Dmitri V. Khveshchenko
      
References /
          Nuorodos
        
        [1] A. Luther, Tomonaga fermions and the Dirac equation in three
        dimensions, Phys. Rev. B 
19, 320 (1979), 
        
          https://doi.org/10.1103/PhysRevB.19.320
        [2] F.D.M. Haldane, Luttinger's theorem and bosonization of the
        Fermi surface, in: 
Proceedings of the International School
          of Physics "Enrico Fermi", Course CXXI (North-Holland,
        Amsterdam, 1994), arXiv:cond-mat/0505529, 
        
          https://doi.org/10.48550/arXiv.cond-mat/0505529
        [3] A. Houghton and J.B. Marston, Bosonization and fermion
        liquids in dimensions greater than one, Phys. Rev. B 
48,
        7790 (1993), 
        
          https://doi.org/10.1103/PhysRevB.48.7790
        [4] A. Houghton, H.J. Kwon, and J.B. Marston, Stability and
        single-particle properties of bosonized Fermi liquids, Phys.
        Rev. 
50, 1351 (1994), 
        
          https://doi.org/10.1103/PhysRevB.50.1351
        [5] A. Houghton, H.J. Kwon, and J.B. Marston, Coulomb
        interaction and the Fermi liquid state: solution by
        bosonization, J. Phys. 
6, 4909 (1994), 
        
          https://doi.org/10.1088/0953-8984/6/26/012
        [6] H.-J. Kwon, A. Houghton, and J.B. Marston, Gauge
        interactions and bosonized fermion liquids, Phys. Rev. Lett. 
73,
        284 (1994), 
        
          https://doi.org/10.1103/PhysRevLett.73.284
        [7] H.-J. Kwon, A. Houghton, and J.B. Marston, Theory of fermion
        liquids, Phys. Rev. B 
52, 8002 (1995), 
        
          https://doi.org/10.1103/PhysRevB.52.8002
        [8] A.H. Castro Neto and E. Fradkin, Bosonization of the low
        energy excitations of Fermi liquids, Phys. Rev. Lett. 
72,
        1393 (1994), 
        
          https://doi.org/10.1103/PhysRevLett.72.1393
        [9] A.H. Castro Neto and E. Fradkin, Bosonization of Fermi
        liquids, Phys. Rev. B 
49, 10877 (1994), 
        
          https://doi.org/10.1103/PhysRevB.49.10877
        [10] P. Kopietz, J. Hermisson, and K. Schönhammer, Bosonization
        of interacting fermions in arbitrary dimension beyond the
        Gaussian approximation, Phys. Rev. B 
52, 10877 (1995), 
        
          https://doi.org/10.1103/PhysRevB.52.10877
        [11] A. Houghton, H.J. Kwon, and J.B. Marston, Multidimensional
        bosonization, Adv. Phys. 
49, 141 (2000), 
        
          https://doi.org/10.1080/000187300243363
        [12] D.V. Khveshchenko and P.C.E. Stamp, Low-energy properties
        of two-dimensional fermions with long-range current-current
        interactions, Phys. Rev. Lett. 
71, 2118 (1993), 
        
          https://doi.org/10.1103/PhysRevLett.71.2118
        [13] D.V. Khveshchenko and P.C.E. Stamp, Eikonal approximation
        in the theory of two-dimensional fermions with long-range
        current-current interactions, Phys. Rev. B 
49, 5227
        (1994), 
        
          https://doi.org/10.1103/PhysRevB.49.5227
        [14] L.B. Ioffe, D. Lidsky, and B.L. Altshuler, Effective
        lowering of dimensionality in the strongly correlated two
        dimensional electron gas, Phys. Rev. Lett. 
73, 472
        (1994), 
        
          https://doi.org/10.1103/PhysRevLett.73.472
        [15] C. Castellani, C. Di Castro, and W. Metzner, Dimensional
        crossover from Fermi to Luttinger liquid, Phys. Rev. Lett. 
72,
        316 (1994), 
        
          https://doi.org/10.1103/PhysRevLett.72.316
        [16] J. Polchinski, Low-energy dynamics of the spinon-gauge
        system, Nucl. Phys. B 422, 617 (1994), 
        
https://doi.org/10.1016/0550-3213(94)90449-9
        [17] D.V. Khveshchenko, R. Hlubina, and T.M. Rice,
        Non-Fermi-liquid behavior in two dimensions due to long-ranged
        current-current interactions, Phys. Rev. B 
48, 10766
        (1993), 
        
          https://doi.org/10.1103/PhysRevB.48.10766
        [18] D.V. Khveshchenko, Bosonization of current-current
        interactions, Phys. Rev. B 
49, 16893 (1994),
        arXiv:cond-mat/9404094, 
        
          https://doi.org/10.1103/PhysRevB.49.16893
        [19] D.V. Khveshchenko, Geometrical approach to bosonization of
        
D > 1 dimensional (non)-Fermi liquids, Phys. Rev. B 
52,
        4833 (1995), arXiv:condmat/9409118, 
        
          https://doi.org/10.1103/PhysRevB.52.4833
        [20] S.A. Hartnoll, Lectures on holographic methods for
        condensed matter physics, Class. Quant. Grav. 
26, 224002
        (2009), 
        
          https://doi.org/10.1088/0264-9381/26/22/224002
        [21] C.P. Herzog, Lectures on holographic superfluidity and
        superconductivity, J. Phys. A 
42, 343001 (2009), 
        
          https://doi.org/10.1088/1751-8113/42/34/343001
        [22] J. McGreevy, Holographic duality with a view toward
        many-body physics, Adv. High Energy Phys. 
2010, 723105
        (2010), 
        
          https://doi.org/10.1155/2010/723105
        [23] S. Sachdev, What can gauge-gravity duality teach us about
        condensed matter physics?, Annu. Rev. Cond. Matt. Phys. 
3,
        9 (2012), 
        
          https://doi.org/10.1146/annurev-conmatphys-020911-125141
        [24] Jan Zaanen, Yan Liu, Ya-Wen Sun, and Koenraad Schalm, 
Holographic
          Duality in Condensed Matter Physics (Cambridge University
        Press, 2015), 
        
