Dmitri V. Khveshchenko
References /
Nuorodos
[1] A. Luther, Tomonaga fermions and the Dirac equation in three
dimensions, Phys. Rev. B
19, 320 (1979),
https://doi.org/10.1103/PhysRevB.19.320
[2] F.D.M. Haldane, Luttinger's theorem and bosonization of the
Fermi surface, in:
Proceedings of the International School
of Physics "Enrico Fermi", Course CXXI (North-Holland,
Amsterdam, 1994), arXiv:cond-mat/0505529,
https://doi.org/10.48550/arXiv.cond-mat/0505529
[3] A. Houghton and J.B. Marston, Bosonization and fermion
liquids in dimensions greater than one, Phys. Rev. B
48,
7790 (1993),
https://doi.org/10.1103/PhysRevB.48.7790
[4] A. Houghton, H.J. Kwon, and J.B. Marston, Stability and
single-particle properties of bosonized Fermi liquids, Phys.
Rev.
50, 1351 (1994),
https://doi.org/10.1103/PhysRevB.50.1351
[5] A. Houghton, H.J. Kwon, and J.B. Marston, Coulomb
interaction and the Fermi liquid state: solution by
bosonization, J. Phys.
6, 4909 (1994),
https://doi.org/10.1088/0953-8984/6/26/012
[6] H.-J. Kwon, A. Houghton, and J.B. Marston, Gauge
interactions and bosonized fermion liquids, Phys. Rev. Lett.
73,
284 (1994),
https://doi.org/10.1103/PhysRevLett.73.284
[7] H.-J. Kwon, A. Houghton, and J.B. Marston, Theory of fermion
liquids, Phys. Rev. B
52, 8002 (1995),
https://doi.org/10.1103/PhysRevB.52.8002
[8] A.H. Castro Neto and E. Fradkin, Bosonization of the low
energy excitations of Fermi liquids, Phys. Rev. Lett.
72,
1393 (1994),
https://doi.org/10.1103/PhysRevLett.72.1393
[9] A.H. Castro Neto and E. Fradkin, Bosonization of Fermi
liquids, Phys. Rev. B
49, 10877 (1994),
https://doi.org/10.1103/PhysRevB.49.10877
[10] P. Kopietz, J. Hermisson, and K. Schönhammer, Bosonization
of interacting fermions in arbitrary dimension beyond the
Gaussian approximation, Phys. Rev. B
52, 10877 (1995),
https://doi.org/10.1103/PhysRevB.52.10877
[11] A. Houghton, H.J. Kwon, and J.B. Marston, Multidimensional
bosonization, Adv. Phys.
49, 141 (2000),
https://doi.org/10.1080/000187300243363
[12] D.V. Khveshchenko and P.C.E. Stamp, Low-energy properties
of two-dimensional fermions with long-range current-current
interactions, Phys. Rev. Lett.
71, 2118 (1993),
https://doi.org/10.1103/PhysRevLett.71.2118
[13] D.V. Khveshchenko and P.C.E. Stamp, Eikonal approximation
in the theory of two-dimensional fermions with long-range
current-current interactions, Phys. Rev. B
49, 5227
(1994),
https://doi.org/10.1103/PhysRevB.49.5227
[14] L.B. Ioffe, D. Lidsky, and B.L. Altshuler, Effective
lowering of dimensionality in the strongly correlated two
dimensional electron gas, Phys. Rev. Lett.
73, 472
(1994),
https://doi.org/10.1103/PhysRevLett.73.472
[15] C. Castellani, C. Di Castro, and W. Metzner, Dimensional
crossover from Fermi to Luttinger liquid, Phys. Rev. Lett.
72,
316 (1994),
https://doi.org/10.1103/PhysRevLett.72.316
[16] J. Polchinski, Low-energy dynamics of the spinon-gauge
system, Nucl. Phys. B 422, 617 (1994),
https://doi.org/10.1016/0550-3213(94)90449-9
[17] D.V. Khveshchenko, R. Hlubina, and T.M. Rice,
Non-Fermi-liquid behavior in two dimensions due to long-ranged
current-current interactions, Phys. Rev. B
48, 10766
(1993),
https://doi.org/10.1103/PhysRevB.48.10766
[18] D.V. Khveshchenko, Bosonization of current-current
interactions, Phys. Rev. B
49, 16893 (1994),
arXiv:cond-mat/9404094,
https://doi.org/10.1103/PhysRevB.49.16893
[19] D.V. Khveshchenko, Geometrical approach to bosonization of
D > 1 dimensional (non)-Fermi liquids, Phys. Rev. B
52,
4833 (1995), arXiv:condmat/9409118,
https://doi.org/10.1103/PhysRevB.52.4833
[20] S.A. Hartnoll, Lectures on holographic methods for
condensed matter physics, Class. Quant. Grav.
26, 224002
(2009),
https://doi.org/10.1088/0264-9381/26/22/224002
[21] C.P. Herzog, Lectures on holographic superfluidity and
superconductivity, J. Phys. A
42, 343001 (2009),
https://doi.org/10.1088/1751-8113/42/34/343001
[22] J. McGreevy, Holographic duality with a view toward
many-body physics, Adv. High Energy Phys.
2010, 723105
(2010),
https://doi.org/10.1155/2010/723105
[23] S. Sachdev, What can gauge-gravity duality teach us about
condensed matter physics?, Annu. Rev. Cond. Matt. Phys.
