[PDF]    https://doi.org/10.3952/physics.2024.64.2.2

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 64, 82–100 (2024)

IT FROM QUBIT OR ALL FROM HALL?
Dmitri V. Khveshchenko
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, U. S. A.
Email: khvesh@physics.unc.edu

Received 4 September 2023; accepted 20 November 2023

Generalized 1 + 0-dimensional Liouvillean dynamics describing deformations of the Sachdev–Ye–Kitaev (SYK) model, as well as the various 1 + 1-dimensional dilaton and Horava–Lifshitz gravity theories, can all be mapped onto the single-particle quantum mechanics of a non-relativistic charge propagating in a (generally, curved) 2d space and subject to a (generally, non-uniform) magnetic field. The latter description sets a stage for the phenomenon of quantum Hall effect (QHE), thereby elucidating the intrinsically topological nature of the pertinent gravity theories and demystifying their (pseudo)holographic connection to a broad class of the SYK-like models.
Keywords: qubit, SYK model, Liouville theory, Horava–Lifshitz gravity

IT IŠ KUBITO AR VISKAS IŠ HOLO?
Dmitri V. Khveshchenko

Šiaurės Karolinos universiteto Fizikos ir astronomijos fakultetas, Čepel Hilas, JAV



References / Nuorodos

[1] A. Luther, Tomonaga fermions and the Dirac equation in three dimensions, Phys. Rev. B 19, 320 (1979),
https://doi.org/10.1103/PhysRevB.19.320
[2] F.D.M. Haldane, Luttinger's theorem and bosonization of the Fermi surface, in: Proceedings of the International School of Physics "Enrico Fermi", Course CXXI (North-Holland, Amsterdam, 1994), arXiv:cond-mat/0505529,
https://doi.org/10.48550/arXiv.cond-mat/0505529
[3] A. Houghton and J.B. Marston, Bosonization and fermion liquids in dimensions greater than one, Phys. Rev. B 48, 7790 (1993),
https://doi.org/10.1103/PhysRevB.48.7790
[4] A. Houghton, H.J. Kwon, and J.B. Marston, Stability and single-particle properties of bosonized Fermi liquids, Phys. Rev. 50, 1351 (1994),
https://doi.org/10.1103/PhysRevB.50.1351
[5] A. Houghton, H.J. Kwon, and J.B. Marston, Coulomb interaction and the Fermi liquid state: solution by bosonization, J. Phys. 6, 4909 (1994),
https://doi.org/10.1088/0953-8984/6/26/012
[6] H.-J. Kwon, A. Houghton, and J.B. Marston, Gauge interactions and bosonized fermion liquids, Phys. Rev. Lett. 73, 284 (1994),
https://doi.org/10.1103/PhysRevLett.73.284
[7] H.-J. Kwon, A. Houghton, and J.B. Marston, Theory of fermion liquids, Phys. Rev. B 52, 8002 (1995),
https://doi.org/10.1103/PhysRevB.52.8002
[8] A.H. Castro Neto and E. Fradkin, Bosonization of the low energy excitations of Fermi liquids, Phys. Rev. Lett. 72, 1393 (1994),
https://doi.org/10.1103/PhysRevLett.72.1393
[9] A.H. Castro Neto and E. Fradkin, Bosonization of Fermi liquids, Phys. Rev. B 49, 10877 (1994),
https://doi.org/10.1103/PhysRevB.49.10877
[10] P. Kopietz, J. Hermisson, and K. Schönhammer, Bosonization of interacting fermions in arbitrary dimension beyond the Gaussian approximation, Phys. Rev. B 52, 10877 (1995),
https://doi.org/10.1103/PhysRevB.52.10877
[11] A. Houghton, H.J. Kwon, and J.B. Marston, Multidimensional bosonization, Adv. Phys. 49, 141 (2000),
https://doi.org/10.1080/000187300243363
[12] D.V. Khveshchenko and P.C.E. Stamp, Low-energy properties of two-dimensional fermions with long-range current-current interactions, Phys. Rev. Lett. 71, 2118 (1993),
https://doi.org/10.1103/PhysRevLett.71.2118
[13] D.V. Khveshchenko and P.C.E. Stamp, Eikonal approximation in the theory of two-dimensional fermions with long-range current-current interactions, Phys. Rev. B 49, 5227 (1994),
https://doi.org/10.1103/PhysRevB.49.5227
[14] L.B. Ioffe, D. Lidsky, and B.L. Altshuler, Effective lowering of dimensionality in the strongly correlated two dimensional electron gas, Phys. Rev. Lett. 73, 472 (1994),
https://doi.org/10.1103/PhysRevLett.73.472
[15] C. Castellani, C. Di Castro, and W. Metzner, Dimensional crossover from Fermi to Luttinger liquid, Phys. Rev. Lett. 72, 316 (1994),
https://doi.org/10.1103/PhysRevLett.72.316
[16] J. Polchinski, Low-energy dynamics of the spinon-gauge system, Nucl. Phys. B 422, 617 (1994),
https://doi.org/10.1016/0550-3213(94)90449-9
[17] D.V. Khveshchenko, R. Hlubina, and T.M. Rice, Non-Fermi-liquid behavior in two dimensions due to long-ranged current-current interactions, Phys. Rev. B 48, 10766 (1993),
https://doi.org/10.1103/PhysRevB.48.10766