          https://doi.org/10.1017/CBO9781139942492
        [25] M. Ammon and J. Erdmenger, 
Gauge/Gravity Duality
        (Cambridge University Press, 2015), 
        
          https://doi.org/10.1017/CBO9780511846373
        [26] S.A. Hartnoll, A. Lucas, and S. Sachdev, Holographic
        Quantum Matter (MIT Press, 2018), arXiv:1612.07324,
        
https://doi.org/10.48550/arXiv.1612.07324,
        
https://mitpress.mit.edu/9780262038430/holographic-quantum-matter/
        [27] 
https://arxiv.org/search/?query=holographic+cond-mat
        [28] A. Bagrov, N. Kaplis, A. Krikun, K. Schalm, and J. Zaanen,
        Holographic fermions at strong translational symmetry breaking:
        a Bianchi-VII case study, arXiv:1608.03738, 
        
https://doi.org/10.48550/arXiv.1608.03738
        [29] T. Andrade, M. Baggioli, A. Krikun, and N. Poovuttikul,
        Pinning of longitudinal phonons in holographic spontaneous
        helices, JHEP 
2018(02), 85 (2018), arXiv:1708.08306, 
        
https://doi.org/10.1007/JHEP02(2018)085
        [30] G.A. Inkof, K. Schalm, and J. Schmalian, Quantum critical
        Eliashberg theory, the SYK superconductor and their holographic
        duals, NPJ Quantum Materials 
7, 56 (2022), 
        
https://doi.org/10.1038/s41535-022-00460-8
        [31] J. Schmalian, Holographic superconductivity of a critical
        Fermi surface, arXiv:2209.00474,
        
https://doi.org/10.48550/arXiv.2209.00474
        [32] D.V. Khveshchenko, Taking a critical look at holographic
        critical matter, Lith. J. Phys. 
55, 208 (2015),
        arXiv:1404.7000,
        
https://doi.org/10.3952/physics.v55i3.3150
        [33] D.V. Khveshchenko, Demystifying the holographic mystique: A
        critical review, Lith. J. Phys. 
56, 125 (2016),
        arXiv:1603.09741,
        
https://doi.org/10.3952/physics.v56i3.3363
        [34] D.V. Khveshchenko, Die hard holographic phenomenology of
        cuprates, Lith. J. Phys. 
61, 1 (2021), arXiv:2011.11617,
        
https://doi.org/10.3952/physics.v61i1.4406
        [35] D.V. Khveshchenko, Phase space holography with no strings
        attached, Lith. J. Phys. 
61, 233 (2021),
        arXiv:2102.01617, 
        
          https://doi.org/10.3952/physics.v61i4.4642
        [36] D.V. Khveshchenko, Viable phenomenologies of the normal
        state of cuprates, EPL 
111, 1700 (2015),
        arXiv:1502.03375, 
        
https://doi.org/10.1209/0295-5075/111/17003
        [37] D.V. Khveshchenko, Novel approaches to generic non-Fermi
        liquids: higher-dimensional bosonization vs generalized
        holography (Reckoning with the mother of all non-Fermi liquids:
        alien bosonization vs predator holography), Lith. J. Phys. 
63(2),
        85 (2023), arXiv:2211.16365, 
        
https://doi.org/10.3952/physics.2023.63.2.5
        [38] J. Maldacena, S.H. Shenker, and D. Stanford, A bound on
        chaos, JHEP 
2016(8), 106 (2016), 
        
https://doi.org/10.1007/JHEP08(2016)106
        [39] J. Maldacena and D. Stanford, Remarks on the
        Sachdev-Ye-Kitaev model, Phys. Rev. D 
94, 106002 (2016),
        
        
https://doi.org/10.1103/PhysRevD.94.106002
        [40] Juan Maldacena, Douglas Stanford, and Zhenbin Yang,
        Conformal symmetry and its breaking in two dimensional nearly
        Anti-de-Sitter space, arXiv:1606.01857, 
        
https://doi.org/10.48550/arXiv.1606.01857
        [41] D. Stanford and E. Witten, Fermionic localization of the
        Schwarzian theory, JHEP 
2017(10), 8 (2017), 
        
https://doi.org/10.1007/JHEP10(2017)008
        [42] J. Polchinski and V. Rosenhaus, The spectrum in the
        Sachdev-Ye-Kitaev model, JHEP 
2016(4), 1 (2016), 
        
https://doi.org/10.1007/JHEP04(2016)001
        [43] D.J. Gross and V. Rosenhaus, The bulk dual of SYK: cubic
        couplings, JHEP 
2017(05), 92 (2017), 
        
https://doi.org/10.1007/JHEP05(2017)092
        [44] D.J. Gross and V. Rosenhaus, All point correlation
        functions in SYK, JHEP 
2017(12), 148 (2017), 
        
https://doi.org/10.1007/JHEP12(2017)148
        [45] G. Sárosi, AdS
2 holography and the SYK model,
        in: 
Proceedings of the XIII Modave Summer School in
          Mathematical Physics (Modave2017), Proc. Sci. 323,
        arXiv:1711.08482, 
        
https://doi.org/10.22323/1.323.0001
        [46] Henry W. Lin, Juan Maldacena, and Ying Zhao, Symmetries
        near the horizon, JHEP 
2019, 49 (2019),
        arXiv:1904.12820, 
        
https://doi.org/10.1007/JHEP08(2019)049
        [47] Yingfei Gu, Xiao-Liang Qi, and Douglas Stanford, Local
        criticality, diffusion and chaos in generalized
        Sachdev-Ye-Kitaev models, JHEP 
2017, 125 (2017), 
        
https://doi.org/10.1007/JHEP05(2017)125
        [48] Yingfei Gu, Andrew Lucas, Xiao-Liang Qi, Energy diffusion
        and the butterfly effect in inhomogeneous Sachdev-Ye-Kitaev
        chains, SciPost Phys. 
2, 018 (2017), 
        
https://doi.org/10.21468/SciPostPhys.2.3.018
        [49] Yingfei Gu, Andrew Lucas, Xiao-Liang Qi, Spread of
        entanglement in a Sachdev-Ye-Kitaev chain, JHEP 
2017,
        120 (2017), 
        
https://doi.org/10.1007/JHEP09(2017)120
        [50] Yingfei Gu and Alexei Kitaev, On the relation between the
        magnitude and exponent of OTOCs, JHEP 
2019(2), 75
        (2019), 
        
https://doi.org/10.1007/JHEP02(2019)075
        [51] D. Bagrets, A. Altland, and A. Kamenev, Sachdev-Ye-Kitaev
        model as Liouville quantum mechanics, Nucl. Phys. B 
911,
        191–205 (2016), 
        
https://doi.org/10.1016/j.nuclphysb.2016.08.002
        [52] D. Bagrets, A. Altland, and A. Kamenev, Power-law out of
        time order correlation functions in the SYK model, Nucl. Phys. B
        