3,
9 (2012),
https://doi.org/10.1146/annurev-conmatphys-020911-125141
[24] Jan Zaanen, Yan Liu, Ya-Wen Sun, and Koenraad Schalm,
Holographic
Duality in Condensed Matter Physics (Cambridge University
Press, 2015),
https://doi.org/10.1017/CBO9781139942492
[25] M. Ammon and J. Erdmenger,
Gauge/Gravity Duality
(Cambridge University Press, 2015),
https://doi.org/10.1017/CBO9780511846373
[26] S.A. Hartnoll, A. Lucas, and S. Sachdev, Holographic
Quantum Matter (MIT Press, 2018), arXiv:1612.07324,
https://doi.org/10.48550/arXiv.1612.07324,
https://mitpress.mit.edu/9780262038430/holographic-quantum-matter/
[27]
https://arxiv.org/search/?query=holographic+cond-mat
[28] A. Bagrov, N. Kaplis, A. Krikun, K. Schalm, and J. Zaanen,
Holographic fermions at strong translational symmetry breaking:
a Bianchi-VII case study, arXiv:1608.03738,
https://doi.org/10.48550/arXiv.1608.03738
[29] T. Andrade, M. Baggioli, A. Krikun, and N. Poovuttikul,
Pinning of longitudinal phonons in holographic spontaneous
helices, JHEP
2018(02), 85 (2018), arXiv:1708.08306,
https://doi.org/10.1007/JHEP02(2018)085
[30] G.A. Inkof, K. Schalm, and J. Schmalian, Quantum critical
Eliashberg theory, the SYK superconductor and their holographic
duals, NPJ Quantum Materials
7, 56 (2022),
https://doi.org/10.1038/s41535-022-00460-8
[31] J. Schmalian, Holographic superconductivity of a critical
Fermi surface, arXiv:2209.00474,
https://doi.org/10.48550/arXiv.2209.00474
[32] D.V. Khveshchenko, Taking a critical look at holographic
critical matter, Lith. J. Phys.
55, 208 (2015),
arXiv:1404.7000,
https://doi.org/10.3952/physics.v55i3.3150
[33] D.V. Khveshchenko, Demystifying the holographic mystique: A
critical review, Lith. J. Phys.
56, 125 (2016),
arXiv:1603.09741,
https://doi.org/10.3952/physics.v56i3.3363
[34] D.V. Khveshchenko, Die hard holographic phenomenology of
cuprates, Lith. J. Phys.
61, 1 (2021), arXiv:2011.11617,
https://doi.org/10.3952/physics.v61i1.4406
[35] D.V. Khveshchenko, Phase space holography with no strings
attached, Lith. J. Phys.
61, 233 (2021),
arXiv:2102.01617,
https://doi.org/10.3952/physics.v61i4.4642
[36] D.V. Khveshchenko, Viable phenomenologies of the normal
state of cuprates, EPL
111, 1700 (2015),
arXiv:1502.03375,
https://doi.org/10.1209/0295-5075/111/17003
[37] D.V. Khveshchenko, Novel approaches to generic non-Fermi
liquids: higher-dimensional bosonization vs generalized
holography (Reckoning with the mother of all non-Fermi liquids:
alien bosonization vs predator holography), Lith. J. Phys.
63(2),
85 (2023), arXiv:2211.16365,
https://doi.org/10.3952/physics.2023.63.2.5
[38] J. Maldacena, S.H. Shenker, and D. Stanford, A bound on
chaos, JHEP
2016(8), 106 (2016),
https://doi.org/10.1007/JHEP08(2016)106
[39] J. Maldacena and D. Stanford, Remarks on the
Sachdev-Ye-Kitaev model, Phys. Rev. D
94, 106002 (2016),
https://doi.org/10.1103/PhysRevD.94.106002
[40] Juan Maldacena, Douglas Stanford, and Zhenbin Yang,
Conformal symmetry and its breaking in two dimensional nearly
Anti-de-Sitter space, arXiv:1606.01857,
https://doi.org/10.48550/arXiv.1606.01857
[41] D. Stanford and E. Witten, Fermionic localization of the
Schwarzian theory, JHEP
2017(10), 8 (2017),
https://doi.org/10.1007/JHEP10(2017)008
[42] J. Polchinski and V. Rosenhaus, The spectrum in the
Sachdev-Ye-Kitaev model, JHEP
2016(4), 1 (2016),
https://doi.org/10.1007/JHEP04(2016)001
[43] D.J. Gross and V. Rosenhaus, The bulk dual of SYK: cubic
couplings, JHEP
2017(05), 92 (2017),
https://doi.org/10.1007/JHEP05(2017)092
[44] D.J. Gross and V. Rosenhaus, All point correlation
functions in SYK, JHEP
2017(12), 148 (2017),
https://doi.org/10.1007/JHEP12(2017)148
[45] G. Sárosi, AdS
2 holography and the SYK model,
in:
Proceedings of the XIII Modave Summer School in
Mathematical Physics (Modave2017), Proc. Sci. 323,
arXiv:1711.08482,
https://doi.org/10.22323/1.323.0001
[46] Henry W. Lin, Juan Maldacena, and Ying Zhao, Symmetries
near the horizon, JHEP
2019, 49 (2019),
arXiv:1904.12820,
https://doi.org/10.1007/JHEP08(2019)049
[47] Yingfei Gu, Xiao-Liang Qi, and Douglas Stanford, Local
criticality, diffusion and chaos in generalized
Sachdev-Ye-Kitaev models, JHEP
2017, 125 (2017),
https://doi.org/10.1007/JHEP05(2017)125
[48] Yingfei Gu, Andrew Lucas, Xiao-Liang Qi, Energy diffusion
and the butterfly effect in inhomogeneous Sachdev-Ye-Kitaev
chains, SciPost Phys.