[18] D.V. Khveshchenko, Bosonization of current-current interactions, Phys. Rev. B 49, 16893 (1994), arXiv:cond-mat/9404094,
https://doi.org/10.1103/PhysRevB.49.16893
[19] D.V. Khveshchenko, Geometrical approach to bosonization of D > 1 dimensional (non)-Fermi liquids, Phys. Rev. B 52, 4833 (1995), arXiv:condmat/9409118,
https://doi.org/10.1103/PhysRevB.52.4833
[20] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26, 224002 (2009),
https://doi.org/10.1088/0264-9381/26/22/224002
[21] C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42, 343001 (2009),
https://doi.org/10.1088/1751-8113/42/34/343001
[22] J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010, 723105 (2010),
https://doi.org/10.1155/2010/723105
[23] S. Sachdev, What can gauge-gravity duality teach us about condensed matter physics?, Annu. Rev. Cond. Matt. Phys. 3, 9 (2012),
https://doi.org/10.1146/annurev-conmatphys-020911-125141
[24] Jan Zaanen, Yan Liu, Ya-Wen Sun, and Koenraad Schalm, Holographic Duality in Condensed Matter Physics (Cambridge University Press, 2015),
https://doi.org/10.1017/CBO9781139942492
[25] M. Ammon and J. Erdmenger, Gauge/Gravity Duality (Cambridge University Press, 2015),
https://doi.org/10.1017/CBO9780511846373
[26] S.A. Hartnoll, A. Lucas, and S. Sachdev, Holographic Quantum Matter (MIT Press, 2018), arXiv:1612.07324,
https://doi.org/10.48550/arXiv.1612.07324,
https://mitpress.mit.edu/9780262038430/holographic-quantum-matter/
[27] https://arxiv.org/search/?query=holographic+cond-mat
[28] A. Bagrov, N. Kaplis, A. Krikun, K. Schalm, and J. Zaanen, Holographic fermions at strong translational symmetry breaking: a Bianchi-VII case study, arXiv:1608.03738,
https://doi.org/10.48550/arXiv.1608.03738
[29] T. Andrade, M. Baggioli, A. Krikun, and N. Poovuttikul, Pinning of longitudinal phonons in holographic spontaneous helices, JHEP 2018(02), 85 (2018), arXiv:1708.08306,
https://doi.org/10.1007/JHEP02(2018)085
[30] G.A. Inkof, K. Schalm, and J. Schmalian, Quantum critical Eliashberg theory, the SYK superconductor and their holographic duals, NPJ Quantum Materials 7, 56 (2022),
https://doi.org/10.1038/s41535-022-00460-8
[31] J. Schmalian, Holographic superconductivity of a critical Fermi surface, arXiv:2209.00474,
https://doi.org/10.48550/arXiv.2209.00474
[32] D.V. Khveshchenko, Taking a critical look at holographic critical matter, Lith. J. Phys. 55, 208 (2015), arXiv:1404.7000,
https://doi.org/10.3952/physics.v55i3.3150
[33] D.V. Khveshchenko, Demystifying the holographic mystique: A critical review, Lith. J. Phys. 56, 125 (2016), arXiv:1603.09741,
https://doi.org/10.3952/physics.v56i3.3363
[34] D.V. Khveshchenko, Die hard holographic phenomenology of cuprates, Lith. J. Phys. 61, 1 (2021), arXiv:2011.11617,
https://doi.org/10.3952/physics.v61i1.4406
[35] D.V. Khveshchenko, Phase space holography with no strings attached, Lith. J. Phys. 61, 233 (2021), arXiv:2102.01617,
https://doi.org/10.3952/physics.v61i4.4642
[36] D.V. Khveshchenko, Viable phenomenologies of the normal state of cuprates, EPL 111, 1700 (2015), arXiv:1502.03375,
https://doi.org/10.1209/0295-5075/111/17003
[37] D.V. Khveshchenko, Novel approaches to generic non-Fermi liquids: higher-dimensional bosonization vs generalized holography (Reckoning with the mother of all non-Fermi liquids: alien bosonization vs predator holography), Lith. J. Phys. 63(2), 85 (2023), arXiv:2211.16365,
https://doi.org/10.3952/physics.2023.63.2.5
[38] J. Maldacena, S.H. Shenker, and D. Stanford, A bound on chaos, JHEP 2016(8), 106 (2016),
https://doi.org/10.1007/JHEP08(2016)106
[39] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94, 106002 (2016),
https://doi.org/10.1103/PhysRevD.94.106002
[40] Juan Maldacena, Douglas Stanford, and Zhenbin Yang, Conformal symmetry and its breaking in two dimensional nearly Anti-de-Sitter space, arXiv:1606.01857,
https://doi.org/10.48550/arXiv.1606.01857
[41] D. Stanford and E. Witten, Fermionic localization of the Schwarzian theory, JHEP 2017(10), 8 (2017),
https://doi.org/10.1007/JHEP10(2017)008
[42] J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP 2016(4), 1 (2016),
https://doi.org/10.1007/JHEP04(2016)001
[43] D.J. Gross and V. Rosenhaus, The bulk dual of SYK: cubic couplings, JHEP 2017(05), 92 (2017),
https://doi.org/10.1007/JHEP05(2017)092
[44] D.J. Gross and V. Rosenhaus, All point correlation functions in SYK, JHEP 2017(12), 148 (2017),
https://doi.org/10.1007/JHEP12(2017)148
