[PDF]    https://doi.org/10.3952/physics.2024.64.2.3

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 64, 101–106 (2024)

SEMICONDUCTIVE LEAD ZIRCONATE TITANATE THIN FILMS GROWN BY PULSED LASER DEPOSITION
Vadzim Haronina, Marin Alexeb, Robertas Grigalaitisa, and Jūras Banysa
a Faculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
b Department of Physics, University of Warwick, Coventry CV4 7AL, UK
Email: vadzim.haronin@ff.vu.lt

Received 12 December 2023; revised 15 December 2023; accepted 18 December 2023

Heterostructures consisting of PbZr0.2Ti0.8O3 epitaxial films on a SrTiO3 (100) substrate with a La0.67Sr0.33MnO3 bottom electrode were prepared by pulsed laser deposition. Plane-parallel capacitor structures were investigated by dielectric spectroscopy and piezoelectric measurement. Shift in a piezoelectric loop indicates that a sample has a small imprinted internal field, directed towards the copper top electrode. Temperature-dependent measurements in a range of 300–500 K were performed to obtain information on the frequency-depending response of the metal–ferroelectric–metal (MFM) structure and to analyze the effect of charge injection through the two Schottky-like contacts. The charge injection process greatly increases the conductivity in the low-frequency region.
Keywords: semiconductors, lead zirconate titanate, thin films, pulsed laser deposition

PUSIAU LAIDŪS PLONIEJI ŠVINO CIRKONATO TITANATO SLUOKSNIAI, IŠAUGINTI IMPULSINIU LAZERINIU GARINIMU
Vadzim Haronina, Marin Alexeb, Robertas Grigalaitisa, Jūras Banysa

a Vilniaus universiteto Fizikos fakultetas, 10226 Vilnius, Lietuva
b Voriko universiteto Fizikos katedra, Koventris, JK

Nevienalyčiai dariniai, kuriuos sudaro PbZr0,2Ti0,8O3 epitaksiniai sluoksniai ant SrTiO3 (100) padėklo su La0,67Sr0,33MnO3 apatiniu elektrodu, buvo išauginti impulsinio lazerinio nusodinimo būdu. Suformuoti plokščiojo kondensatoriaus dariniai buvo tiriami dielektrine spektroskopija ir pjezoelektriniais matavimais. Pjezoelektrinės kilpos poslinkis rodo, kad bandinyje stebimas nedidelis vidinis liktinis laukas, nukreiptas į viršutinį (vario) elektrodą. Buvo atlikti temperatūriniai matavimai 300–500 K diapazone, siekiant gauti informacijos apie dažninį metalo-feroelektriko-metalo (MFM) darinio atsaką ir išanalizuoti elektronų injekcijos per du Šotkio tipo kontaktus poveikį. Pastebėta, kad krūvio injekcija labai padidina žemadažnį šių nevienalyčių darinių laidumą.