2, 018 (2017),
https://doi.org/10.21468/SciPostPhys.2.3.018
[49] Yingfei Gu, Andrew Lucas, Xiao-Liang Qi, Spread of
entanglement in a Sachdev-Ye-Kitaev chain, JHEP
2017,
120 (2017),
https://doi.org/10.1007/JHEP09(2017)120
[50] Yingfei Gu and Alexei Kitaev, On the relation between the
magnitude and exponent of OTOCs, JHEP
2019(2), 75
(2019),
https://doi.org/10.1007/JHEP02(2019)075
[51] D. Bagrets, A. Altland, and A. Kamenev, Sachdev-Ye-Kitaev
model as Liouville quantum mechanics, Nucl. Phys. B
911,
191–205 (2016),
https://doi.org/10.1016/j.nuclphysb.2016.08.002
[52] D. Bagrets, A. Altland, and A. Kamenev, Power-law out of
time order correlation functions in the SYK model, Nucl. Phys. B
921, 727 (2017), arXiv:1702.08902,
https://doi.org/10.1016/j.nuclphysb.2017.06.012
[53] T.G. Mertens, G.J. Turiaci, and H.L. Verlinde, Solving the
Schwarzian via the conformal bootstrap, JHEP
2017(08),
136 (2017),
https://doi.org/10.1007/JHEP08(2017)136
[54] T.G. Mertens, The Schwarzian theory - origins, JHEP
2018(5),
36 (2018),
https://doi.org/10.1007/JHEP05(2018)036
[55] Zhenbin Yang, The quantum gravity dynamics of near extremal
black holes, JHEP
2019(5), 205 (2019), arXiv:1809.08647,
https://doi.org/10.1007/JHEP05(2019)205
[56] Subir Sachdev and Jinwu Ye, Gapless spin-fluid ground state
in a random quantum Heisenberg magnet, Phys. Rev. Lett.
70,
3339 (1993), arXiv:condmat/9212030,
https://doi.org/10.1103/PhysRevLett.70.3339
[57] S. Sachdev, Holographic metals and the fractionalized Fermi
liquid, Phys. Rev. Lett.
105, 151602 (2010),
https://doi.org/10.1103/PhysRevLett.105.151602
[58] S. Sachdev, Bekenstein-Hawking entropy and strange metals,
Phys. Rev. X
5, 041025 (2015),
https://doi.org/10.1103/PhysRevX.5.041025
[59] A. Kitaev,
KITP Seminars (2015),
https://online.kitp.ucsb.edu/
[60] A. Kitaev, Notes on
representations, arXiv:1711.08169,
https://doi.org/10.48550/arXiv.1711.08169
[61] Alexei Kitaev and S. Josephine Suh, The soft mode in the
Sachdev-Ye-Kitaev model and its gravity dual, JHEP
2018,
183 (2018), arXiv:1711.08467,
https://doi.org/10.1007/JHEP05(2018)183
[62] Alexei Kitaev and S. Josephine Suh, Statistical mechanics
of a two-dimensional black hole, JHEP
2019, 198 (2019),
arXiv:1808.07032,
https://doi.org/10.1007/JHEP05(2019)198
[63] S. Sachdev, Statistical mechanics of strange metals and
black holes, arXiv:2205.02285,
https://doi.org/10.48550/arXiv.2205.02285
[64] O. Parcollet, A. Georges, G. Kotliar, and A. Sengupta,
Overscreened multichannel SU(N) Kondo model: Large-N solution
and conformal field theory, Phys. Rev. B
58, 3794
(1998),
https://doi.org/10.1103/PhysRevB.58.3794
[65] O. Parcollet and A. Georges, Non-Fermi-liquid regime of a
doped Mott insulator, Phys. Rev. B
59, 5341 (1999),
https://doi.org/10.1103/PhysRevB.59.5341
[66] A. Georges, O. Parcollet, and S. Sachdev, Quantum
fluctuations of a nearly critical Heisenberg spin glass, Phys.
Rev. B
63, 134406 (2001),
https://doi.org/10.1103/PhysRevB.63.134406
[67] R. Jackiw, Weyl symmetry and the Liouville theory, Theor.
Math. Phys.
148, 941–947 (2006), arXiv:hep-th/0511065,
https://doi.org/10.1007/s11232-006-0090-9
[68] D. Grumiller and R. Jackiw, Liouville gravity from Einstein
gravity, arXiv:0712.3775,
https://doi.org/10.48550/arXiv.0712.3775
[69] D. Louis-Martinez, J. Gegenberg, and G. Kunstatter, Exact
Dirac quantization of all 2D dilaton gravity theories, Phys.
Lett. B
321, 193 (1994), arXiv:gr-qc/9309018,
https://doi.org/10.1016/0370-2693(94)90463-4
[70] E. Witten, Matrix models and deformations of JT gravity,
Proc. Roy. Soc. A
476(2244), 20200582 (2020),
arXiv:2006.13414,
https://doi.org/10.1098/rspa.2020.0582
[71] K. Narayan, Aspects of 2-dim dilaton gravity, dimensional
reduction, and holography, Phys. Rev. D
104(2), 026007
(2021), arXiv:2010.12955,
https://doi.org/10.1103/PhysRevD.104.026007
[72] Yale Fan and Thomas G. Mertens, From quantum groups to
Liouville and dilaton quantum gravity, JHEP
2022(05), 92
(2022), arXiv:2109.07770,
https://doi.org/10.1007/JHEP05(2022)092
[73] Andreas Blommaert, Jorrit Kruthoff, and Shunyu Yao, An
integrable road to a perturbative plateau, JHEP
2023(04),
48 (2023), arXiv:2208.13795,
https://doi.org/10.1007/JHEP04(2023)048
[74] A. Blommaert, L.V. Iliesiu, and J. Kruthof, Gravity
factorized, JHEP
2022(09), 80 (2022), arXiv:2111.07863,
https://doi.org/10.1007/JHEP09(2022)080
[75] Euihun Joung, Prithvi Narayan, Junggi Yoon, Gravitational
edge mode in asymptotically AdS
2: JT gravity
revisited, arXiv:2304.06088,
https://doi.org/10.48550/arXiv.2304.06088
[76] R. Arias, M. Botta-Cantcheff, and P.J. Martinez, Real-time
methods in JT/SYK holography, arXiv:2303.03442,
https://doi.org/10.48550/arXiv.2303.03442
[77] D. Grumiller, R. Ruzziconi, and C. Zwikel, Generalized
dilaton gravity in 2d, SciPost Phys.