921, 727 (2017), arXiv:1702.08902, 
        
https://doi.org/10.1016/j.nuclphysb.2017.06.012
        [53] T.G. Mertens, G.J. Turiaci, and H.L. Verlinde, Solving the
        Schwarzian via the conformal bootstrap, JHEP 
2017(08),
        136 (2017), 
        
https://doi.org/10.1007/JHEP08(2017)136
        [54] T.G. Mertens, The Schwarzian theory - origins, JHEP 
2018(5),
        36 (2018), 
        
https://doi.org/10.1007/JHEP05(2018)036
        [55] Zhenbin Yang, The quantum gravity dynamics of near extremal
        black holes, JHEP 
2019(5), 205 (2019), arXiv:1809.08647,
        
        
https://doi.org/10.1007/JHEP05(2019)205
        [56] Subir Sachdev and Jinwu Ye, Gapless spin-fluid ground state
        in a random quantum Heisenberg magnet, Phys. Rev. Lett. 
70,
        3339 (1993), arXiv:condmat/9212030, 
        
https://doi.org/10.1103/PhysRevLett.70.3339
        [57] S. Sachdev, Holographic metals and the fractionalized Fermi
        liquid, Phys. Rev. Lett. 
105, 151602 (2010), 
        
https://doi.org/10.1103/PhysRevLett.105.151602
        [58] S. Sachdev, Bekenstein-Hawking entropy and strange metals,
        Phys. Rev. X 
5, 041025 (2015), 
        
https://doi.org/10.1103/PhysRevX.5.041025
        [59] A. Kitaev, 
KITP Seminars (2015), 
        
          https://online.kitp.ucsb.edu/
        [60] A. Kitaev, Notes on
        
        representations, arXiv:1711.08169, 
        
https://doi.org/10.48550/arXiv.1711.08169
        [61] Alexei Kitaev and S. Josephine Suh, The soft mode in the
        Sachdev-Ye-Kitaev model and its gravity dual, JHEP 
2018,
        183 (2018), arXiv:1711.08467, 
        
          https://doi.org/10.1007/JHEP05(2018)183
        [62] Alexei Kitaev and S. Josephine Suh, Statistical mechanics
        of a two-dimensional black hole, JHEP 
2019, 198 (2019),
        arXiv:1808.07032, 
        
          https://doi.org/10.1007/JHEP05(2019)198 
        [63] S. Sachdev, Statistical mechanics of strange metals and
        black holes, arXiv:2205.02285, 
        
https://doi.org/10.48550/arXiv.2205.02285
        [64] O. Parcollet, A. Georges, G. Kotliar, and A. Sengupta,
        Overscreened multichannel SU(N) Kondo model: Large-N solution
        and conformal field theory, Phys. Rev. B 
58, 3794
        (1998), 
        
https://doi.org/10.1103/PhysRevB.58.3794
        [65] O. Parcollet and A. Georges, Non-Fermi-liquid regime of a
        doped Mott insulator, Phys. Rev. B 
59, 5341 (1999), 
        
https://doi.org/10.1103/PhysRevB.59.5341
        [66] A. Georges, O. Parcollet, and S. Sachdev, Quantum
        fluctuations of a nearly critical Heisenberg spin glass, Phys.
        Rev. B 
63, 134406 (2001), 
        
https://doi.org/10.1103/PhysRevB.63.134406
        [67] R. Jackiw, Weyl symmetry and the Liouville theory, Theor.
        Math. Phys. 
148, 941–947 (2006), arXiv:hep-th/0511065, 
        
https://doi.org/10.1007/s11232-006-0090-9
        [68] D. Grumiller and R. Jackiw, Liouville gravity from Einstein
        gravity, arXiv:0712.3775, 
        
https://doi.org/10.48550/arXiv.0712.3775
        [69] D. Louis-Martinez, J. Gegenberg, and G. Kunstatter, Exact
        Dirac quantization of all 2D dilaton gravity theories, Phys.
        Lett. B 
321, 193 (1994), arXiv:gr-qc/9309018, 
        
https://doi.org/10.1016/0370-2693(94)90463-4
        [70] E. Witten, Matrix models and deformations of JT gravity,
        Proc. Roy. Soc. A 
476(2244), 20200582 (2020),
        arXiv:2006.13414, 
        
https://doi.org/10.1098/rspa.2020.0582
        [71] K. Narayan, Aspects of 2-dim dilaton gravity, dimensional
        reduction, and holography, Phys. Rev. D 
104(2), 026007
        (2021), arXiv:2010.12955, 
        
https://doi.org/10.1103/PhysRevD.104.026007
        [72] Yale Fan and Thomas G. Mertens, From quantum groups to
        Liouville and dilaton quantum gravity, JHEP 
2022(05), 92
        (2022), arXiv:2109.07770, 
        
https://doi.org/10.1007/JHEP05(2022)092
        [73] Andreas Blommaert, Jorrit Kruthoff, and Shunyu Yao, An
        integrable road to a perturbative plateau, JHEP 
2023(04),
        48 (2023), arXiv:2208.13795, 
        
https://doi.org/10.1007/JHEP04(2023)048
        [74] A. Blommaert, L.V. Iliesiu, and J. Kruthof, Gravity
        factorized, JHEP 
2022(09), 80 (2022), arXiv:2111.07863,
        
        
https://doi.org/10.1007/JHEP09(2022)080
        [75] Euihun Joung, Prithvi Narayan, Junggi Yoon, Gravitational
        edge mode in asymptotically AdS
2: JT gravity
        revisited, arXiv:2304.06088, 
        