[45] G. Sárosi, AdS2 holography and the SYK model, in: Proceedings of the XIII Modave Summer School in Mathematical Physics (Modave2017), Proc. Sci. 323, arXiv:1711.08482,
https://doi.org/10.22323/1.323.0001
[46] Henry W. Lin, Juan Maldacena, and Ying Zhao, Symmetries near the horizon, JHEP 2019, 49 (2019), arXiv:1904.12820,
https://doi.org/10.1007/JHEP08(2019)049
[47] Yingfei Gu, Xiao-Liang Qi, and Douglas Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 2017, 125 (2017),
https://doi.org/10.1007/JHEP05(2017)125
[48] Yingfei Gu, Andrew Lucas, Xiao-Liang Qi, Energy diffusion and the butterfly effect in inhomogeneous Sachdev-Ye-Kitaev chains, SciPost Phys. 2, 018 (2017),
https://doi.org/10.21468/SciPostPhys.2.3.018
[49] Yingfei Gu, Andrew Lucas, Xiao-Liang Qi, Spread of entanglement in a Sachdev-Ye-Kitaev chain, JHEP 2017, 120 (2017),
https://doi.org/10.1007/JHEP09(2017)120
[50] Yingfei Gu and Alexei Kitaev, On the relation between the magnitude and exponent of OTOCs, JHEP 2019(2), 75 (2019),
https://doi.org/10.1007/JHEP02(2019)075
[51] D. Bagrets, A. Altland, and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911, 191–205 (2016),
https://doi.org/10.1016/j.nuclphysb.2016.08.002
[52] D. Bagrets, A. Altland, and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys. B 921, 727 (2017), arXiv:1702.08902,
https://doi.org/10.1016/j.nuclphysb.2017.06.012
[53] T.G. Mertens, G.J. Turiaci, and H.L. Verlinde, Solving the Schwarzian via the conformal bootstrap, JHEP 2017(08), 136 (2017),
https://doi.org/10.1007/JHEP08(2017)136
[54] T.G. Mertens, The Schwarzian theory - origins, JHEP 2018(5), 36 (2018),
https://doi.org/10.1007/JHEP05(2018)036
[55] Zhenbin Yang, The quantum gravity dynamics of near extremal black holes, JHEP 2019(5), 205 (2019), arXiv:1809.08647,
https://doi.org/10.1007/JHEP05(2019)205
[56] Subir Sachdev and Jinwu Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993), arXiv:condmat/9212030,
https://doi.org/10.1103/PhysRevLett.70.3339
[57] S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105, 151602 (2010),
https://doi.org/10.1103/PhysRevLett.105.151602
[58] S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev. X 5, 041025 (2015),
https://doi.org/10.1103/PhysRevX.5.041025
[59] A. Kitaev, KITP Seminars (2015),
https://online.kitp.ucsb.edu/
[60] A. Kitaev, Notes on SL˜(2,)\widetilde{\mathrm{SL}}(2,\mathbb{R}) representations, arXiv:1711.08169,
https://doi.org/10.48550/arXiv.1711.08169
[61] Alexei Kitaev and S. Josephine Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 2018, 183 (2018), arXiv:1711.08467,
https://doi.org/10.1007/JHEP05(2018)183
[62] Alexei Kitaev and S. Josephine Suh, Statistical mechanics of a two-dimensional black hole, JHEP 2019, 198 (2019), arXiv:1808.07032,
https://doi.org/10.1007/JHEP05(2019)198
[63] S. Sachdev, Statistical mechanics of strange metals and black holes, arXiv:2205.02285,
https://doi.org/10.48550/arXiv.2205.02285
[64] O. Parcollet, A. Georges, G. Kotliar, and A. Sengupta, Overscreened multichannel SU(N) Kondo model: Large-N solution and conformal field theory, Phys. Rev. B 58, 3794 (1998),
https://doi.org/10.1103/PhysRevB.58.3794
[65] O. Parcollet and A. Georges, Non-Fermi-liquid regime of a doped Mott insulator, Phys. Rev. B 59, 5341 (1999),
https://doi.org/10.1103/PhysRevB.59.5341
[66] A. Georges, O. Parcollet, and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B 63, 134406 (2001),
https://doi.org/10.1103/PhysRevB.63.134406
[67] R. Jackiw, Weyl symmetry and the Liouville theory, Theor. Math. Phys. 148, 941–947 (2006), arXiv:hep-th/0511065,
https://doi.org/10.1007/s11232-006-0090-9
[68] D. Grumiller and R. Jackiw, Liouville gravity from Einstein gravity, arXiv:0712.3775,
https://doi.org/10.48550/arXiv.0712.3775
[69] D. Louis-Martinez, J. Gegenberg, and G. Kunstatter, Exact Dirac quantization of all 2D dilaton gravity theories, Phys. Lett. B 321, 193 (1994), arXiv:gr-qc/9309018,
https://doi.org/10.1016/0370-2693(94)90463-4
[70] E. Witten, Matrix models and deformations of JT gravity, Proc. Roy. Soc. A 476(2244), 20200582 (2020), arXiv:2006.13414,
https://doi.org/10.1098/rspa.2020.0582
[71] K. Narayan, Aspects of 2-dim dilaton gravity, dimensional reduction, and holography, Phys. Rev. D 104(2), 026007 (2021), arXiv:2010.12955,
https://doi.org/10.1103/PhysRevD.104.026007
[72] Yale Fan and Thomas G. Mertens, From quantum groups to Liouville and dilaton quantum gravity, JHEP 2022(05), 92 (2022), arXiv:2109.07770,