12, 032 (2022),
arXiv:2109.03266,
https://doi.org/10.21468/SciPostPhys.12.1.032
[78] J.F. Pedraza, A. Svesko, W. Sybesma, and M.R. Visser,
Semiclassical thermodynamics of quantum extremal surfaces in
Jackiw Teitelboim gravity, JHEP 2021(12), 134 (2021),
arXiv:2107.10358,
https://doi.org/10.1007/JHEP12(2021)134
[79] S. Forste, H. Jockers, J. Kames-King, and A. Kanargias,
Deformations of JT gravity via topological gravity and
applications, JHEP 2021(11), 154 (2021), arXiv:2107.02773,
https://doi.org/10.1007/JHEP11(2021)154
[80] D. Momeni, Exact solutions and Birkhoff's theorem in
Jackiw-Teitelboim gravity, arXiv:2109.09992,
https://doi.org/10.48550/arXiv.2109.09992
[81] K. Narayan, On aspects of 2-dim dilaton gravity,
dimensional reduction and holography, Phys. Rev. D
104,
026007 (2021), arXiv:2010.12955,
https://doi.org/10.1103/PhysRevD.104.026007
[82] D. Momeni and P. Channuie, Exact solutions of (deformed)
Jackiw-Teitelboim gravity, Eur. Phys. J. C
81, 534
(2021), arXiv:2009.03723,
https://doi.org/10.1140/epjc/s10052-021-09327-x
[83] Yuri D. Lensky and Xiao-Liang Qi, Rescuing a black hole in
the large-
q coupled SYK model, JHEP
2021(04), 116
(2021), arXiv:2012.15798,
https://doi.org/10.1007/JHEP04(2021)116
[84] C.V. Johnson and F. Rosso, Solving puzzles in deformed JT
gravity: phase transitions and non-perturbative effects, JHEP
2021(04),
30 (2021), arXiv:2011.06026,
https://doi.org/10.1007/JHEP04(2021)030
[85] D. Grumillera and R. McNees, Universal flow equations and
chaos bound saturation in 2d dilaton gravity, JHEP
2021(01),
112 (2021), arXiv:2007.03673,
https://doi.org/10.1007/JHEP01(2021)112
[86] H. Rathi and D. Roychowdhury, Holographic JT gravity with
quartic couplings, JHEP
2021(10), 209 (2021),
arXiv:2107.11632,
https://doi.org/10.1007/JHEP10(2021)209
[87] W. Sybesma, A zoo of deformed Jackiw-Teitelboim models near
large dimensional black holes, JHEP
2023(01), 141
(2023), arXiv:2211.07927,
https://doi.org/10.1007/JHEP01(2023)141
[88] Zhenbin Yang, The quantum gravity dynamics of near extremal
black holes, JHEP
2019(05), 205 (2019),
arXiv:1809.08647,
https://doi.org/10.1007/JHEP05(2019)205
[89] D.V. Khveshchenko, Thickening and sickening the SYK model,
SciPost Phys.
5, 012 (2018), arXiv:1705.03956,
https://doi.org/10.21468/SciPostPhys.5.1.012
[90] D.V. Khveshchenko, Seeking to develop global SYK-ness,
Condens. Matter
3(4), 40 (2018), arXiv:1805.00870,
https://doi.org/10.3390/condmat3040040
[91] N.V. Gnezdilov, J.A. Hutasoit, and C.W.J. Beenakker,
Low-high voltage duality in tunneling spectroscopy of the
Sachdev-Ye-Kitaev model, Phys. Rev. B
98, 081413 (2019),
https://doi.org/10.1103/PhysRevB.98.081413
[92] O. Can, E.M. Nica, and M. Franz, Charge transport in
graphene-based mesoscopic realizations of Sachdev-Ye-Kitaev
models, Phys. Rev. B
99, 045419 (2019),
https://doi.org/10.1103/PhysRevB.99.045419
[93] A. Altland, D. Bagrets, and A. Kamenev, Sachdev-Ye-Kitaev
non-Fermi-liquid correlations in nanoscopic quantum transport,
Phys. Rev. Lett.
123, 226801 (2019),
https://doi.org/10.1103/PhysRevLett.123.226801
[94] A. Kruchkov, A.A. Patel, P. Kim, and S. Sachdev,
Thermoelectric power of Sachdev-Ye-Kitaev islands: Probing
Bekenstein-Hawking entropy in quantum matter experiments, Phys.
Rev. B
101, 205148 (2020), arXiv:1912.02835,
https://doi.org/10.1103/PhysRevB.101.205148
[95] D.I. Pikulin and M. Franz, Black hole on a chip: Proposal
for a physical realization of the Sachdev-Ye-Kitaev model in a
solid-state system, Phys. Rev. X
7, 031006 (2017),
https://doi.org/10.1103/PhysRevX.7.031006
[96] A. Chew, A. Essin, and J. Alicea, Approximating the
Sachdev-Ye-Kitaev model with Majorana wires, Phys. Rev. B
96,
121119 (2017),
https://doi.org/10.1103/PhysRevB.96.121119
[97] A. Chen, R. Ilan, F. de Juan, D.I. Pikulin, and M. Franz,
Quantum holography in a graphene flake with an irregular
boundary, Phys. Rev. Lett.