https://doi.org/10.48550/arXiv.2304.06088
        [76] R. Arias, M. Botta-Cantcheff, and P.J. Martinez, Real-time
        methods in JT/SYK holography, arXiv:2303.03442, 
        
https://doi.org/10.48550/arXiv.2303.03442
        [77] D. Grumiller, R. Ruzziconi, and C. Zwikel, Generalized
        dilaton gravity in 2d, SciPost Phys. 
12, 032 (2022),
        arXiv:2109.03266, 
        
https://doi.org/10.21468/SciPostPhys.12.1.032
        [78] J.F. Pedraza, A. Svesko, W. Sybesma, and M.R. Visser,
        Semiclassical thermodynamics of quantum extremal surfaces in
        Jackiw Teitelboim gravity, JHEP 2021(12), 134 (2021),
        arXiv:2107.10358, 
        
https://doi.org/10.1007/JHEP12(2021)134
        [79] S. Forste, H. Jockers, J. Kames-King, and A. Kanargias,
        Deformations of JT gravity via topological gravity and
        applications, JHEP 2021(11), 154 (2021), arXiv:2107.02773, 
        
https://doi.org/10.1007/JHEP11(2021)154
        [80] D. Momeni, Exact solutions and Birkhoff's theorem in
        Jackiw-Teitelboim gravity, arXiv:2109.09992, 
        
https://doi.org/10.48550/arXiv.2109.09992
        [81] K. Narayan, On aspects of 2-dim dilaton gravity,
        dimensional reduction and holography, Phys. Rev. D 
104,
        026007 (2021), arXiv:2010.12955, 
        
https://doi.org/10.1103/PhysRevD.104.026007
        [82] D. Momeni and P. Channuie, Exact solutions of (deformed)
        Jackiw-Teitelboim gravity, Eur. Phys. J. C 
81, 534
        (2021), arXiv:2009.03723, 
        
https://doi.org/10.1140/epjc/s10052-021-09327-x
        [83] Yuri D. Lensky and Xiao-Liang Qi, Rescuing a black hole in
        the large-
q coupled SYK model, JHEP 
2021(04), 116
        (2021), arXiv:2012.15798, 
        
https://doi.org/10.1007/JHEP04(2021)116
        [84] C.V. Johnson and F. Rosso, Solving puzzles in deformed JT
        gravity: phase transitions and non-perturbative effects, JHEP 
2021(04),
        30 (2021), arXiv:2011.06026, 
        
https://doi.org/10.1007/JHEP04(2021)030
        [85] D. Grumillera and R. McNees, Universal flow equations and
        chaos bound saturation in 2d dilaton gravity, JHEP 
2021(01),
        112 (2021), arXiv:2007.03673, 
        
https://doi.org/10.1007/JHEP01(2021)112
        [86] H. Rathi and D. Roychowdhury, Holographic JT gravity with
        quartic couplings, JHEP 
2021(10), 209 (2021),
        arXiv:2107.11632, 
        
https://doi.org/10.1007/JHEP10(2021)209
        [87] W. Sybesma, A zoo of deformed Jackiw-Teitelboim models near
        large dimensional black holes, JHEP 
2023(01), 141
        (2023), arXiv:2211.07927, 
        
https://doi.org/10.1007/JHEP01(2023)141
        [88] Zhenbin Yang, The quantum gravity dynamics of near extremal
        black holes, JHEP 
2019(05), 205 (2019),
        arXiv:1809.08647, 
        
https://doi.org/10.1007/JHEP05(2019)205
        [89] D.V. Khveshchenko, Thickening and sickening the SYK model,
        SciPost Phys. 
5, 012 (2018), arXiv:1705.03956, 
        
https://doi.org/10.21468/SciPostPhys.5.1.012
        [90] D.V. Khveshchenko, Seeking to develop global SYK-ness,
        Condens. Matter 
3(4), 40 (2018), arXiv:1805.00870, 
        
https://doi.org/10.3390/condmat3040040
        [91] N.V. Gnezdilov, J.A. Hutasoit, and C.W.J. Beenakker,
        Low-high voltage duality in tunneling spectroscopy of the
        Sachdev-Ye-Kitaev model, Phys. Rev. B 
98, 081413 (2019),
        
        
https://doi.org/10.1103/PhysRevB.98.081413
        [92] O. Can, E.M. Nica, and M. Franz, Charge transport in
        graphene-based mesoscopic realizations of Sachdev-Ye-Kitaev
        models, Phys. Rev. B 
99, 045419 (2019), 
        
https://doi.org/10.1103/PhysRevB.99.045419
        [93] A. Altland, D. Bagrets, and A. Kamenev, Sachdev-Ye-Kitaev
        non-Fermi-liquid correlations in nanoscopic quantum transport,
        Phys. Rev. Lett. 
123, 226801 (2019), 
        
https://doi.org/10.1103/PhysRevLett.123.226801
        [94] A. Kruchkov, A.A. Patel, P. Kim, and S. Sachdev,
        Thermoelectric power of Sachdev-Ye-Kitaev islands: Probing
        Bekenstein-Hawking entropy in quantum matter experiments, Phys.
        Rev. B 
101, 205148 (2020), arXiv:1912.02835, 
        
https://doi.org/10.1103/PhysRevB.101.205148
        [95] D.I. Pikulin and M. Franz, Black hole on a chip: Proposal
        for a physical realization of the Sachdev-Ye-Kitaev model in a
        solid-state system, Phys. Rev. X 
7, 031006 (2017), 
        
https://doi.org/10.1103/PhysRevX.7.031006
        [96] A. Chew, A. Essin, and J. Alicea, Approximating the
        Sachdev-Ye-Kitaev model with Majorana wires, Phys. Rev. B 
96,
        121119 (2017), 
        
https://doi.org/10.1103/PhysRevB.96.121119
        [97] A. Chen, R. Ilan, F. de Juan, D.I. Pikulin, and M. Franz,
        Quantum holography in a graphene flake with an irregular
        boundary, Phys. Rev. Lett. 
121, 036403 (2018), 
        
https://doi.org/10.1103/PhysRevLett.121.036403
        [98] E. Lantagne-Hurtubise, C. Li, and M. Franz, Family of
        Sachdev-Ye-Kitaev models motivated by experimental
        considerations, Phys. Rev. B 
97, 235124 (2018), 
        