References / Nuorodos

[1] O. Auciello, Science and technology of thin films and interfacial layers in ferroelectric and high-dielectric constant heterostructures and application to devices, J. Appl. Phys. 100, 051614 (2006),
https://doi.org/10.1063/1.2337005
[2] J.F. Scott, Applications of modern ferroelectrics, Science 315, 954–959 (2007),
https://doi.org/10.1126/science.1129564
[3] L.P. Silva Neto, J.O. Rossi, and A.R. Silva, Applications of PZT dielectric ceramics in high-energy storage systems, Mater. Sci. Forum 727–728, 505–510 (2012),
https://doi.org/10.4028/www.scientific.net/MSF.727-728.505
[4] D.C. Lupascu, J. Nuffer, J.S. Wallace, and J. Rodel, Role of crack formation in the electric fatigue behavior of ferroelectric PZT ceramics, Proc. SPIE 3992, Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics (14 June 2000), pp. 209–216,
https://doi.org/10.1117/12.388205
[5] A.S. Sigov, K.A. Vorotilov, and O.M. Zhigalina, Effect of lead content on microstructure of sol-gel PZT structures, Ferroelectrics 433, 146–157 (2012),
https://doi.org/10.1080/00150193.2012.696434
[6] L.M. Denis-Rotella, G. Esteves, J. Walker, H. Zhou, J.L. Jones, and S. Trolier-McKinstry, Residual stress and ferroelastic domain reorientation in declamped {001} Pb(Zr0.3Ti0.7)O3 films, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68(2), 259–272 (2021),
https://doi.org/10.1109/TUFFC.2020.2987438
[7] G.L. Brennecka, W. Huebner, B.A. Tuttle, and P.G. Clem, Use of stress to produce highly oriented tetragonal lead zirconate titanate (PZT 40/60) thin films and resulting electrical properties, J. Am. Ceram. Soc. 87(8), 1459–1465 (2004),
https://doi.org/10.1111/j.1551-2916.2004.01459.x
[8] S. Gebhardt, L. Seffner, F. Schlenkrich, and A. Schonecker, PZT thick films for sensor and actuator applications, J. Eur. Ceram. Soc. 27, 4177–4180 (2007),
https://doi.org/10.1016/j.jeurceramsoc.2007.02.122
[9] L. Song, S. Glinsek, and E. Defay, Toward low-temperature processing of lead zirconate titanate thin films: Advances, strategies, and applications, Appl. Phys. Rev. 8 (2021),
https://doi.org/10.1063/5.0054004
[10] M. Veith, M. Bender, T. Lehnert, M. Zimmer, and A. Jakob, Novel single-source precursors for the fabrication of PbTiO3, PbZrO3 and Pb(Zr1–xTix)O3 thin-films by chemical vapor deposition, Dalton Trans. 40, 1175–1182 (2011),
https://doi.org/10.1039/C0DT00830C
[11] Y. Yamasaki, Y. Yokota, H. Shima, and H. Uchida, One-axis-oriented growth of PZT thin films on transparent glass substrates using metal oxide nanosheets, Jpn. J. Appl. Phys. 61, SN1006 (2022),
https://doi.org/10.35848/1347-4065/ac7e1a
[12] G. Tan, S.H. Kweon, and I. Kanno, Piezoelectric properties of epitaxial Pb(Zr,Ti)O3 thin films grown on Si substrates by the sol–gel method, Thin Solid Films 764, 139612 (2023),
https://doi.org/10.1016/j.tsf.2022.139612
[13] R. Eason, S. Barrington, C. Grivas, T. May-Smith, and D. Shepherd, Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley-Interscience John Wiley and Sons, 2006) pp. 383–420,
https://doi.org/10.1002/9780470052129.ch17
[14] I. Vrejoiu, D. Hesse, and M. Alexe, Single crystalline PZT films and the impact of extended structural defects on the ferroelectric properties, in: Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications, ed. Z.-G. Ye (CRC Press, 2008) pp. 695–723,
https://doi.org/10.1533/9781845694005.6.695
[15] C. Huang, Z. Liao, M. Li, C. Guan, F. Jin, M. Ye, X. Zeng, T. Zhang, Z. Chen, Y. Qi, P. Gao, and L. Chen, A highly strained phase in PbZr0.2Ti0.8O3 films with enhanced ferroelectric properties, Adv. Sci. 8, 1–8 (2021),
https://doi.org/10.1002/advs.202003582
[16] M. Španková, V. Štrbík, Š. Chromik, D.N. Zheng, J. Li, D. Machajdík, A. P. Kobzev, T. Plecenik, and M. Sojková, Characterization of epitaxial LSMO films grown on STO substrates, Acta Phys. Pol. A 131, 848–850 (2017),
https://doi.org/10.12693/APhysPolA.131.848
[17] Z.G. Ban, S.P. Alpay, F. He, B.O. Wells, and X.X. Xi, Multiple relaxation mechanisms in SiTiO3/SrRuO3 heterostructures, Appl. Phys. Lett. 84, 4848–4850 (2004),
https://doi.org/10.1063/1.1760228
[18] I. Vrejoiu, G.L. Rhun, L. Pintilie, D. Hesse, M. Alexe, and U. Gosele, Intrinsic ferroelectric properties of strained tetragonal PbZr0.2Ti0.8O3 obtained on layer-by-layer grown, defect-free single-crystalline films, Adv. Mater. 18, 1657–1661 (2006),
https://doi.org/10.1002/adma.200502711
[19] M.J. Haun, E. Furman, S.J. Jang, and L.E. Cross, Thermodynamic theory of the lead zirconate-titanate solid solution system, part V: Theoretical calculations, Ferroelectrics 99, 63–86 (1989),
https://doi.org/10.1080/00150198908221440
[20] J.D.S. Guerra, R.J. Portugal, A.C. Silva, R. Guo, and A.S. Bhalla, Investigation of the conduction processes in PZT-based multiferroics: Analysis from Jonscher’s formalism, Phys. Status Solidi B 251, 1020–1027 (2014),
https://doi.org/10.1002/pssb.201350336
[21] S. Dussan, A. Kumar, J.F. Scott, and R.S. Katiyar, Magnetic effects on dielectric and polarization behavior of multiferroic heterostructures, Appl. Phys. Lett. 96, 072904 (2010),
https://doi.org/10.1063/1.3327889
[22] V. Raicu, Dielectric dispersion of biological matter: Model combining Debye-type and “universal” responses, Phys. Rev. E 60, 4677–4680 (1999),
https://doi.org/10.1103/PhysRevE.60.4677
[23] D.V. Kuzenko, Temperature-activation mechanism of the temperature dependence of the dielectric constant of ferroelectric ceramics PZT, J. Adv. Dielectr. 12, 1–7 (2022),
https://doi.org/10.1142/S2010135X22500102