121, 036403 (2018),
https://doi.org/10.1103/PhysRevLett.121.036403
[98] E. Lantagne-Hurtubise, C. Li, and M. Franz, Family of
Sachdev-Ye-Kitaev models motivated by experimental
considerations, Phys. Rev. B
97, 235124 (2018),
https://doi.org/10.1103/PhysRevB.97.235124
[99] M. Franz and M. Rozali, Mimicking black hole event horizons
in atomic and solid-state systems, arXiv:1808.00541,
https://doi.org/10.48550/arXiv.1808.00541
[100] A. Altland, D. Bagrets, and A. Kamenev, Quantum
criticality of granular SYK matter, Phys. Rev. Lett.
123,
106601 (2019), arXiv:1903.09491,
https://doi.org/10.1103/PhysRevLett.123.106601
[101] A.V. Lunkin, A.Yu. Kitaev, and M.V. Feigel'man, Perturbed
Sachdev-Ye-Kitaev model: A polaron in the hyperbolic plane,
Phys. Rev. Lett.
125, 196602 (2020), arXiv:2006.14535,
https://doi.org/10.1103/PhysRevLett.125.196602
[102] A.V. Lunkin, K.S. Tikhonov, and M.V. Feigel'man,
Sachdev-Ye-Kitaev model with quadratic perturbations: The route
to a non-Fermi liquid, Phys. Rev. Lett.
121, 236601
(2018), arXiv:1806.11211,
https://doi.org/10.1103/PhysRevLett.121.236601
[103] D.V. Khveshchenko, Connecting the SYK dots, Condens.
Matter
5(2), 37 (2020), arXiv:2004.06646,
https://doi.org/10.3390/condmat5020037
[104] D.V. Khveshchenko, One SYK single electron transistor,
Lith. J. Phys.
60, 185 (2020), arXiv:1912.05691,
https://doi.org/10.3952/physics.v60i3.4305
[105] G. Penington, Entanglement wedge reconstruction and the
information paradox, arXiv:1905.08255,
https://doi.org/10.48550/arXiv.1905.08255
[106] A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield,
The entropy of bulk quantum fields and the entanglement wedge of
an evaporating black hole, JHEP
2019(12), 63 (2019),
arXiv:1905.08762,
https://doi.org/10.1007/JHEP12(2019)063
[107] D.V. Khveshchenko, On a (pseudo) holographic nature of the
SYK-like models, Lith. J. Phys.
59, 104 (2019),
arXiv:1905.04381,
https://doi.org/10.3952/physics.v59i2.4013
[108] D.V. Khveshchenko, The gloria mundi of SYK does not
transit yet, Lith. J. Phys.
62(2), 81 (2022),
arXiv:2205.11478,
https://doi.org/10.3952/physics.v62i2.4741
[109] Chao-Ming Jian, Zhen Bi, and Cenke Xu, Model for
continuous thermal metal to insulator transition, Phys. Rev. B
96,
115122 (2017), arXiv:1703.07793,
https://doi.org/10.1103/PhysRevB.96.115122
[110] Jiaqi Jiang and Zhenbin Yang, Thermodynamics and many body
chaos for generalized large
q SYK models, JHEP
2019(08),
28 (2019), arXiv:1905.00811,
https://doi.org/10.1007/JHEP08(2019)019
[111] D. Anninos and D.A. Galante, Constructing AdS
2
flow geometries, JHEP
2021(02), 45 (2021),
arXiv:2011.01944,
https://doi.org/10.1007/JHEP02(2021)045
[112] D. Anninos, D.A. Galante, and S. Sheorey, Renormalisation
group flows of the SYK model, JHEP
2023(11), 197 (2023),
arXiv:2212.04944,
https://doi.org/10.1007/JHEP11(2023)197
[113] A. Jevicki, K. Suzuki, and J. Yoon, Bilocal holography in
the SYK model, JHEP
2016(7), 7 (2016),
https://doi.org/10.1007/JHEP07(2016)007
[114] A. Jevicki and K. Suzuki, Bilocal holography in the SYK
model: perturbations, JHEP
2016(11), 46 (2016),
arXiv:1608.07567,
https://doi.org/10.1007/JHEP11(2016)046
[115] S.R. Das, A. Jevicki, and K. Suzuki, Three dimensional
view of the SYK/AdS duality, JHEP
2017(9), 17 (2017),
https://doi.org/10.1007/JHEP09(2017)017
[116] S.R. Das, A. Ghosh, A. Jevicki, and K. Suzuki, Spacetime
in the SYK model, JHEP
2018(7), 184 (2018),
https://doi.org/10.1007/JHEP07(2018)184
[117] S.R. Das, A. Ghosh, A. Jevicki, and K. Suzuki, Three
dimensional view of arbitrary
q SYK models, JHEP
2018(2),
162 (2018),
https://doi.org/10.1007/JHEP02(2018)162
[118] P.Y. Cai, A. Inomata, and R. Wilson, Path-integral
treatment of the Morse oscillator, Phys. Lett. A
96, 117
(1983),
https://doi.org/10.1016/0375-9601(83)90482-6
[119] I.H. Duru, Morse-potential Green's function with path
integrals, Phys. Rev. D
28, 2689 (1983),
https://doi.org/10.1103/PhysRevD.28.2689
[120] A. Comtet and P.J. Houston, Effective action on the
hyperbolic plane in a constant external field, J. Math. Phys.
26,185
(1985),
https://doi.org/10.1063/1.526781
[121] A. Comtet, On the Landau levels on the hyperbolic plane,
Ann. Phys.
173, 185 (1987),
https://doi.org/10.1016/0003-4916(87)90098-4
[122] C. Grosche and F. Steiner, The path integral on the
Poincaré upper half plane and for Liouville quantum mechanics,
Phys. Lett. A
123, 319 (1987),
https://doi.org/10.1016/0375-9601(87)90387-2
[123] C. Grosche and F. Steiner, Path integrals on curved
manifolds, Z. Phys. C
36, 699 (1987),
https://doi.org/10.1007/BF01630607
[124] C. Grosche, The path integral on the Poincaré upper
half-plane with a magnetic field and for the Morse potential,
Ann. Phys.