https://doi.org/10.1103/PhysRevB.97.235124
        [99] M. Franz and M. Rozali, Mimicking black hole event horizons
        in atomic and solid-state systems, arXiv:1808.00541, 
        
https://doi.org/10.48550/arXiv.1808.00541
        [100] A. Altland, D. Bagrets, and A. Kamenev, Quantum
        criticality of granular SYK matter, Phys. Rev. Lett. 
123,
        106601 (2019), arXiv:1903.09491, 
        
https://doi.org/10.1103/PhysRevLett.123.106601
        [101] A.V. Lunkin, A.Yu. Kitaev, and M.V. Feigel'man, Perturbed
        Sachdev-Ye-Kitaev model: A polaron in the hyperbolic plane,
        Phys. Rev. Lett. 
125, 196602 (2020), arXiv:2006.14535, 
        
https://doi.org/10.1103/PhysRevLett.125.196602
        [102] A.V. Lunkin, K.S. Tikhonov, and M.V. Feigel'man,
        Sachdev-Ye-Kitaev model with quadratic perturbations: The route
        to a non-Fermi liquid, Phys. Rev. Lett. 
121, 236601
        (2018), arXiv:1806.11211, 
        
https://doi.org/10.1103/PhysRevLett.121.236601
        [103] D.V. Khveshchenko, Connecting the SYK dots, Condens.
        Matter 
5(2), 37 (2020), arXiv:2004.06646, 
        
https://doi.org/10.3390/condmat5020037
        [104] D.V. Khveshchenko, One SYK single electron transistor,
        Lith. J. Phys. 
60, 185 (2020), arXiv:1912.05691, 
        
https://doi.org/10.3952/physics.v60i3.4305
        [105] G. Penington, Entanglement wedge reconstruction and the
        information paradox, arXiv:1905.08255, 
        
https://doi.org/10.48550/arXiv.1905.08255
        [106] A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield,
        The entropy of bulk quantum fields and the entanglement wedge of
        an evaporating black hole, JHEP 
2019(12), 63 (2019),
        arXiv:1905.08762, 
        
https://doi.org/10.1007/JHEP12(2019)063
        [107] D.V. Khveshchenko, On a (pseudo) holographic nature of the
        SYK-like models, Lith. J. Phys. 
59, 104 (2019),
        arXiv:1905.04381, 
        
https://doi.org/10.3952/physics.v59i2.4013
        [108] D.V. Khveshchenko, The gloria mundi of SYK does not
        transit yet, Lith. J. Phys. 
62(2), 81 (2022),
        arXiv:2205.11478, 
        
https://doi.org/10.3952/physics.v62i2.4741
        [109] Chao-Ming Jian, Zhen Bi, and Cenke Xu, Model for
        continuous thermal metal to insulator transition, Phys. Rev. B 
96,
        115122 (2017), arXiv:1703.07793, 
        
https://doi.org/10.1103/PhysRevB.96.115122
        [110] Jiaqi Jiang and Zhenbin Yang, Thermodynamics and many body
        chaos for generalized large 
q SYK models, JHEP 
2019(08),
        28 (2019), arXiv:1905.00811, 
        
https://doi.org/10.1007/JHEP08(2019)019
        [111] D. Anninos and D.A. Galante, Constructing AdS
2
        flow geometries, JHEP 
2021(02), 45 (2021),
        arXiv:2011.01944, 
        
https://doi.org/10.1007/JHEP02(2021)045
        [112] D. Anninos, D.A. Galante, and S. Sheorey, Renormalisation
        group flows of the SYK model, JHEP 
2023(11), 197 (2023),
        arXiv:2212.04944, 
        
https://doi.org/10.1007/JHEP11(2023)197
        [113] A. Jevicki, K. Suzuki, and J. Yoon, Bilocal holography in
        the SYK model, JHEP 
2016(7), 7 (2016), 
        
https://doi.org/10.1007/JHEP07(2016)007
        [114] A. Jevicki and K. Suzuki, Bilocal holography in the SYK
        model: perturbations, JHEP 
2016(11), 46 (2016),
        arXiv:1608.07567, 
        
https://doi.org/10.1007/JHEP11(2016)046
        [115] S.R. Das, A. Jevicki, and K. Suzuki, Three dimensional
        view of the SYK/AdS duality, JHEP 
2017(9), 17 (2017), 
        
https://doi.org/10.1007/JHEP09(2017)017
        [116] S.R. Das, A. Ghosh, A. Jevicki, and K. Suzuki, Spacetime
        in the SYK model, JHEP 
2018(7), 184 (2018), 
        
https://doi.org/10.1007/JHEP07(2018)184
        [117] S.R. Das, A. Ghosh, A. Jevicki, and K. Suzuki, Three
        dimensional view of arbitrary 
q SYK models, JHEP 
2018(2),
        162 (2018), 
        
https://doi.org/10.1007/JHEP02(2018)162
        [118] P.Y. Cai, A. Inomata, and R. Wilson, Path-integral
        treatment of the Morse oscillator, Phys. Lett. A 
96, 117
        (1983), 
        
https://doi.org/10.1016/0375-9601(83)90482-6
        [119] I.H. Duru, Morse-potential Green's function with path
        integrals, Phys. Rev. D 
28, 2689 (1983), 
        
https://doi.org/10.1103/PhysRevD.28.2689
        [120] A. Comtet and P.J. Houston, Effective action on the
        hyperbolic plane in a constant external field, J. Math. Phys. 
26,185
        (1985), 
        
https://doi.org/10.1063/1.526781
        [121] A. Comtet, On the Landau levels on the hyperbolic plane,
        Ann. Phys. 
173, 185 (1987), 
        
https://doi.org/10.1016/0003-4916(87)90098-4
        [122] C. Grosche and F. Steiner, The path integral on the
        Poincaré upper half plane and for Liouville quantum mechanics,
        Phys. Lett. A 
123, 319 (1987), 
        
https://doi.org/10.1016/0375-9601(87)90387-2
        [123] C. Grosche and F. Steiner, Path integrals on curved
        manifolds, Z. Phys. C 
36, 699 (1987), 
        