https://doi.org/10.1007/JHEP05(2022)092
[73] Andreas Blommaert, Jorrit Kruthoff, and Shunyu Yao, An integrable road to a perturbative plateau, JHEP 2023(04), 48 (2023), arXiv:2208.13795,
https://doi.org/10.1007/JHEP04(2023)048
[74] A. Blommaert, L.V. Iliesiu, and J. Kruthof, Gravity factorized, JHEP 2022(09), 80 (2022), arXiv:2111.07863,
https://doi.org/10.1007/JHEP09(2022)080
[75] Euihun Joung, Prithvi Narayan, Junggi Yoon, Gravitational edge mode in asymptotically AdS2: JT gravity revisited, arXiv:2304.06088,
https://doi.org/10.48550/arXiv.2304.06088
[76] R. Arias, M. Botta-Cantcheff, and P.J. Martinez, Real-time methods in JT/SYK holography, arXiv:2303.03442,
https://doi.org/10.48550/arXiv.2303.03442
[77] D. Grumiller, R. Ruzziconi, and C. Zwikel, Generalized dilaton gravity in 2d, SciPost Phys. 12, 032 (2022), arXiv:2109.03266,
https://doi.org/10.21468/SciPostPhys.12.1.032
[78] J.F. Pedraza, A. Svesko, W. Sybesma, and M.R. Visser, Semiclassical thermodynamics of quantum extremal surfaces in Jackiw Teitelboim gravity, JHEP 2021(12), 134 (2021), arXiv:2107.10358,
https://doi.org/10.1007/JHEP12(2021)134
[79] S. Forste, H. Jockers, J. Kames-King, and A. Kanargias, Deformations of JT gravity via topological gravity and applications, JHEP 2021(11), 154 (2021), arXiv:2107.02773,
https://doi.org/10.1007/JHEP11(2021)154
[80] D. Momeni, Exact solutions and Birkhoff's theorem in Jackiw-Teitelboim gravity, arXiv:2109.09992,
https://doi.org/10.48550/arXiv.2109.09992
[81] K. Narayan, On aspects of 2-dim dilaton gravity, dimensional reduction and holography, Phys. Rev. D 104, 026007 (2021), arXiv:2010.12955,
https://doi.org/10.1103/PhysRevD.104.026007
[82] D. Momeni and P. Channuie, Exact solutions of (deformed) Jackiw-Teitelboim gravity, Eur. Phys. J. C 81, 534 (2021), arXiv:2009.03723,
https://doi.org/10.1140/epjc/s10052-021-09327-x
[83] Yuri D. Lensky and Xiao-Liang Qi, Rescuing a black hole in the large-q coupled SYK model, JHEP 2021(04), 116 (2021), arXiv:2012.15798,
https://doi.org/10.1007/JHEP04(2021)116
[84] C.V. Johnson and F. Rosso, Solving puzzles in deformed JT gravity: phase transitions and non-perturbative effects, JHEP 2021(04), 30 (2021), arXiv:2011.06026,
https://doi.org/10.1007/JHEP04(2021)030
[85] D. Grumillera and R. McNees, Universal flow equations and chaos bound saturation in 2d dilaton gravity, JHEP 2021(01), 112 (2021), arXiv:2007.03673,
https://doi.org/10.1007/JHEP01(2021)112
[86] H. Rathi and D. Roychowdhury, Holographic JT gravity with quartic couplings, JHEP 2021(10), 209 (2021), arXiv:2107.11632,
https://doi.org/10.1007/JHEP10(2021)209
[87] W. Sybesma, A zoo of deformed Jackiw-Teitelboim models near large dimensional black holes, JHEP 2023(01), 141 (2023), arXiv:2211.07927,
https://doi.org/10.1007/JHEP01(2023)141
[88] Zhenbin Yang, The quantum gravity dynamics of near extremal black holes, JHEP 2019(05), 205 (2019), arXiv:1809.08647,
https://doi.org/10.1007/JHEP05(2019)205
[89] D.V. Khveshchenko, Thickening and sickening the SYK model, SciPost Phys. 5, 012 (2018), arXiv:1705.03956,
https://doi.org/10.21468/SciPostPhys.5.1.012
[90] D.V. Khveshchenko, Seeking to develop global SYK-ness, Condens. Matter 3(4), 40 (2018), arXiv:1805.00870,
https://doi.org/10.3390/condmat3040040
[91] N.V. Gnezdilov, J.A. Hutasoit, and C.W.J. Beenakker, Low-high voltage duality in tunneling spectroscopy of the Sachdev-Ye-Kitaev model, Phys. Rev. B 98, 081413 (2019),
https://doi.org/10.1103/PhysRevB.98.081413
[92] O. Can, E.M. Nica, and M. Franz, Charge transport in graphene-based mesoscopic realizations of Sachdev-Ye-Kitaev models, Phys. Rev. B 99, 045419 (2019),
https://doi.org/10.1103/PhysRevB.99.045419
[93] A. Altland, D. Bagrets, and A. Kamenev, Sachdev-Ye-Kitaev non-Fermi-liquid correlations in nanoscopic quantum transport, Phys. Rev. Lett. 123, 226801 (2019),
https://doi.org/10.1103/PhysRevLett.123.226801
[94] A. Kruchkov, A.A. Patel, P. Kim, and S. Sachdev, Thermoelectric power of Sachdev-Ye-Kitaev islands: Probing Bekenstein-Hawking entropy in quantum matter experiments, Phys. Rev. B 101, 205148 (2020), arXiv:1912.02835,
https://doi.org/10.1103/PhysRevB.101.205148
[95] D.I. Pikulin and M. Franz, Black hole on a chip: Proposal for a physical realization of the Sachdev-Ye-Kitaev model in a solid-state system, Phys. Rev. X 7, 031006 (2017),
https://doi.org/10.1103/PhysRevX.7.031006