187, 110 (1988),
https://doi.org/10.1016/0003-4916(88)90283-7
[125] H. Kleinert and I. Mustapic, Summing the spectral
representations of Pöschl–Teller and Rosen–Morse fixed‐energy
amplitudes, J. Math. Phys.
33, 643 (1991),
https://doi.org/10.1063/1.529800
[126] S. Banerjee and E. Altman, Solvable model for a dynamical
quantum phase transition from fast to slow scrambling, Phys.
Rev. B
95, 134302 (2017),
https://doi.org/10.1103/PhysRevB.95.134302
[127] Zhen Bi, Chao-Ming Jian, Yi-Zhuang You, Kelly Ann Pawlak,
and Cenke Xu, Instability of the non-Fermi-liquid state of the
Sachdev-Ye-Kitaev model, Phys. Rev. B
95, 205105 (2017),
https://doi.org/10.1103/PhysRevB.95.205105
[128] Shao-Kai Jian and Hong Yao, Solvable Sachdev-Ye-Kitaev
models in higher dimensions: From diffusion to many-body
localization, Phys. Rev. Lett.
119, 206602 (2017),
https://doi.org/10.1103/PhysRevLett.119.206602
[129] A. Haldar, S. Banerjee, and V.B. Shenoy,
Higher-dimensional Sachdev-Ye-Kitaev non-Fermi liquids at
Lifshitz transitions, Phys. Rev. B
97, 241106 (2018),
https://doi.org/10.1103/PhysRevB.97.241106
[130] Chao-Ming Jian, Zhen Bi, and Cenke Xu, Model for
continuous thermal metal to insulator transition, Phys. Rev. B
96,
115122 (2017),
https://doi.org/10.1103/PhysRevB.96.115122
[131] Xue-Yang Song, Chao-Ming Jian, and Leon Balents, Strongly
correlated metal built from Sachdev-Ye-Kitaev models, Phys. Rev.
Lett.
119, 216601 (2017),
https://doi.org/10.1103/PhysRevLett.119.216601
[132] Xin Chen, Ruihua Fan, Yiming Chen, Hui Zhai, and Pengfei
Zhang, Competition between chaotic and non-chaotic phases in a
quadratically coupled Sachdev-Ye-Kitaev model, Phys. Rev. Lett.
119, 207603 (2017),
https://doi.org/10.1103/PhysRevLett.119.207603
[133] Pengfei Zhang, Dispersive Sachdev-Ye-Kitaev model: Band
structure and quantum chaos, Phys. Rev. B
96, 205138
(2017),
https://doi.org/10.1103/PhysRevB.96.205138
[134] Wenhe Cai, Xian-Hui Ge, and Guo-Hong Yang, Diffusion in
higher dimensional SYK model with complex fermions, JHEP
2018(01),
76 (2018),
https://doi.org/10.1007/JHEP01(2018)076
[135] Yin Zhong, Periodic Anderson model meets Sachdev-Ye-Kitaev
interaction: a solvable playground for heavy fermion physics, J.
Phys. Commun.
2, 095014 (2018),
https://doi.org/10.1088/2399-6528/aae06b
[136] Xin Dai, Shao-Kai Jian, and Hong Yao, Global phase diagram
of the one-dimensional Sachdev-Ye-Kitaev model at finite
N,
Phys. Rev. B
100, 235144 (2019), arXiv:1802.10029,
https://doi.org/10.1103/PhysRevB.100.235144
[137] Pengfei Zhang and Hui Zhai, Topological Sachdev-Ye-Kitaev
model, Phys. Rev. B
97, 201112(R) (2018),
https://doi.org/10.1103/PhysRevB.97.201112
[138] Xiaochuan Wu, Xiao Chen, Chao-Ming Jian, Yi-Zhuang You,
and Cenke Xu, Candidate theory for the strange metal phase at a
finite-energy window, Phys. Rev. B
98, 165117 (2018),
https://doi.org/10.1103/PhysRevB.98.165117
[139] D. Ben-Zion and J. McGreevy, Strange metal from local
quantum chaos, Phys. Rev. B
97, 155117 (2018),
https://doi.org/10.1103/PhysRevB.97.155117
[140] A.A. Patel, J. McGreevy, D.P. Arovas, and S. Sachdev,
Magnetotransport in a model of a disordered strange metal, Phys.
Rev. X
8, 021049 (2018),
https://doi.org/10.1103/PhysRevX.8.021049
[141] D. Chowdhury, Y. Werman, E. Berg, and T. Senthil,
Translationally invariant non-Fermi-liquid metals with critical
Fermi surfaces: Solvable models, Phys. Rev. X
8, 031024
(2018),
https://doi.org/10.1103/PhysRevX.8.031024
[142] J.P.M. Pitelli, Cosmology in (1+1)-dimensional
Hořava-Lifshitz theory of gravity, Phys. Rev. D
92,
084012 (2015), arXiv:1509.04983,
https://doi.org/10.1103/PhysRevD.92.084012
[143] J.P.M. Pitelli, Quantum cosmology in (1+1)-dimensional
Hořava-Lifshitz theory of gravity, Phys. Rev. D
93,
104024 (2016), arXiv:1605.01979,
https://doi.org/10.1103/PhysRevD.93.104024
[144] Bao-Fei Li, Anzhong Wang, Yumei Wu, and Zhong Chao Wu,
Quantization of (1+1)-dimensional Hořava-Lifshitz theory of
gravity, Phys. Rev. D
90, 124076 (2014),
arXiv:1408.2345,
https://doi.org/10.1103/PhysRevD.90.124076
[145] B.I. Panah, Two-dimensional Lifshitz-like AdS black holes
in
F(
R) gravity, J. Math. Phys.