https://doi.org/10.1007/BF01630607
        [124] C. Grosche, The path integral on the Poincaré upper
        half-plane with a magnetic field and for the Morse potential,
        Ann. Phys. 
187, 110 (1988), 
        
https://doi.org/10.1016/0003-4916(88)90283-7
        [125] H. Kleinert and I. Mustapic, Summing the spectral
        representations of Pöschl–Teller and Rosen–Morse fixed‐energy
        amplitudes, J. Math. Phys. 
33, 643 (1991), 
        
https://doi.org/10.1063/1.529800
        [126] S. Banerjee and E. Altman, Solvable model for a dynamical
        quantum phase transition from fast to slow scrambling, Phys.
        Rev. B 
95, 134302 (2017), 
        
https://doi.org/10.1103/PhysRevB.95.134302
        [127] Zhen Bi, Chao-Ming Jian, Yi-Zhuang You, Kelly Ann Pawlak,
        and Cenke Xu, Instability of the non-Fermi-liquid state of the
        Sachdev-Ye-Kitaev model, Phys. Rev. B 
95, 205105 (2017),
        
        
https://doi.org/10.1103/PhysRevB.95.205105
        [128] Shao-Kai Jian and Hong Yao, Solvable Sachdev-Ye-Kitaev
        models in higher dimensions: From diffusion to many-body
        localization, Phys. Rev. Lett. 
119, 206602 (2017), 
        
https://doi.org/10.1103/PhysRevLett.119.206602
        [129] A. Haldar, S. Banerjee, and V.B. Shenoy,
        Higher-dimensional Sachdev-Ye-Kitaev non-Fermi liquids at
        Lifshitz transitions, Phys. Rev. B 
97, 241106 (2018), 
        
https://doi.org/10.1103/PhysRevB.97.241106
        [130] Chao-Ming Jian, Zhen Bi, and Cenke Xu, Model for
        continuous thermal metal to insulator transition, Phys. Rev. B 
96,
        115122 (2017), 
        
https://doi.org/10.1103/PhysRevB.96.115122
        [131] Xue-Yang Song, Chao-Ming Jian, and Leon Balents, Strongly
        correlated metal built from Sachdev-Ye-Kitaev models, Phys. Rev.
        Lett. 
119, 216601 (2017), 
        
https://doi.org/10.1103/PhysRevLett.119.216601
        [132] Xin Chen, Ruihua Fan, Yiming Chen, Hui Zhai, and Pengfei
        Zhang, Competition between chaotic and non-chaotic phases in a
        quadratically coupled Sachdev-Ye-Kitaev model, Phys. Rev. Lett.
        
119, 207603 (2017), 
        
https://doi.org/10.1103/PhysRevLett.119.207603
        [133] Pengfei Zhang, Dispersive Sachdev-Ye-Kitaev model: Band
        structure and quantum chaos, Phys. Rev. B 
96, 205138
        (2017), 
        
https://doi.org/10.1103/PhysRevB.96.205138
        [134] Wenhe Cai, Xian-Hui Ge, and Guo-Hong Yang, Diffusion in
        higher dimensional SYK model with complex fermions, JHEP 
2018(01),
        76 (2018), 
        
https://doi.org/10.1007/JHEP01(2018)076
        [135] Yin Zhong, Periodic Anderson model meets Sachdev-Ye-Kitaev
        interaction: a solvable playground for heavy fermion physics, J.
        Phys. Commun. 
2, 095014 (2018), 
        
https://doi.org/10.1088/2399-6528/aae06b
        [136] Xin Dai, Shao-Kai Jian, and Hong Yao, Global phase diagram
        of the one-dimensional Sachdev-Ye-Kitaev model at finite 
N,
        Phys. Rev. B 
100, 235144 (2019), arXiv:1802.10029, 
        
https://doi.org/10.1103/PhysRevB.100.235144
        [137] Pengfei Zhang and Hui Zhai, Topological Sachdev-Ye-Kitaev
        model, Phys. Rev. B 
97, 201112(R) (2018), 
        
https://doi.org/10.1103/PhysRevB.97.201112
        [138] Xiaochuan Wu, Xiao Chen, Chao-Ming Jian, Yi-Zhuang You,
        and Cenke Xu, Candidate theory for the strange metal phase at a
        finite-energy window, Phys. Rev. B 
98, 165117 (2018), 
        
https://doi.org/10.1103/PhysRevB.98.165117
        [139] D. Ben-Zion and J. McGreevy, Strange metal from local
        quantum chaos, Phys. Rev. B 
97, 155117 (2018), 
        
https://doi.org/10.1103/PhysRevB.97.155117
        [140] A.A. Patel, J. McGreevy, D.P. Arovas, and S. Sachdev,
        Magnetotransport in a model of a disordered strange metal, Phys.
        Rev. X 
8, 021049 (2018), 
        
https://doi.org/10.1103/PhysRevX.8.021049
        [141] D. Chowdhury, Y. Werman, E. Berg, and T. Senthil,
        Translationally invariant non-Fermi-liquid metals with critical
        Fermi surfaces: Solvable models, Phys. Rev. X 
8, 031024
        (2018), 
        
https://doi.org/10.1103/PhysRevX.8.031024
        [142] J.P.M. Pitelli, Cosmology in (1+1)-dimensional
        Hořava-Lifshitz theory of gravity, Phys. Rev. D 
92,
        084012 (2015), arXiv:1509.04983, 
        
https://doi.org/10.1103/PhysRevD.92.084012
        [143] J.P.M. Pitelli, Quantum cosmology in (1+1)-dimensional
        Hořava-Lifshitz theory of gravity, Phys. Rev. D 
93,
        104024 (2016), arXiv:1605.01979, 
        
https://doi.org/10.1103/PhysRevD.93.104024
        [144] Bao-Fei Li, Anzhong Wang, Yumei Wu, and Zhong Chao Wu,
        Quantization of (1+1)-dimensional Hořava-Lifshitz theory of
        gravity, Phys. Rev. D 
90, 124076 (2014),
        arXiv:1408.2345, 
        