[96] A. Chew, A. Essin, and J. Alicea, Approximating the Sachdev-Ye-Kitaev model with Majorana wires, Phys. Rev. B 96, 121119 (2017),
https://doi.org/10.1103/PhysRevB.96.121119
[97] A. Chen, R. Ilan, F. de Juan, D.I. Pikulin, and M. Franz, Quantum holography in a graphene flake with an irregular boundary, Phys. Rev. Lett. 121, 036403 (2018),
https://doi.org/10.1103/PhysRevLett.121.036403
[98] E. Lantagne-Hurtubise, C. Li, and M. Franz, Family of Sachdev-Ye-Kitaev models motivated by experimental considerations, Phys. Rev. B 97, 235124 (2018),
https://doi.org/10.1103/PhysRevB.97.235124
[99] M. Franz and M. Rozali, Mimicking black hole event horizons in atomic and solid-state systems, arXiv:1808.00541,
https://doi.org/10.48550/arXiv.1808.00541
[100] A. Altland, D. Bagrets, and A. Kamenev, Quantum criticality of granular SYK matter, Phys. Rev. Lett. 123, 106601 (2019), arXiv:1903.09491,
https://doi.org/10.1103/PhysRevLett.123.106601
[101] A.V. Lunkin, A.Yu. Kitaev, and M.V. Feigel'man, Perturbed Sachdev-Ye-Kitaev model: A polaron in the hyperbolic plane, Phys. Rev. Lett. 125, 196602 (2020), arXiv:2006.14535,
https://doi.org/10.1103/PhysRevLett.125.196602
[102] A.V. Lunkin, K.S. Tikhonov, and M.V. Feigel'man, Sachdev-Ye-Kitaev model with quadratic perturbations: The route to a non-Fermi liquid, Phys. Rev. Lett. 121, 236601 (2018), arXiv:1806.11211,
https://doi.org/10.1103/PhysRevLett.121.236601
[103] D.V. Khveshchenko, Connecting the SYK dots, Condens. Matter 5(2), 37 (2020), arXiv:2004.06646,
https://doi.org/10.3390/condmat5020037
[104] D.V. Khveshchenko, One SYK single electron transistor, Lith. J. Phys. 60, 185 (2020), arXiv:1912.05691,
https://doi.org/10.3952/physics.v60i3.4305
[105] G. Penington, Entanglement wedge reconstruction and the information paradox, arXiv:1905.08255,
https://doi.org/10.48550/arXiv.1905.08255
[106] A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP 2019(12), 63 (2019), arXiv:1905.08762,
https://doi.org/10.1007/JHEP12(2019)063
[107] D.V. Khveshchenko, On a (pseudo) holographic nature of the SYK-like models, Lith. J. Phys. 59, 104 (2019), arXiv:1905.04381,
https://doi.org/10.3952/physics.v59i2.4013
[108] D.V. Khveshchenko, The gloria mundi of SYK does not transit yet, Lith. J. Phys. 62(2), 81 (2022), arXiv:2205.11478,
https://doi.org/10.3952/physics.v62i2.4741
[109] Chao-Ming Jian, Zhen Bi, and Cenke Xu, Model for continuous thermal metal to insulator transition, Phys. Rev. B 96, 115122 (2017), arXiv:1703.07793,
https://doi.org/10.1103/PhysRevB.96.115122
[110] Jiaqi Jiang and Zhenbin Yang, Thermodynamics and many body chaos for generalized large q SYK models, JHEP 2019(08), 28 (2019), arXiv:1905.00811,
https://doi.org/10.1007/JHEP08(2019)019
[111] D. Anninos and D.A. Galante, Constructing AdS2 flow geometries, JHEP 2021(02), 45 (2021), arXiv:2011.01944,
https://doi.org/10.1007/JHEP02(2021)045
[112] D. Anninos, D.A. Galante, and S. Sheorey, Renormalisation group flows of the SYK model, JHEP 2023(11), 197 (2023), arXiv:2212.04944,
https://doi.org/10.1007/JHEP11(2023)197
[113] A. Jevicki, K. Suzuki, and J. Yoon, Bilocal holography in the SYK model, JHEP 2016(7), 7 (2016),
https://doi.org/10.1007/JHEP07(2016)007
[114] A. Jevicki and K. Suzuki, Bilocal holography in the SYK model: perturbations, JHEP 2016(11), 46 (2016), arXiv:1608.07567,
https://doi.org/10.1007/JHEP11(2016)046
[115] S.R. Das, A. Jevicki, and K. Suzuki, Three dimensional view of the SYK/AdS duality, JHEP 2017(9), 17 (2017),
https://doi.org/10.1007/JHEP09(2017)017
[116] S.R. Das, A. Ghosh, A. Jevicki, and K. Suzuki, Spacetime in the SYK model, JHEP 2018(7), 184 (2018),
https://doi.org/10.1007/JHEP07(2018)184
[117] S.R. Das, A. Ghosh, A. Jevicki, and K. Suzuki, Three dimensional view of arbitrary q SYK models, JHEP 2018(2), 162 (2018),
https://doi.org/10.1007/JHEP02(2018)162
[118] P.Y. Cai, A. Inomata, and R. Wilson, Path-integral treatment of the Morse oscillator, Phys. Lett. A 96, 117 (1983),
https://doi.org/10.1016/0375-9601(83)90482-6
[119] I.H. Duru, Morse-potential Green's function with path integrals, Phys. Rev. D 28, 2689 (1983),
https://doi.org/10.1103/PhysRevD.28.2689
[120] A. Comtet and P.J. Houston, Effective action on the hyperbolic plane in a constant external field, J. Math. Phys. 26,185 (1985),
https://doi.org/10.1063/1.526781
[121] A. Comtet, On the Landau levels on the hyperbolic plane, Ann. Phys. 173, 185 (1987),