63,
112502 (2022), arXiv:2210.11249,
https://doi.org/10.1063/5.0104272
[146] S. Nojiri and S.D. Odintsov, 2D F(R) gravity and AdS
2/CFT
1
correspondence, EPL
39, 69001 (2022), arXiv:2208.10146,
https://doi.org/10.1209/0295-5075/ac8ba0
[147] S. Nojiri, S.D. Odintsov, and V. Faraoni, Generalized
black hole entropy in two dimensions, Int. J. Geom. Meth. Mod.
Phys.
20(09), 2350148 (2023), arXiv:2303.02663,
https://doi.org/10.1142/S0219887823501487
[148] D. Grumiller, J. Hartong, S. Prohazka, and J. Salzer,
Limits of JT gravity, JHEP
2021(02), 134 (2021),
arXiv:2011.13870,
https://doi.org/10.1007/JHEP02(2021)134
[149] J. Gomis, D. Hidalgo, and P. Salgado-Rebolledo,
Non-relativistic and Carrollian limits of Jackiw-Teitelboim
gravity, JHEP
2021(05), 162 (2021), arXiv:2011.15053,
https://doi.org/10.1007/JHEP05(2021)162
[150] H. Afshar, H. Gonzalez, D. Grumiller, and D. Vassilevich,
Flat space holography and complex SYK, Phys. Rev. D
101,
086024 (2020), arXiv:1911.05739,
https://doi.org/10.1103/PhysRevD.101.086024
[151] F. Ecker, C. Valcárcel, and D. Vassilevich, 2D holography
beyond the Jackiw-Teitelboim model, JHEP
2021(09), 182
(2021), arXiv:2106.08006,
https://doi.org/10.1007/JHEP09(2021)182
[152] A. Gaikwad, L.K. Joshi, G. Mandal, and S.R. Wadia,
Holographic dual to charged SYK from 3D gravity and
Chern-Simons, JHEP
2020(02), 33 (2020),
arXiv:1802.07746,
https://doi.org/10.1007/JHEP02(2020)033
[153] A. Lala and D. Roychowdhury, Models of phase stability in
Jackiw-Teitelboim gravity, Phys. Rev. D
100, 124061
(2019), arXiv:1909.09828,
https://doi.org/10.1103/PhysRevD.100.124061
[154] A. Castro, D. Grumiller, F. Larsen, and R. McNees,
Holographic description of AdS
2 black holes, JHEP
2008(11),
52 (2008), arXiv:0809.4264,
https://doi.org/10.1088/1126-6708/2008/11/052
[155] C. Valcarcel and D. Vassilevich, Target space
diffeomorphisms in Poisson sigma models and asymptotic
symmetries in 2D dilaton gravities, Phys. Rev. D
105,
106016 (2022), arXiv:2202.02603,
https://doi.org/10.1103/PhysRevD.105.106016
[156] M. Henneaux and S.-J. Rey, Nonlinear
W∞
as asymptotic symmetry of three-dimensional higher spin AdS
gravity, JHEP
2010(12), 7 (2010), arXiv:1008.4579,
https://doi.org/10.1007/JHEP12(2010)007
[157] Geoffrey Compère and Wei Song,
W symmetry and
integrability of higher spin black holes, JHEP
2013(09)
144 (2013), arXiv:1306.0014,
https://doi.org/10.1007/JHEP09(2013)144
[158] Michael Gutperle and Yi Li, Higher spin Lifshitz theory
and integrable systems, Phys. Rev. D
91, 046012 (2015),
arXiv:1412.7085,
https://doi.org/10.1103/PhysRevD.91.046012
[159] Matteo Beccaria, Michael Gutperle, Yi Li, and Guido
Macorini, Higher spin Lifshitz theories and the Korteweg-de
Vries hierarchy, Phys. Rev. D
92, 085005 (2015),
arXiv:1504.06555
https://doi.org/10.1103/PhysRevD.92.085005
[160] D. Grumiller, A. Pérez, S. Prohazka, D. Tempo, and R.
Troncoso, Higher spin black holes with soft hair, JHEP
2016(10),
119 (2016), arXiv:1607.05360,
https://doi.org/10.1007/JHEP10(2016)119
[161] E. Ojeda and A. Pérez, Integrable systems and the boundary
dynamics of higher spin gravity on AdS
3, JHEP
2020(11),
89 (2020), arXiv:2009.07829,
https://doi.org/10.1007/JHEP11(2020)089
[162] A.M.J. Schakel, Effective field theory of ideal-fluid
hydrodynamics, Mod. Phys. Lett. B
10, 999 (1996),
arXiv:cond-mat/9607164,
https://doi.org/10.1142/S0217984996001139
[163] A.G. Abanov and P.B. Wiegmann, Quantum hydrodynamics, the
quantum Benjamin-Ono equation, and the Calogero model, Phys.
Rev. Lett.
95, 076402 (2005), arXiv:cond-mat/0504041
https://doi.org/10.1103/PhysRevLett.95.076402
[164] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Non-linear
dynamics of quantum systems and soliton theory, Phys. A
40,
F193–F208 (2007), arXiv:nlin/0605006,
https://doi.org/10.1088/1751-8113/40/8/F02
[165] A.G. Abanov, E. Bettelheim, and P. Wiegmann, Integrable
hydrodynamics of Calogero–Sutherland model: Bidirectional
Benjamin–Ono equation, J. Phys. A
42, 135201 (2009),
arXiv:0810.5327,
https://doi.org/10.1088/1751-8113/42/13/135201
[166] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Quantum
hydrodynamics and nonlinear differential equations for
degenerate Fermi gas, J. Phys. A
41, 392003 (2008),
arXiv:0804.2272,
https://doi.org/10.1088/1751-8113/41/39/392003
[167] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Orthogonality
catastrophe and shock waves in a non-equilibrium Fermi gas,
Phys. Rev. Lett.