https://doi.org/10.1103/PhysRevD.90.124076
        [145] B.I. Panah, Two-dimensional Lifshitz-like AdS black holes
        in 
F(
R) gravity, J. Math. Phys. 
63,
        112502 (2022), arXiv:2210.11249, 
        
https://doi.org/10.1063/5.0104272
        [146] S. Nojiri and S.D. Odintsov, 2D F(R) gravity and AdS
2/CFT
1
        correspondence, EPL 
39, 69001 (2022), arXiv:2208.10146,
        
        
https://doi.org/10.1209/0295-5075/ac8ba0
        [147] S. Nojiri, S.D. Odintsov, and V. Faraoni, Generalized
        black hole entropy in two dimensions, Int. J. Geom. Meth. Mod.
        Phys. 
20(09), 2350148 (2023), arXiv:2303.02663, 
        
https://doi.org/10.1142/S0219887823501487
        [148] D. Grumiller, J. Hartong, S. Prohazka, and J. Salzer,
        Limits of JT gravity, JHEP 
2021(02), 134 (2021),
        arXiv:2011.13870, 
        
https://doi.org/10.1007/JHEP02(2021)134
        [149] J. Gomis, D. Hidalgo, and P. Salgado-Rebolledo,
        Non-relativistic and Carrollian limits of Jackiw-Teitelboim
        gravity, JHEP 
2021(05), 162 (2021), arXiv:2011.15053, 
        
https://doi.org/10.1007/JHEP05(2021)162
        [150] H. Afshar, H. Gonzalez, D. Grumiller, and D. Vassilevich,
        Flat space holography and complex SYK, Phys. Rev. D 
101,
        086024 (2020), arXiv:1911.05739, 
        
https://doi.org/10.1103/PhysRevD.101.086024
        [151] F. Ecker, C. Valcárcel, and D. Vassilevich, 2D holography
        beyond the Jackiw-Teitelboim model, JHEP 
2021(09), 182
        (2021), arXiv:2106.08006, 
        
https://doi.org/10.1007/JHEP09(2021)182
        [152] A. Gaikwad, L.K. Joshi, G. Mandal, and S.R. Wadia,
        Holographic dual to charged SYK from 3D gravity and
        Chern-Simons, JHEP 
2020(02), 33 (2020),
        arXiv:1802.07746, 
        
https://doi.org/10.1007/JHEP02(2020)033
        [153] A. Lala and D. Roychowdhury, Models of phase stability in
        Jackiw-Teitelboim gravity, Phys. Rev. D 
100, 124061
        (2019), arXiv:1909.09828, 
        
https://doi.org/10.1103/PhysRevD.100.124061
        [154] A. Castro, D. Grumiller, F. Larsen, and R. McNees,
        Holographic description of AdS
2 black holes, JHEP 
2008(11),
        52 (2008), arXiv:0809.4264, 
        
https://doi.org/10.1088/1126-6708/2008/11/052
        [155] C. Valcarcel and D. Vassilevich, Target space
        diffeomorphisms in Poisson sigma models and asymptotic
        symmetries in 2D dilaton gravities, Phys. Rev. D 
105,
        106016 (2022), arXiv:2202.02603, 
        
https://doi.org/10.1103/PhysRevD.105.106016
        [156] M. Henneaux and S.-J. Rey, Nonlinear 
W∞
        as asymptotic symmetry of three-dimensional higher spin AdS
        gravity, JHEP 
2010(12), 7 (2010), arXiv:1008.4579, 
        
https://doi.org/10.1007/JHEP12(2010)007
        [157] Geoffrey Compère and Wei Song, 
W symmetry and
        integrability of higher spin black holes, JHEP 
2013(09)
        144 (2013), arXiv:1306.0014, 
        
https://doi.org/10.1007/JHEP09(2013)144
        [158] Michael Gutperle and Yi Li, Higher spin Lifshitz theory
        and integrable systems, Phys. Rev. D 
91, 046012 (2015),
        arXiv:1412.7085, 
        
https://doi.org/10.1103/PhysRevD.91.046012
        [159] Matteo Beccaria, Michael Gutperle, Yi Li, and Guido
        Macorini, Higher spin Lifshitz theories and the Korteweg-de
        Vries hierarchy, Phys. Rev. D 
92, 085005 (2015),
        arXiv:1504.06555
        
https://doi.org/10.1103/PhysRevD.92.085005
        [160] D. Grumiller, A. Pérez, S. Prohazka, D. Tempo, and R.
        Troncoso, Higher spin black holes with soft hair, JHEP 
2016(10),
        119 (2016), arXiv:1607.05360, 
        
https://doi.org/10.1007/JHEP10(2016)119
        [161] E. Ojeda and A. Pérez, Integrable systems and the boundary
        dynamics of higher spin gravity on AdS
3, JHEP 
2020(11),
        89 (2020), arXiv:2009.07829, 
        
https://doi.org/10.1007/JHEP11(2020)089
        [162] A.M.J. Schakel, Effective field theory of ideal-fluid
        hydrodynamics, Mod. Phys. Lett. B 
10, 999 (1996),
        arXiv:cond-mat/9607164, 
        
https://doi.org/10.1142/S0217984996001139
        [163] A.G. Abanov and P.B. Wiegmann, Quantum hydrodynamics, the
        quantum Benjamin-Ono equation, and the Calogero model, Phys.
        Rev. Lett. 
95, 076402 (2005), arXiv:cond-mat/0504041
        
https://doi.org/10.1103/PhysRevLett.95.076402
        [164] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Non-linear
        dynamics of quantum systems and soliton theory, Phys. A 
40,
        F193–F208 (2007), arXiv:nlin/0605006, 
        
https://doi.org/10.1088/1751-8113/40/8/F02
        [165] A.G. Abanov, E. Bettelheim, and P. Wiegmann, Integrable
        hydrodynamics of Calogero–Sutherland model: Bidirectional
        Benjamin–Ono equation, J. Phys. A 
42, 135201 (2009),
        arXiv:0810.5327, 
        
https://doi.org/10.1088/1751-8113/42/13/135201
        [166] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Quantum
        hydrodynamics and nonlinear differential equations for
        degenerate Fermi gas, J. Phys. A 
41, 392003 (2008),
        arXiv:0804.2272, 
        