https://doi.org/10.1016/0003-4916(87)90098-4
[122] C. Grosche and F. Steiner, The path integral on the Poincaré upper half plane and for Liouville quantum mechanics, Phys. Lett. A 123, 319 (1987),
https://doi.org/10.1016/0375-9601(87)90387-2
[123] C. Grosche and F. Steiner, Path integrals on curved manifolds, Z. Phys. C 36, 699 (1987),
https://doi.org/10.1007/BF01630607
[124] C. Grosche, The path integral on the Poincaré upper half-plane with a magnetic field and for the Morse potential, Ann. Phys. 187, 110 (1988),
https://doi.org/10.1016/0003-4916(88)90283-7
[125] H. Kleinert and I. Mustapic, Summing the spectral representations of Pöschl–Teller and Rosen–Morse fixed‐energy amplitudes, J. Math. Phys. 33, 643 (1991),
https://doi.org/10.1063/1.529800
[126] S. Banerjee and E. Altman, Solvable model for a dynamical quantum phase transition from fast to slow scrambling, Phys. Rev. B 95, 134302 (2017),
https://doi.org/10.1103/PhysRevB.95.134302
[127] Zhen Bi, Chao-Ming Jian, Yi-Zhuang You, Kelly Ann Pawlak, and Cenke Xu, Instability of the non-Fermi-liquid state of the Sachdev-Ye-Kitaev model, Phys. Rev. B 95, 205105 (2017),
https://doi.org/10.1103/PhysRevB.95.205105
[128] Shao-Kai Jian and Hong Yao, Solvable Sachdev-Ye-Kitaev models in higher dimensions: From diffusion to many-body localization, Phys. Rev. Lett. 119, 206602 (2017),
https://doi.org/10.1103/PhysRevLett.119.206602
[129] A. Haldar, S. Banerjee, and V.B. Shenoy, Higher-dimensional Sachdev-Ye-Kitaev non-Fermi liquids at Lifshitz transitions, Phys. Rev. B 97, 241106 (2018),
https://doi.org/10.1103/PhysRevB.97.241106
[130] Chao-Ming Jian, Zhen Bi, and Cenke Xu, Model for continuous thermal metal to insulator transition, Phys. Rev. B 96, 115122 (2017),
https://doi.org/10.1103/PhysRevB.96.115122
[131] Xue-Yang Song, Chao-Ming Jian, and Leon Balents, Strongly correlated metal built from Sachdev-Ye-Kitaev models, Phys. Rev. Lett. 119, 216601 (2017),
https://doi.org/10.1103/PhysRevLett.119.216601
[132] Xin Chen, Ruihua Fan, Yiming Chen, Hui Zhai, and Pengfei Zhang, Competition between chaotic and non-chaotic phases in a quadratically coupled Sachdev-Ye-Kitaev model, Phys. Rev. Lett. 119, 207603 (2017),
https://doi.org/10.1103/PhysRevLett.119.207603
[133] Pengfei Zhang, Dispersive Sachdev-Ye-Kitaev model: Band structure and quantum chaos, Phys. Rev. B 96, 205138 (2017),
https://doi.org/10.1103/PhysRevB.96.205138
[134] Wenhe Cai, Xian-Hui Ge, and Guo-Hong Yang, Diffusion in higher dimensional SYK model with complex fermions, JHEP 2018(01), 76 (2018),
https://doi.org/10.1007/JHEP01(2018)076
[135] Yin Zhong, Periodic Anderson model meets Sachdev-Ye-Kitaev interaction: a solvable playground for heavy fermion physics, J. Phys. Commun. 2, 095014 (2018),
https://doi.org/10.1088/2399-6528/aae06b
[136] Xin Dai, Shao-Kai Jian, and Hong Yao, Global phase diagram of the one-dimensional Sachdev-Ye-Kitaev model at finite N, Phys. Rev. B 100, 235144 (2019), arXiv:1802.10029,
https://doi.org/10.1103/PhysRevB.100.235144
[137] Pengfei Zhang and Hui Zhai, Topological Sachdev-Ye-Kitaev model, Phys. Rev. B 97, 201112(R) (2018),
https://doi.org/10.1103/PhysRevB.97.201112
[138] Xiaochuan Wu, Xiao Chen, Chao-Ming Jian, Yi-Zhuang You, and Cenke Xu, Candidate theory for the strange metal phase at a finite-energy window, Phys. Rev. B 98, 165117 (2018),
https://doi.org/10.1103/PhysRevB.98.165117
[139] D. Ben-Zion and J. McGreevy, Strange metal from local quantum chaos, Phys. Rev. B 97, 155117 (2018),
https://doi.org/10.1103/PhysRevB.97.155117
[140] A.A. Patel, J. McGreevy, D.P. Arovas, and S. Sachdev, Magnetotransport in a model of a disordered strange metal, Phys. Rev. X 8, 021049 (2018),
https://doi.org/10.1103/PhysRevX.8.021049
[141] D. Chowdhury, Y. Werman, E. Berg, and T. Senthil, Translationally invariant non-Fermi-liquid metals with critical Fermi surfaces: Solvable models, Phys. Rev. X 8, 031024 (2018),
https://doi.org/10.1103/PhysRevX.8.031024
[142] J.P.M. Pitelli, Cosmology in (1+1)-dimensional Hořava-Lifshitz theory of gravity, Phys. Rev. D 92, 084012 (2015), arXiv:1509.04983,
https://doi.org/10.1103/PhysRevD.92.084012
[143] J.P.M. Pitelli, Quantum cosmology in (1+1)-dimensional Hořava-Lifshitz theory of gravity, Phys. Rev. D 93, 104024 (2016), arXiv:1605.01979,
https://doi.org/10.1103/PhysRevD.93.104024