97, 246402 (2006),
arXiv:cond-mat/0607453,
https://doi.org/10.1103/PhysRevLett.97.246402
[168] P.B. Wiegmann, Nonlinear hydrodynamics and fractionally
quantized solitons at the fractional quantum Hall edge, Phys.
Rev. Lett.
108, 206810 (2012), arXiv:1112.0810,
https://doi.org/10.1103/PhysRevLett.108.206810
[169] P. Wiegmann, Quantum hydrodynamics of fractional Hall
effect: Quantum Kirchhoff equations, arXiv:1211.5132,
https://doi.org/10.48550/arXiv.1211.5132
[170] E. Bettelheim and P. Wiegmann, Universal Fermi
distribution of semiclassical nonequilibrium Fermi states, Phys.
Rev. B
84, 085102 (2011), arXiv:1104.1854,
https://doi.org/10.1103/PhysRevB.84.085102
[171] E. Bettelheim, Y. Kaplan, and P. Wiegmann, Fermi edge
resonances in non-equilibrium states of Fermi gases, J. Phys. A
44, 282001 (2011), arXiv:1103.4236,
https://doi.org/10.1088/1751-8113/44/28/282001
[172] E. Bettelheim, Y. Kaplan, and P. Wiegmann, Gradient
catastrophe and Fermi-edge resonances in Fermi gas, Phys. Rev.
Lett.
106, 166804 (2011), arXiv:1011.1993,
https://doi.org/10.1103/PhysRevLett.106.166804
[173] M. Laskin, T. Can, and P. Wiegmann, Collective field
theory for quantum Hall states, Phys. Rev. B
92, 235141
(2015), arXiv:1412.8716,
https://doi.org/10.1103/PhysRevB.92.235141
[174] M. Laskin, Y.H. Chiu, T. Can, and P. Wiegmann, Emergent
conformal symmetry of quantum Hall states on singular surfaces,
Phys. Rev. Lett.
117, 266803 (2016), arXiv:1602.04802,
https://doi.org/10.1103/PhysRevLett.117.266803
[175] S. Klevtsov, X. Ma, G. Marinescu, and P. Wiegmann, Quantum
Hall effect and Quillen metric, Commun. Math. Phys.
349,
819-855 (2017), arXiv:1510.06720,
https://doi.org/10.1007/s00220-016-2789-2
[176] M. Pustilnik and K.A. Matveev, Fate of classical solitons
in one-dimensional quantum systems, Phys. Rev. B
92,
195146 (2015), arXiv:1507.05639,
https://doi.org/10.1103/PhysRevB.92.195146
[177] M. Pustilnik and K.A. Matveev, Viscous dissipation in
one-dimensional quantum liquids, Phys. Rev. Lett.
119,
036801 (2017), arXiv:1706.07004,
https://doi.org/10.1103/PhysRevLett.119.036801
[178] M. Pustilnik and K.A. Matveev, Effective mass of
elementary excitations in Galilean-invariant integrable models,
Phys. Rev. B
94, 115436 (2016), arXiv:1606.05553,
https://doi.org/10.1103/PhysRevB.94.115436
[179] B. Doyon, H. Spohn, and T. Yoshimura, A geometric
viewpoint on generalized hydrodynamics, Nucl. Phys. B
926,
570–583 (2017), arXiv:1704.04409,
https://doi.org/10.1016/j.nuclphysb.2017.12.002
[180] B. Doyon and T. Yoshimura, A note on generalized
hydrodynamics: inhomogeneous fields and other concepts, SciPost
Phys.
2, 014 (2017), arXiv:1611.08225,
https://doi.org/10.21468/SciPostPhys.2.2.014
[181] M. Fagotti, Higher-order generalized hydrodynamics in one
dimension: The noninteracting test, Phys. Rev. B
96,
220302 (2017), arXiv:1708.05383,
https://doi.org/10.1103/PhysRevB.96.220302
[182] A. Bastianello, B. Doyon, G. Watts, and T. Yoshimura,
Generalized hydrodynamics of classical integrable field theory:
the sinh-Gordon model, SciPost Phys.
4, 045 (2018),
arXiv:1712.05687,
https://doi.org/10.21468/SciPostPhys.4.6.045
[183] B. Doyon, Lecture notes on generalised hydrodynamics,
SciPost Phys. Lect. Notes 18 (2020), arXiv:1912.08496,
https://doi.org/10.21468/SciPostPhysLectNotes.18
[184] P. Ruggiero, P. Calabrese, B. Doyon, and J. Dubail,
Quantum generalized hydrodynamics, Phys. Rev. Lett.
124,
140603 (2020), arXiv.org:1910.00570,
https://doi.org/10.1103/PhysRevLett.124.140603
[185] Zhe-Yu Shi, Chao Gao, and Hui Zhai, Ideal-gas approach to
hydrodynamics, Phys. Rev. X
11, 041031 (2021),
arXiv:2011.01415,
https://doi.org/10.1103/PhysRevX.11.041031
[186] D.S. Dean, P. Le Doussal, S.N. Majumdar, and G. Schehr,
Nonequilibrium dynamics of noninteracting fermions in a trap,
EPL
126, 20006 (2019), arXiv:1902.02594,
https://doi.org/10.1209/0295-5075/126/20006
[187] D.S. Dean, P. Le Doussal, S.N. Majumdar, and G. Schehr,
Impurities in systems of noninteracting trapped fermions,
SciPost Phys.
10, 082 (2021), arXiv:2012.13958,
https://doi.org/10.21468/SciPostPhys.10.4.082
[188] H. Spohn,
Hydrodynamic Equations for the Toda Lattice,
arXiv:2101.06528,
https://doi.org/10.48550/arXiv.2101.06528