https://doi.org/10.1088/1751-8113/41/39/392003
        [167] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Orthogonality
        catastrophe and shock waves in a non-equilibrium Fermi gas,
        Phys. Rev. Lett. 
97, 246402 (2006),
        arXiv:cond-mat/0607453, 
        
https://doi.org/10.1103/PhysRevLett.97.246402
        [168] P.B. Wiegmann, Nonlinear hydrodynamics and fractionally
        quantized solitons at the fractional quantum Hall edge, Phys.
        Rev. Lett. 
108, 206810 (2012), arXiv:1112.0810, 
        
https://doi.org/10.1103/PhysRevLett.108.206810
        [169] P. Wiegmann, Quantum hydrodynamics of fractional Hall
        effect: Quantum Kirchhoff equations, arXiv:1211.5132, 
        
https://doi.org/10.48550/arXiv.1211.5132
        [170] E. Bettelheim and P. Wiegmann, Universal Fermi
        distribution of semiclassical nonequilibrium Fermi states, Phys.
        Rev. B 
84, 085102 (2011), arXiv:1104.1854, 
        
https://doi.org/10.1103/PhysRevB.84.085102
        [171] E. Bettelheim, Y. Kaplan, and P. Wiegmann, Fermi edge
        resonances in non-equilibrium states of Fermi gases, J. Phys. A
        
44, 282001 (2011), arXiv:1103.4236, 
        
https://doi.org/10.1088/1751-8113/44/28/282001
        [172] E. Bettelheim, Y. Kaplan, and P. Wiegmann, Gradient
        catastrophe and Fermi-edge resonances in Fermi gas, Phys. Rev.
        Lett. 
106, 166804 (2011), arXiv:1011.1993, 
        
https://doi.org/10.1103/PhysRevLett.106.166804
        [173] M. Laskin, T. Can, and P. Wiegmann, Collective field
        theory for quantum Hall states, Phys. Rev. B 
92, 235141
        (2015), arXiv:1412.8716, 
        
https://doi.org/10.1103/PhysRevB.92.235141
        [174] M. Laskin, Y.H. Chiu, T. Can, and P. Wiegmann, Emergent
        conformal symmetry of quantum Hall states on singular surfaces,
        Phys. Rev. Lett. 
117, 266803 (2016), arXiv:1602.04802, 
        
https://doi.org/10.1103/PhysRevLett.117.266803
        [175] S. Klevtsov, X. Ma, G. Marinescu, and P. Wiegmann, Quantum
        Hall effect and Quillen metric, Commun. Math. Phys. 
349,
        819-855 (2017), arXiv:1510.06720, 
        
https://doi.org/10.1007/s00220-016-2789-2
        [176] M. Pustilnik and K.A. Matveev, Fate of classical solitons
        in one-dimensional quantum systems, Phys. Rev. B 
92,
        195146 (2015), arXiv:1507.05639, 
        
https://doi.org/10.1103/PhysRevB.92.195146
        [177] M. Pustilnik and K.A. Matveev, Viscous dissipation in
        one-dimensional quantum liquids, Phys. Rev. Lett. 
119,
        036801 (2017), arXiv:1706.07004, 
        
https://doi.org/10.1103/PhysRevLett.119.036801
        [178] M. Pustilnik and K.A. Matveev, Effective mass of
        elementary excitations in Galilean-invariant integrable models,
        Phys. Rev. B 
94, 115436 (2016), arXiv:1606.05553,
        
        
https://doi.org/10.1103/PhysRevB.94.115436
        [179] B. Doyon, H. Spohn, and T. Yoshimura, A geometric
        viewpoint on generalized hydrodynamics, Nucl. Phys. B 
926,
        570–583 (2017), arXiv:1704.04409, 
        
https://doi.org/10.1016/j.nuclphysb.2017.12.002
        [180] B. Doyon and T. Yoshimura, A note on generalized
        hydrodynamics: inhomogeneous fields and other concepts, SciPost
        Phys. 
2, 014 (2017), arXiv:1611.08225, 
        
https://doi.org/10.21468/SciPostPhys.2.2.014
        [181] M. Fagotti, Higher-order generalized hydrodynamics in one
        dimension: The noninteracting test, Phys. Rev. B 
96,
        220302 (2017), arXiv:1708.05383, 
        
https://doi.org/10.1103/PhysRevB.96.220302
        [182] A. Bastianello, B. Doyon, G. Watts, and T. Yoshimura,
        Generalized hydrodynamics of classical integrable field theory:
        the sinh-Gordon model, SciPost Phys. 
4, 045 (2018),
        arXiv:1712.05687, 
        
https://doi.org/10.21468/SciPostPhys.4.6.045
        [183] B. Doyon, Lecture notes on generalised hydrodynamics,
        SciPost Phys. Lect. Notes 18 (2020), arXiv:1912.08496, 
        
https://doi.org/10.21468/SciPostPhysLectNotes.18
        [184] P. Ruggiero, P. Calabrese, B. Doyon, and J. Dubail,
        Quantum generalized hydrodynamics, Phys. Rev. Lett. 
124,
        140603 (2020), arXiv.org:1910.00570, 
        
https://doi.org/10.1103/PhysRevLett.124.140603
        [185] Zhe-Yu Shi, Chao Gao, and Hui Zhai, Ideal-gas approach to
        hydrodynamics, Phys. Rev. X 
11, 041031 (2021),
        arXiv:2011.01415, 
        
https://doi.org/10.1103/PhysRevX.11.041031
        [186] D.S. Dean, P. Le Doussal, S.N. Majumdar, and G. Schehr,
        Nonequilibrium dynamics of noninteracting fermions in a trap,
        EPL 
126, 20006 (2019), arXiv:1902.02594, 
        
https://doi.org/10.1209/0295-5075/126/20006
        [187] D.S. Dean, P. Le Doussal, S.N. Majumdar, and G. Schehr,
        Impurities in systems of noninteracting trapped fermions,
        SciPost Phys. 
10, 082 (2021), arXiv:2012.13958, 
        
https://doi.org/10.21468/SciPostPhys.10.4.082
        [188] H. Spohn, 
Hydrodynamic Equations for the Toda Lattice,
        arXiv:2101.06528, 
        
https://doi.org/10.48550/arXiv.2101.06528