Received 12 December 2023; revised 15 December 2023; accepted 18
December 2023
References /
Nuorodos
[1] O. Auciello, Science and technology of thin films and
interfacial layers in ferroelectric and high-dielectric constant
heterostructures and application to devices, J. Appl. Phys.
100,
051614 (2006),
https://doi.org/10.1063/1.2337005
[2] J.F. Scott, Applications of modern ferroelectrics, Science
315, 954–959 (2007),
https://doi.org/10.1126/science.1129564
[3] L.P. Silva Neto, J.O. Rossi, and A.R. Silva, Applications of
PZT dielectric ceramics in high-energy storage systems, Mater.
Sci. Forum
727–728, 505–510 (2012),
https://doi.org/10.4028/www.scientific.net/MSF.727-728.505
[4] D.C. Lupascu, J. Nuffer, J.S. Wallace, and J. Rodel, Role of
crack formation in the electric fatigue behavior of
ferroelectric PZT ceramics, Proc. SPIE
3992,
Smart
Structures and Materials 2000: Active Materials: Behavior and
Mechanics (14 June 2000), pp. 209–216,
https://doi.org/10.1117/12.388205
[5] A.S. Sigov, K.A. Vorotilov, and O.M. Zhigalina, Effect of
lead content on microstructure of sol-gel PZT structures,
Ferroelectrics
433, 146–157 (2012),
https://doi.org/10.1080/00150193.2012.696434
[6] L.M. Denis-Rotella, G. Esteves, J. Walker, H. Zhou, J.L.
Jones, and S. Trolier-McKinstry, Residual stress and
ferroelastic domain reorientation in declamped {001} Pb(Zr
0.3T
i0.7)O
3
films, IEEE Trans. Ultrason. Ferroelectr. Freq. Control
68(2),
259–272 (2021),
https://doi.org/10.1109/TUFFC.2020.2987438
[7] G.L. Brennecka, W. Huebner, B.A. Tuttle, and P.G. Clem, Use
of stress to produce highly oriented tetragonal lead zirconate
titanate (PZT 40/60) thin films and resulting electrical
properties, J. Am. Ceram. Soc.
87(8), 1459–1465 (2004),
https://doi.org/10.1111/j.1551-2916.2004.01459.x
[8] S. Gebhardt, L. Seffner, F. Schlenkrich, and A. Schonecker,
PZT thick films for sensor and actuator applications, J. Eur.
Ceram. Soc.
27, 4177–4180 (2007),
https://doi.org/10.1016/j.jeurceramsoc.2007.02.122
[9] L. Song, S. Glinsek, and E. Defay, Toward low-temperature
processing of lead zirconate titanate thin films: Advances,
strategies, and applications, Appl. Phys. Rev.
8 (2021),
https://doi.org/10.1063/5.0054004
[10] M. Veith, M. Bender, T. Lehnert, M. Zimmer, and A. Jakob,
Novel single-source precursors for the fabrication of PbTiO
3,
PbZrO
3 and Pb(Zr
1–xTi
x)O
3
thin-films by chemical vapor deposition, Dalton Trans.
40,
1175–1182 (2011),
https://doi.org/10.1039/C0DT00830C
[11] Y. Yamasaki, Y. Yokota, H. Shima, and H. Uchida,
One-axis-oriented growth of PZT thin films on transparent glass
substrates using metal oxide nanosheets, Jpn. J. Appl. Phys.
61,
SN1006 (2022),
https://doi.org/10.35848/1347-4065/ac7e1a
[12] G. Tan, S.H. Kweon, and I. Kanno, Piezoelectric properties
of epitaxial Pb(Zr,Ti)O
3 thin films grown on Si
substrates by the sol–gel method, Thin Solid Films
764,
139612 (2023),
https://doi.org/10.1016/j.tsf.2022.139612
[13] R. Eason, S. Barrington, C. Grivas, T. May-Smith, and D.
Shepherd,
Pulsed Laser Deposition of Thin Films:
Applications-Led Growth of Functional Materials
(Wiley-Interscience John Wiley and Sons, 2006) pp. 383–420,
https://doi.org/10.1002/9780470052129.ch17
[14] I. Vrejoiu, D. Hesse, and M. Alexe, Single crystalline PZT
films and the impact of extended structural defects on the
ferroelectric properties, in:
Handbook of Advanced
Dielectric, Piezoelectric and Ferroelectric Materials:
Synthesis, Properties and Applications, ed. Z.-G. Ye (CRC
Press, 2008) pp. 695–723,
https://doi.org/10.1533/9781845694005.6.695
[15] C. Huang, Z. Liao, M. Li, C. Guan, F. Jin, M. Ye, X. Zeng,
T. Zhang, Z. Chen, Y. Qi, P. Gao, and L. Chen, A highly strained
phase in PbZr
0.2Ti
0.8O
3 films
with enhanced ferroelectric properties, Adv. Sci.
8, 1–8
(2021),
https://doi.org/10.1002/advs.202003582
[16] M. Španková, V. Štrbík, Š. Chromik, D.N. Zheng, J. Li, D.
Machajdík, A. P. Kobzev, T. Plecenik, and M. Sojková,
Characterization of epitaxial LSMO films grown on STO
substrates, Acta Phys. Pol. A
131, 848–850 (2017),
https://doi.org/10.12693/APhysPolA.131.848
[17] Z.G. Ban, S.P. Alpay, F. He, B.O. Wells, and X.X. Xi,
Multiple relaxation mechanisms in SiTiO
3/SrRuO
3
heterostructures, Appl. Phys. Lett.
84, 4848–4850
(2004),
https://doi.org/10.1063/1.1760228
[18] I. Vrejoiu, G.L. Rhun, L. Pintilie, D. Hesse, M. Alexe, and
U. Gosele, Intrinsic ferroelectric properties of strained
tetragonal PbZr
0.2Ti
0.8O
3
obtained on layer-by-layer grown, defect-free single-crystalline
films, Adv. Mater.
18, 1657–1661 (2006),
https://doi.org/10.1002/adma.200502711
[19] M.J. Haun, E. Furman, S.J. Jang, and L.E. Cross,
Thermodynamic theory of the lead zirconate-titanate solid
solution system, part V: Theoretical calculations,
Ferroelectrics
99, 63–86 (1989),
https://doi.org/10.1080/00150198908221440
[20] J.D.S. Guerra, R.J. Portugal, A.C. Silva, R. Guo, and A.S.
Bhalla, Investigation of the conduction processes in PZT-based
multiferroics: Analysis from Jonscher’s formalism, Phys. Status
Solidi B
251, 1020–1027 (2014),
https://doi.org/10.1002/pssb.201350336
[21] S. Dussan, A. Kumar, J.F. Scott, and R.S. Katiyar, Magnetic
effects on dielectric and polarization behavior of multiferroic
heterostructures, Appl. Phys. Lett.
96, 072904 (2010),
https://doi.org/10.1063/1.3327889
[22] V. Raicu, Dielectric dispersion of biological matter: Model
combining Debye-type and “universal” responses, Phys. Rev. E
60,
4677–4680 (1999),
https://doi.org/10.1103/PhysRevE.60.4677
[23] D.V. Kuzenko, Temperature-activation mechanism of the
temperature dependence of the dielectric constant of
ferroelectric ceramics PZT, J. Adv. Dielectr.
12, 1–7
(2022),
https://doi.org/10.1142/S2010135X22500102