[144] Bao-Fei Li, Anzhong Wang, Yumei Wu, and Zhong Chao Wu, Quantization of (1+1)-dimensional Hořava-Lifshitz theory of gravity, Phys. Rev. D 90, 124076 (2014), arXiv:1408.2345,
https://doi.org/10.1103/PhysRevD.90.124076
[145] B.I. Panah, Two-dimensional Lifshitz-like AdS black holes in F(R) gravity, J. Math. Phys. 63, 112502 (2022), arXiv:2210.11249,
https://doi.org/10.1063/5.0104272
[146] S. Nojiri and S.D. Odintsov, 2D F(R) gravity and AdS2/CFT1 correspondence, EPL 39, 69001 (2022), arXiv:2208.10146,
https://doi.org/10.1209/0295-5075/ac8ba0
[147] S. Nojiri, S.D. Odintsov, and V. Faraoni, Generalized black hole entropy in two dimensions, Int. J. Geom. Meth. Mod. Phys. 20(09), 2350148 (2023), arXiv:2303.02663,
https://doi.org/10.1142/S0219887823501487
[148] D. Grumiller, J. Hartong, S. Prohazka, and J. Salzer, Limits of JT gravity, JHEP 2021(02), 134 (2021), arXiv:2011.13870,
https://doi.org/10.1007/JHEP02(2021)134
[149] J. Gomis, D. Hidalgo, and P. Salgado-Rebolledo, Non-relativistic and Carrollian limits of Jackiw-Teitelboim gravity, JHEP 2021(05), 162 (2021), arXiv:2011.15053,
https://doi.org/10.1007/JHEP05(2021)162
[150] H. Afshar, H. Gonzalez, D. Grumiller, and D. Vassilevich, Flat space holography and complex SYK, Phys. Rev. D 101, 086024 (2020), arXiv:1911.05739,
https://doi.org/10.1103/PhysRevD.101.086024
[151] F. Ecker, C. Valcárcel, and D. Vassilevich, 2D holography beyond the Jackiw-Teitelboim model, JHEP 2021(09), 182 (2021), arXiv:2106.08006,
https://doi.org/10.1007/JHEP09(2021)182
[152] A. Gaikwad, L.K. Joshi, G. Mandal, and S.R. Wadia, Holographic dual to charged SYK from 3D gravity and Chern-Simons, JHEP 2020(02), 33 (2020), arXiv:1802.07746,
https://doi.org/10.1007/JHEP02(2020)033
[153] A. Lala and D. Roychowdhury, Models of phase stability in Jackiw-Teitelboim gravity, Phys. Rev. D 100, 124061 (2019), arXiv:1909.09828,
https://doi.org/10.1103/PhysRevD.100.124061
[154] A. Castro, D. Grumiller, F. Larsen, and R. McNees, Holographic description of AdS2 black holes, JHEP 2008(11), 52 (2008), arXiv:0809.4264,
https://doi.org/10.1088/1126-6708/2008/11/052
[155] C. Valcarcel and D. Vassilevich, Target space diffeomorphisms in Poisson sigma models and asymptotic symmetries in 2D dilaton gravities, Phys. Rev. D 105, 106016 (2022), arXiv:2202.02603,
https://doi.org/10.1103/PhysRevD.105.106016
[156] M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin AdS gravity, JHEP 2010(12), 7 (2010), arXiv:1008.4579,
https://doi.org/10.1007/JHEP12(2010)007
[157] Geoffrey Compère and Wei Song, W symmetry and integrability of higher spin black holes, JHEP 2013(09) 144 (2013), arXiv:1306.0014,
https://doi.org/10.1007/JHEP09(2013)144
[158] Michael Gutperle and Yi Li, Higher spin Lifshitz theory and integrable systems, Phys. Rev. D 91, 046012 (2015), arXiv:1412.7085,
https://doi.org/10.1103/PhysRevD.91.046012
[159] Matteo Beccaria, Michael Gutperle, Yi Li, and Guido Macorini, Higher spin Lifshitz theories and the Korteweg-de Vries hierarchy, Phys. Rev. D 92, 085005 (2015), arXiv:1504.06555
https://doi.org/10.1103/PhysRevD.92.085005
[160] D. Grumiller, A. Pérez, S. Prohazka, D. Tempo, and R. Troncoso, Higher spin black holes with soft hair, JHEP 2016(10), 119 (2016), arXiv:1607.05360,
https://doi.org/10.1007/JHEP10(2016)119
[161] E. Ojeda and A. Pérez, Integrable systems and the boundary dynamics of higher spin gravity on AdS3, JHEP 2020(11), 89 (2020), arXiv:2009.07829,
https://doi.org/10.1007/JHEP11(2020)089
[162] A.M.J. Schakel, Effective field theory of ideal-fluid hydrodynamics, Mod. Phys. Lett. B 10, 999 (1996), arXiv:cond-mat/9607164,
https://doi.org/10.1142/S0217984996001139
[163] A.G. Abanov and P.B. Wiegmann, Quantum hydrodynamics, the quantum Benjamin-Ono equation, and the Calogero model, Phys. Rev. Lett. 95, 076402 (2005), arXiv:cond-mat/0504041
https://doi.org/10.1103/PhysRevLett.95.076402
[164] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Non-linear dynamics of quantum systems and soliton theory, Phys. A 40, F193–F208 (2007), arXiv:nlin/0605006,
https://doi.org/10.1088/1751-8113/40/8/F02
[165] A.G. Abanov, E. Bettelheim, and P. Wiegmann, Integrable hydrodynamics of Calogero–Sutherland model: Bidirectional Benjamin–Ono equation, J. Phys. A 42, 135201 (2009), arXiv:0810.5327,
https://doi.org/10.1088/1751-8113/42/13/135201
[166] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Quantum hydrodynamics and nonlinear differential equations for degenerate Fermi gas, J. Phys. A 41, 392003 (2008), arXiv:0804.2272,
