Wilson, Brillouin–Wigner Methods for Many-Body Systems (Springer, Dordrecht, Heidelberg, London, New York, 2010),
https://doi.org/10.1007/978-90-481-3373-4
[3] C. Froese Fischer, T. Brage, and P. Jönsson, Computational Atomic Structure – An MCHF Approach (IoP, Bristol, UK, 1997)
[4] C. Froese Fischer, M. Godefroid, T. Brage, P. Jönsson, and G. Gaigalas, Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions, J. Phys. B 49(18), 182004 (2016),
https://doi.org/10.1088/0953-4075/49/18/182004
[5] G. Wendin, The random phase approximation with exchange, in: Photoionization and Other Probes of Many-Electron Interactions, NATO Advanced Study Institutes Series, Vol. 18, ed. F.J. Wuilleumier (Springer, Boston, MA, 1976),
https://doi.org/10.1007/978-1-4684-2799-8_5
[6] M.Y. Amusia, The random-phase approximation with exchange, in: Atomic Photoeffect, Physics of Atoms and Molecules Series (Springer, Boston, MA, 1990),
https://doi.org/10.1007/978-1-4757-9328-4_4
[7] C. Froese Fischer, The Hartree-Fock Method for Atoms (Wiley, New York, 1997)
[8] I.P. Grant, Relativistic Quantum Theory of Atoms and Molecules (Springer, New York, 2007),
https://doi.org/10.1007/978-0-387-35069-1
[9] G. Gaigalas and Z. Rudzikas, On the secondly quantized theory of the many-electron atom, J. Phys. B 29(15), 3303 (1996),
https://doi.org/10.1088/0953-4075/29/15/007
[10] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, An efficient approach for spin-angular integrations in atomic structure calculations, J. Phys. B 30(17), 3747 (1997),
https://doi.org/10.1088/0953-4075/30/17/006
[11] P. Bogdanovich, G. Gaigalas, A. Momkauskaitė, and Z. Rudzikas, Accounting for admixed configurations in the second order of perturbation theory for complex atoms, Phys. Scr. 56, 230–239 (1997),
https://doi.org/10.1088/0031-8949/56/3/002
[12] V.A. Dzuba and V.V. Flambaum, Core-valence correlations for atoms with open shells, Phys. Rev. A 75, 052504 (2007),
https://doi.org/10.1103/PhysRevA.75.052504
[13] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core–valence correlations, Lith. J. Phys. 64(1), 20–39 (2024),
https://doi.org/10.3952/physics.2024.64.1.3
[14] C. Froese Fischer, G. Gaigalas, P. Jönsson, and J. Bieroń, GRASP2018 – A Fortran 95 version of the General Relativistic Atomic Structure package, Comput. Phys. Commun. 237, 184–187 (2019),
https://doi.org/10.1016/j.cpc.2018.10.032
[15] P. Jönsson, G. Gaigalas, J. Bieroń, C. Froese Fischer, and I.P. Grant, New version: GRASP2K relativistic atomic structure package, Comput. Phys. Commun. 184(9), 2197–2203 (2013),
https://doi.org/10.1016/j.cpc.2013.02.016
[16] K.G. Dyall, I.P. Grant, C.T. Johnson, F.A. Parpia, and E.P. Plummer, GRASP: A general-purpose relativistic atomic structure program, Comput. Phys. Commun. 55(3), 425–456 (1989),
https://doi.org/10.1016/0010-4655(89)90136-7
[17] A. Kramida, Yu. Ralchenko, and J. Reader; NIST ASD Team (2023), NIST Atomic Spectra Database, Version 5.11 (National Institute of Standards and Technology, Gaithersburg, MD, 2024),
https://www.nist.gov/pml/atomic-spectra-database,
https://doi.org/10.18434/T4W30F