https://doi.org/10.1088/1751-8113/41/39/392003
[167] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Orthogonality catastrophe and shock waves in a non-equilibrium Fermi gas, Phys. Rev. Lett. 97, 246402 (2006), arXiv:cond-mat/0607453,
https://doi.org/10.1103/PhysRevLett.97.246402
[168] P.B. Wiegmann, Nonlinear hydrodynamics and fractionally quantized solitons at the fractional quantum Hall edge, Phys. Rev. Lett. 108, 206810 (2012), arXiv:1112.0810,
https://doi.org/10.1103/PhysRevLett.108.206810
[169] P. Wiegmann, Quantum hydrodynamics of fractional Hall effect: Quantum Kirchhoff equations, arXiv:1211.5132,
https://doi.org/10.48550/arXiv.1211.5132
[170] E. Bettelheim and P. Wiegmann, Universal Fermi distribution of semiclassical nonequilibrium Fermi states, Phys. Rev. B 84, 085102 (2011), arXiv:1104.1854,
https://doi.org/10.1103/PhysRevB.84.085102
[171] E. Bettelheim, Y. Kaplan, and P. Wiegmann, Fermi edge resonances in non-equilibrium states of Fermi gases, J. Phys. A 44, 282001 (2011), arXiv:1103.4236,
https://doi.org/10.1088/1751-8113/44/28/282001
[172] E. Bettelheim, Y. Kaplan, and P. Wiegmann, Gradient catastrophe and Fermi-edge resonances in Fermi gas, Phys. Rev. Lett. 106, 166804 (2011), arXiv:1011.1993,
https://doi.org/10.1103/PhysRevLett.106.166804
[173] M. Laskin, T. Can, and P. Wiegmann, Collective field theory for quantum Hall states, Phys. Rev. B 92, 235141 (2015), arXiv:1412.8716,
https://doi.org/10.1103/PhysRevB.92.235141
[174] M. Laskin, Y.H. Chiu, T. Can, and P. Wiegmann, Emergent conformal symmetry of quantum Hall states on singular surfaces, Phys. Rev. Lett. 117, 266803 (2016), arXiv:1602.04802,
https://doi.org/10.1103/PhysRevLett.117.266803
[175] S. Klevtsov, X. Ma, G. Marinescu, and P. Wiegmann, Quantum Hall effect and Quillen metric, Commun. Math. Phys. 349, 819-855 (2017), arXiv:1510.06720,
https://doi.org/10.1007/s00220-016-2789-2
[176] M. Pustilnik and K.A. Matveev, Fate of classical solitons in one-dimensional quantum systems, Phys. Rev. B 92, 195146 (2015), arXiv:1507.05639,
https://doi.org/10.1103/PhysRevB.92.195146
[177] M. Pustilnik and K.A. Matveev, Viscous dissipation in one-dimensional quantum liquids, Phys. Rev. Lett. 119, 036801 (2017), arXiv:1706.07004,
https://doi.org/10.1103/PhysRevLett.119.036801
[178] M. Pustilnik and K.A. Matveev, Effective mass of elementary excitations in Galilean-invariant integrable models, Phys. Rev. B 94, 115436 (2016), arXiv:1606.05553,
https://doi.org/10.1103/PhysRevB.94.115436
[179] B. Doyon, H. Spohn, and T. Yoshimura, A geometric viewpoint on generalized hydrodynamics, Nucl. Phys. B 926, 570–583 (2017), arXiv:1704.04409,
https://doi.org/10.1016/j.nuclphysb.2017.12.002
[180] B. Doyon and T. Yoshimura, A note on generalized hydrodynamics: inhomogeneous fields and other concepts, SciPost Phys. 2, 014 (2017), arXiv:1611.08225,
https://doi.org/10.21468/SciPostPhys.2.2.014
[181] M. Fagotti, Higher-order generalized hydrodynamics in one dimension: The noninteracting test, Phys. Rev. B 96, 220302 (2017), arXiv:1708.05383,
https://doi.org/10.1103/PhysRevB.96.220302
[182] A. Bastianello, B. Doyon, G. Watts, and T. Yoshimura, Generalized hydrodynamics of classical integrable field theory: the sinh-Gordon model, SciPost Phys. 4, 045 (2018), arXiv:1712.05687,
https://doi.org/10.21468/SciPostPhys.4.6.045
[183] B. Doyon, Lecture notes on generalised hydrodynamics, SciPost Phys. Lect. Notes 18 (2020), arXiv:1912.08496,
https://doi.org/10.21468/SciPostPhysLectNotes.18
[184] P. Ruggiero, P. Calabrese, B. Doyon, and J. Dubail, Quantum generalized hydrodynamics, Phys. Rev. Lett. 124, 140603 (2020), arXiv.org:1910.00570,
https://doi.org/10.1103/PhysRevLett.124.140603
[185] Zhe-Yu Shi, Chao Gao, and Hui Zhai, Ideal-gas approach to hydrodynamics, Phys. Rev. X 11, 041031 (2021), arXiv:2011.01415,
https://doi.org/10.1103/PhysRevX.11.041031
[186] D.S. Dean, P. Le Doussal, S.N. Majumdar, and G. Schehr, Nonequilibrium dynamics of noninteracting fermions in a trap, EPL 126, 20006 (2019), arXiv:1902.02594,
https://doi.org/10.1209/0295-5075/126/20006
[187] D.S. Dean, P. Le Doussal, S.N. Majumdar, and G. Schehr, Impurities in systems of noninteracting trapped fermions, SciPost Phys. 10, 082 (2021), arXiv:2012.13958,
https://doi.org/10.21468/SciPostPhys.10.4.082
[188] H. Spohn, Hydrodynamic Equations for the Toda Lattice, arXiv:2101.06528,
https://doi.org/10.48550/arXiv.2101.06528